aboutsummaryrefslogtreecommitdiff
path: root/src/peripheral
diff options
context:
space:
mode:
Diffstat (limited to 'src/peripheral')
-rw-r--r--src/peripheral/ac.rs93
-rw-r--r--src/peripheral/cbp.rs138
-rw-r--r--src/peripheral/cpuid.rs140
-rw-r--r--src/peripheral/dcb.rs81
-rw-r--r--src/peripheral/dwt.rs507
-rw-r--r--src/peripheral/fpb.rs21
-rw-r--r--src/peripheral/fpu.rs19
-rw-r--r--src/peripheral/icb.rs32
-rw-r--r--src/peripheral/itm.rs216
-rw-r--r--src/peripheral/mod.rs592
-rw-r--r--src/peripheral/mpu.rs65
-rw-r--r--src/peripheral/nvic.rs272
-rw-r--r--src/peripheral/sau.rs242
-rw-r--r--src/peripheral/scb.rs1110
-rw-r--r--src/peripheral/syst.rs185
-rw-r--r--src/peripheral/test.rs170
-rw-r--r--src/peripheral/tpiu.rs160
17 files changed, 0 insertions, 4043 deletions
diff --git a/src/peripheral/ac.rs b/src/peripheral/ac.rs
deleted file mode 100644
index 1ac5be1..0000000
--- a/src/peripheral/ac.rs
+++ /dev/null
@@ -1,93 +0,0 @@
-//! Cortex-M7 TCM and Cache access control.
-
-use volatile_register::RW;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Instruction Tightly-Coupled Memory Control Register
- pub itcmcr: RW<u32>,
- /// Data Tightly-Coupled Memory Control Register
- pub dtcmcr: RW<u32>,
- /// AHBP Control Register
- pub ahbpcr: RW<u32>,
- /// L1 Cache Control Register
- pub cacr: RW<u32>,
- /// AHB Slave Control Register
- pub ahbscr: RW<u32>,
- reserved0: u32,
- /// Auxilary Bus Fault Status Register
- pub abfsr: RW<u32>,
-}
-
-/// ITCMCR and DTCMCR TCM enable bit.
-pub const TCM_EN: u32 = 1;
-
-/// ITCMCR and DTCMCR TCM read-modify-write bit.
-pub const TCM_RMW: u32 = 2;
-
-/// ITCMCR and DTCMCR TCM rety phase enable bit.
-pub const TCM_RETEN: u32 = 4;
-
-/// ITCMCR and DTCMCR TCM size mask.
-pub const TCM_SZ_MASK: u32 = 0x78;
-
-/// ITCMCR and DTCMCR TCM shift.
-pub const TCM_SZ_SHIFT: usize = 3;
-
-/// AHBPCR AHBP enable bit.
-pub const AHBPCR_EN: u32 = 1;
-
-/// AHBPCR AHBP size mask.
-pub const AHBPCR_SZ_MASK: u32 = 0x0e;
-
-/// AHBPCR AHBP size shit.
-pub const AHBPCR_SZ_SHIFT: usize = 1;
-
-/// CACR Shared cachedable-is-WT for data cache.
-pub const CACR_SIWT: u32 = 1;
-
-/// CACR ECC in the instruction and data cache (disable).
-pub const CACR_ECCDIS: u32 = 2;
-
-/// CACR Force Write-Through in the data cache.
-pub const CACR_FORCEWT: u32 = 4;
-
-/// AHBSCR AHBS prioritization control mask.
-pub const AHBSCR_CTL_MASK: u32 = 0x03;
-
-/// AHBSCR AHBS prioritization control shift.
-pub const AHBSCR_CTL_SHIFT: usize = 0;
-
-/// AHBSCR Threshold execution prioity for AHBS traffic demotion, mask.
-pub const AHBSCR_TPRI_MASK: u32 = 0x7fc;
-
-/// AHBSCR Threshold execution prioity for AHBS traffic demotion, shift.
-pub const AHBSCR_TPRI_SHIFT: usize = 2;
-
-/// AHBSCR Failness counter initialization value, mask.
-pub const AHBSCR_INITCOUNT_MASK: u32 = 0xf800;
-
-/// AHBSCR Failness counter initialization value, shift.
-pub const AHBSCR_INITCOUNT_SHIFT: usize = 11;
-
-/// ABFSR Async fault on ITCM interface.
-pub const ABFSR_ITCM: u32 = 1;
-
-/// ABFSR Async fault on DTCM interface.
-pub const ABFSR_DTCM: u32 = 2;
-
-/// ABFSR Async fault on AHBP interface.
-pub const ABFSR_AHBP: u32 = 4;
-
-/// ABFSR Async fault on AXIM interface.
-pub const ABFSR_AXIM: u32 = 8;
-
-/// ABFSR Async fault on EPPB interface.
-pub const ABFSR_EPPB: u32 = 16;
-
-/// ABFSR Indicates the type of fault on the AXIM interface, mask.
-pub const ABFSR_AXIMTYPE_MASK: u32 = 0x300;
-
-/// ABFSR Indicates the type of fault on the AXIM interface, shift.
-pub const ABFSR_AXIMTYPE_SHIFT: usize = 8;
diff --git a/src/peripheral/cbp.rs b/src/peripheral/cbp.rs
deleted file mode 100644
index 5aee544..0000000
--- a/src/peripheral/cbp.rs
+++ /dev/null
@@ -1,138 +0,0 @@
-//! Cache and branch predictor maintenance operations
-//!
-//! *NOTE* Not available on Armv6-M.
-
-use volatile_register::WO;
-
-use crate::peripheral::CBP;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// I-cache invalidate all to PoU
- pub iciallu: WO<u32>,
- reserved0: u32,
- /// I-cache invalidate by MVA to PoU
- pub icimvau: WO<u32>,
- /// D-cache invalidate by MVA to PoC
- pub dcimvac: WO<u32>,
- /// D-cache invalidate by set-way
- pub dcisw: WO<u32>,
- /// D-cache clean by MVA to PoU
- pub dccmvau: WO<u32>,
- /// D-cache clean by MVA to PoC
- pub dccmvac: WO<u32>,
- /// D-cache clean by set-way
- pub dccsw: WO<u32>,
- /// D-cache clean and invalidate by MVA to PoC
- pub dccimvac: WO<u32>,
- /// D-cache clean and invalidate by set-way
- pub dccisw: WO<u32>,
- /// Branch predictor invalidate all
- pub bpiall: WO<u32>,
-}
-
-const CBP_SW_WAY_POS: u32 = 30;
-const CBP_SW_WAY_MASK: u32 = 0x3 << CBP_SW_WAY_POS;
-const CBP_SW_SET_POS: u32 = 5;
-const CBP_SW_SET_MASK: u32 = 0x1FF << CBP_SW_SET_POS;
-
-impl CBP {
- /// I-cache invalidate all to PoU
- #[inline(always)]
- pub fn iciallu(&mut self) {
- unsafe { self.iciallu.write(0) };
- }
-
- /// I-cache invalidate by MVA to PoU
- #[inline(always)]
- pub fn icimvau(&mut self, mva: u32) {
- unsafe { self.icimvau.write(mva) };
- }
-
- /// D-cache invalidate by MVA to PoC
- #[inline(always)]
- pub unsafe fn dcimvac(&mut self, mva: u32) {
- self.dcimvac.write(mva);
- }
-
- /// D-cache invalidate by set-way
- ///
- /// `set` is masked to be between 0 and 3, and `way` between 0 and 511.
- #[inline(always)]
- pub unsafe fn dcisw(&mut self, set: u16, way: u16) {
- // The ARMv7-M Architecture Reference Manual, as of Revision E.b, says these set/way
- // operations have a register data format which depends on the implementation's
- // associativity and number of sets. Specifically the 'way' and 'set' fields have
- // offsets 32-log2(ASSOCIATIVITY) and log2(LINELEN) respectively.
- //
- // However, in Cortex-M7 devices, these offsets are fixed at 30 and 5, as per the Cortex-M7
- // Generic User Guide section 4.8.3. Since no other ARMv7-M implementations except the
- // Cortex-M7 have a DCACHE or ICACHE at all, it seems safe to do the same thing as the
- // CMSIS-Core implementation and use fixed values.
- self.dcisw.write(
- ((u32::from(way) & (CBP_SW_WAY_MASK >> CBP_SW_WAY_POS)) << CBP_SW_WAY_POS)
- | ((u32::from(set) & (CBP_SW_SET_MASK >> CBP_SW_SET_POS)) << CBP_SW_SET_POS),
- );
- }
-
- /// D-cache clean by MVA to PoU
- #[inline(always)]
- pub fn dccmvau(&mut self, mva: u32) {
- unsafe {
- self.dccmvau.write(mva);
- }
- }
-
- /// D-cache clean by MVA to PoC
- #[inline(always)]
- pub fn dccmvac(&mut self, mva: u32) {
- unsafe {
- self.dccmvac.write(mva);
- }
- }
-
- /// D-cache clean by set-way
- ///
- /// `set` is masked to be between 0 and 3, and `way` between 0 and 511.
- #[inline(always)]
- pub fn dccsw(&mut self, set: u16, way: u16) {
- // See comment for dcisw() about the format here
- unsafe {
- self.dccsw.write(
- ((u32::from(way) & (CBP_SW_WAY_MASK >> CBP_SW_WAY_POS)) << CBP_SW_WAY_POS)
- | ((u32::from(set) & (CBP_SW_SET_MASK >> CBP_SW_SET_POS)) << CBP_SW_SET_POS),
- );
- }
- }
-
- /// D-cache clean and invalidate by MVA to PoC
- #[inline(always)]
- pub fn dccimvac(&mut self, mva: u32) {
- unsafe {
- self.dccimvac.write(mva);
- }
- }
-
- /// D-cache clean and invalidate by set-way
- ///
- /// `set` is masked to be between 0 and 3, and `way` between 0 and 511.
- #[inline(always)]
- pub fn dccisw(&mut self, set: u16, way: u16) {
- // See comment for dcisw() about the format here
- unsafe {
- self.dccisw.write(
- ((u32::from(way) & (CBP_SW_WAY_MASK >> CBP_SW_WAY_POS)) << CBP_SW_WAY_POS)
- | ((u32::from(set) & (CBP_SW_SET_MASK >> CBP_SW_SET_POS)) << CBP_SW_SET_POS),
- );
- }
- }
-
- /// Branch predictor invalidate all
- #[inline(always)]
- pub fn bpiall(&mut self) {
- unsafe {
- self.bpiall.write(0);
- }
- }
-}
diff --git a/src/peripheral/cpuid.rs b/src/peripheral/cpuid.rs
deleted file mode 100644
index db85566..0000000
--- a/src/peripheral/cpuid.rs
+++ /dev/null
@@ -1,140 +0,0 @@
-//! CPUID
-
-use volatile_register::RO;
-#[cfg(not(armv6m))]
-use volatile_register::RW;
-
-#[cfg(not(armv6m))]
-use crate::peripheral::CPUID;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// CPUID base
- pub base: RO<u32>,
-
- _reserved0: [u32; 15],
-
- /// Processor Feature (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub pfr: [RO<u32>; 2],
- #[cfg(armv6m)]
- _reserved1: [u32; 2],
-
- /// Debug Feature (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub dfr: RO<u32>,
- #[cfg(armv6m)]
- _reserved2: u32,
-
- /// Auxiliary Feature (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub afr: RO<u32>,
- #[cfg(armv6m)]
- _reserved3: u32,
-
- /// Memory Model Feature (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub mmfr: [RO<u32>; 4],
- #[cfg(armv6m)]
- _reserved4: [u32; 4],
-
- /// Instruction Set Attribute (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub isar: [RO<u32>; 5],
- #[cfg(armv6m)]
- _reserved5: [u32; 5],
-
- _reserved6: u32,
-
- /// Cache Level ID (only present on Cortex-M7)
- #[cfg(not(armv6m))]
- pub clidr: RO<u32>,
-
- /// Cache Type (only present on Cortex-M7)
- #[cfg(not(armv6m))]
- pub ctr: RO<u32>,
-
- /// Cache Size ID (only present on Cortex-M7)
- #[cfg(not(armv6m))]
- pub ccsidr: RO<u32>,
-
- /// Cache Size Selection (only present on Cortex-M7)
- #[cfg(not(armv6m))]
- pub csselr: RW<u32>,
-}
-
-/// Type of cache to select on CSSELR writes.
-#[cfg(not(armv6m))]
-#[derive(Copy, Clone, Debug, PartialEq, Eq)]
-pub enum CsselrCacheType {
- /// Select DCache or unified cache
- DataOrUnified = 0,
- /// Select ICache
- Instruction = 1,
-}
-
-#[cfg(not(armv6m))]
-impl CPUID {
- /// Selects the current CCSIDR
- ///
- /// * `level`: the required cache level minus 1, e.g. 0 for L1, 1 for L2
- /// * `ind`: select instruction cache or data/unified cache
- ///
- /// `level` is masked to be between 0 and 7.
- #[inline]
- pub fn select_cache(&mut self, level: u8, ind: CsselrCacheType) {
- const CSSELR_IND_POS: u32 = 0;
- const CSSELR_IND_MASK: u32 = 1 << CSSELR_IND_POS;
- const CSSELR_LEVEL_POS: u32 = 1;
- const CSSELR_LEVEL_MASK: u32 = 0x7 << CSSELR_LEVEL_POS;
-
- unsafe {
- self.csselr.write(
- ((u32::from(level) << CSSELR_LEVEL_POS) & CSSELR_LEVEL_MASK)
- | (((ind as u32) << CSSELR_IND_POS) & CSSELR_IND_MASK),
- )
- }
- }
-
- /// Returns the number of sets and ways in the selected cache
- #[inline]
- pub fn cache_num_sets_ways(&mut self, level: u8, ind: CsselrCacheType) -> (u16, u16) {
- const CCSIDR_NUMSETS_POS: u32 = 13;
- const CCSIDR_NUMSETS_MASK: u32 = 0x7FFF << CCSIDR_NUMSETS_POS;
- const CCSIDR_ASSOCIATIVITY_POS: u32 = 3;
- const CCSIDR_ASSOCIATIVITY_MASK: u32 = 0x3FF << CCSIDR_ASSOCIATIVITY_POS;
-
- self.select_cache(level, ind);
- crate::asm::dsb();
- let ccsidr = self.ccsidr.read();
- (
- (1 + ((ccsidr & CCSIDR_NUMSETS_MASK) >> CCSIDR_NUMSETS_POS)) as u16,
- (1 + ((ccsidr & CCSIDR_ASSOCIATIVITY_MASK) >> CCSIDR_ASSOCIATIVITY_POS)) as u16,
- )
- }
-
- /// Returns log2 of the number of words in the smallest cache line of all the data cache and
- /// unified caches that are controlled by the processor.
- ///
- /// This is the `DminLine` field of the CTR register.
- #[inline(always)]
- pub fn cache_dminline() -> u32 {
- const CTR_DMINLINE_POS: u32 = 16;
- const CTR_DMINLINE_MASK: u32 = 0xF << CTR_DMINLINE_POS;
- let ctr = unsafe { (*Self::PTR).ctr.read() };
- (ctr & CTR_DMINLINE_MASK) >> CTR_DMINLINE_POS
- }
-
- /// Returns log2 of the number of words in the smallest cache line of all the instruction
- /// caches that are controlled by the processor.
- ///
- /// This is the `IminLine` field of the CTR register.
- #[inline(always)]
- pub fn cache_iminline() -> u32 {
- const CTR_IMINLINE_POS: u32 = 0;
- const CTR_IMINLINE_MASK: u32 = 0xF << CTR_IMINLINE_POS;
- let ctr = unsafe { (*Self::PTR).ctr.read() };
- (ctr & CTR_IMINLINE_MASK) >> CTR_IMINLINE_POS
- }
-}
diff --git a/src/peripheral/dcb.rs b/src/peripheral/dcb.rs
deleted file mode 100644
index a4db9fc..0000000
--- a/src/peripheral/dcb.rs
+++ /dev/null
@@ -1,81 +0,0 @@
-//! Debug Control Block
-
-use volatile_register::{RW, WO};
-
-use crate::peripheral::DCB;
-use core::ptr;
-
-const DCB_DEMCR_TRCENA: u32 = 1 << 24;
-const DCB_DEMCR_MON_EN: u32 = 1 << 16;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Debug Halting Control and Status
- pub dhcsr: RW<u32>,
- /// Debug Core Register Selector
- pub dcrsr: WO<u32>,
- /// Debug Core Register Data
- pub dcrdr: RW<u32>,
- /// Debug Exception and Monitor Control
- pub demcr: RW<u32>,
-}
-
-impl DCB {
- /// Enables TRACE. This is for example required by the
- /// `peripheral::DWT` cycle counter to work properly.
- /// As by STM documentation, this flag is not reset on
- /// soft-reset, only on power reset.
- ///
- /// Note: vendor-specific registers may have to be set to completely
- /// enable tracing. For example, on the STM32F401RE, `TRACE_MODE`
- /// and `TRACE_IOEN` must be configured in `DBGMCU_CR` register.
- #[inline]
- pub fn enable_trace(&mut self) {
- // set bit 24 / TRCENA
- unsafe {
- self.demcr.modify(|w| w | DCB_DEMCR_TRCENA);
- }
- }
-
- /// Disables TRACE. See `DCB::enable_trace()` for more details
- #[inline]
- pub fn disable_trace(&mut self) {
- // unset bit 24 / TRCENA
- unsafe {
- self.demcr.modify(|w| w & !DCB_DEMCR_TRCENA);
- }
- }
-
- /// Enables the [`DebugMonitor`](crate::peripheral::scb::Exception::DebugMonitor) exception
- #[inline]
- pub fn enable_debug_monitor(&mut self) {
- unsafe {
- self.demcr.modify(|w| w | DCB_DEMCR_MON_EN);
- }
- }
-
- /// Disables the [`DebugMonitor`](crate::peripheral::scb::Exception::DebugMonitor) exception
- #[inline]
- pub fn disable_debug_monitor(&mut self) {
- unsafe {
- self.demcr.modify(|w| w & !DCB_DEMCR_MON_EN);
- }
- }
-
- /// Is there a debugger attached? (see note)
- ///
- /// Note: This function is [reported not to
- /// work](http://web.archive.org/web/20180821191012/https://community.nxp.com/thread/424925#comment-782843)
- /// on Cortex-M0 devices. Per the ARM v6-M Architecture Reference Manual, "Access to the DHCSR
- /// from software running on the processor is IMPLEMENTATION DEFINED". Indeed, from the
- /// [Cortex-M0+ r0p1 Technical Reference Manual](http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0484c/BABJHEIG.html), "Note Software cannot access the debug registers."
- #[inline]
- pub fn is_debugger_attached() -> bool {
- unsafe {
- // do an 8-bit read of the 32-bit DHCSR register, and get the LSB
- let value = ptr::read_volatile(Self::PTR as *const u8);
- value & 0x1 == 1
- }
- }
-}
diff --git a/src/peripheral/dwt.rs b/src/peripheral/dwt.rs
deleted file mode 100644
index 72575d3..0000000
--- a/src/peripheral/dwt.rs
+++ /dev/null
@@ -1,507 +0,0 @@
-//! Data Watchpoint and Trace unit
-
-#[cfg(not(armv6m))]
-use volatile_register::WO;
-use volatile_register::{RO, RW};
-
-use crate::peripheral::DWT;
-use bitfield::bitfield;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Control
- pub ctrl: RW<Ctrl>,
- /// Cycle Count
- #[cfg(not(armv6m))]
- pub cyccnt: RW<u32>,
- /// CPI Count
- #[cfg(not(armv6m))]
- pub cpicnt: RW<u32>,
- /// Exception Overhead Count
- #[cfg(not(armv6m))]
- pub exccnt: RW<u32>,
- /// Sleep Count
- #[cfg(not(armv6m))]
- pub sleepcnt: RW<u32>,
- /// LSU Count
- #[cfg(not(armv6m))]
- pub lsucnt: RW<u32>,
- /// Folded-instruction Count
- #[cfg(not(armv6m))]
- pub foldcnt: RW<u32>,
- /// Cortex-M0(+) does not have these parts
- #[cfg(armv6m)]
- reserved: [u32; 6],
- /// Program Counter Sample
- pub pcsr: RO<u32>,
- /// Comparators
- #[cfg(armv6m)]
- pub c: [Comparator; 2],
- #[cfg(not(armv6m))]
- /// Comparators
- pub c: [Comparator; 16],
- #[cfg(not(armv6m))]
- reserved: [u32; 932],
- /// Lock Access
- #[cfg(not(armv6m))]
- pub lar: WO<u32>,
- /// Lock Status
- #[cfg(not(armv6m))]
- pub lsr: RO<u32>,
-}
-
-bitfield! {
- /// Control register.
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Ctrl(u32);
- cyccntena, set_cyccntena: 0;
- pcsamplena, set_pcsamplena: 12;
- exctrcena, set_exctrcena: 16;
- noprfcnt, _: 24;
- nocyccnt, _: 25;
- noexttrig, _: 26;
- notrcpkt, _: 27;
- u8, numcomp, _: 31, 28;
-}
-
-/// Comparator
-#[repr(C)]
-pub struct Comparator {
- /// Comparator
- pub comp: RW<u32>,
- /// Comparator Mask
- pub mask: RW<u32>,
- /// Comparator Function
- pub function: RW<Function>,
- reserved: u32,
-}
-
-bitfield! {
- #[repr(C)]
- #[derive(Copy, Clone)]
- /// Comparator FUNCTIONn register.
- ///
- /// See C1.8.17 "Comparator Function registers, DWT_FUNCTIONn"
- pub struct Function(u32);
- u8, function, set_function: 3, 0;
- emitrange, set_emitrange: 5;
- cycmatch, set_cycmatch: 7;
- datavmatch, set_datavmatch: 8;
- lnk1ena, set_lnk1ena: 9;
- u8, datavsize, set_datavsize: 11, 10;
- u8, datavaddr0, set_datavaddr0: 15, 12;
- u8, datavaddr1, set_datavaddr1: 19, 16;
- matched, _: 24;
-}
-
-impl DWT {
- /// Number of comparators implemented
- ///
- /// A value of zero indicates no comparator support.
- #[inline]
- pub fn num_comp(&self) -> u8 {
- self.ctrl.read().numcomp()
- }
-
- /// Returns `true` if the the implementation supports sampling and exception tracing
- #[cfg(not(armv6m))]
- #[inline]
- pub fn has_exception_trace(&self) -> bool {
- !self.ctrl.read().notrcpkt()
- }
-
- /// Returns `true` if the implementation includes external match signals
- #[cfg(not(armv6m))]
- #[inline]
- pub fn has_external_match(&self) -> bool {
- !self.ctrl.read().noexttrig()
- }
-
- /// Returns `true` if the implementation supports a cycle counter
- #[inline]
- pub fn has_cycle_counter(&self) -> bool {
- #[cfg(not(armv6m))]
- return !self.ctrl.read().nocyccnt();
-
- #[cfg(armv6m)]
- return false;
- }
-
- /// Returns `true` if the implementation the profiling counters
- #[cfg(not(armv6m))]
- #[inline]
- pub fn has_profiling_counter(&self) -> bool {
- !self.ctrl.read().noprfcnt()
- }
-
- /// Enables the cycle counter
- ///
- /// The global trace enable ([`DCB::enable_trace`]) should be set before
- /// enabling the cycle counter, the processor may ignore writes to the
- /// cycle counter enable if the global trace is disabled
- /// (implementation defined behaviour).
- ///
- /// [`DCB::enable_trace`]: crate::peripheral::DCB::enable_trace
- #[cfg(not(armv6m))]
- #[inline]
- pub fn enable_cycle_counter(&mut self) {
- unsafe {
- self.ctrl.modify(|mut r| {
- r.set_cyccntena(true);
- r
- });
- }
- }
-
- /// Disables the cycle counter
- #[cfg(not(armv6m))]
- #[inline]
- pub fn disable_cycle_counter(&mut self) {
- unsafe {
- self.ctrl.modify(|mut r| {
- r.set_cyccntena(false);
- r
- });
- }
- }
-
- /// Returns `true` if the cycle counter is enabled
- #[cfg(not(armv6m))]
- #[inline]
- pub fn cycle_counter_enabled(&self) -> bool {
- self.ctrl.read().cyccntena()
- }
-
- /// Enables exception tracing
- #[cfg(not(armv6m))]
- #[inline]
- pub fn enable_exception_tracing(&mut self) {
- unsafe {
- self.ctrl.modify(|mut r| {
- r.set_exctrcena(true);
- r
- });
- }
- }
-
- /// Disables exception tracing
- #[cfg(not(armv6m))]
- #[inline]
- pub fn disable_exception_tracing(&mut self) {
- unsafe {
- self.ctrl.modify(|mut r| {
- r.set_exctrcena(false);
- r
- });
- }
- }
-
- /// Whether to periodically generate PC samples
- #[cfg(not(armv6m))]
- #[inline]
- pub fn enable_pc_samples(&mut self, bit: bool) {
- unsafe {
- self.ctrl.modify(|mut r| {
- r.set_pcsamplena(bit);
- r
- });
- }
- }
-
- /// Returns the current clock cycle count
- #[cfg(not(armv6m))]
- #[inline]
- #[deprecated(
- since = "0.7.4",
- note = "Use `cycle_count` which follows the C-GETTER convention"
- )]
- pub fn get_cycle_count() -> u32 {
- Self::cycle_count()
- }
-
- /// Returns the current clock cycle count
- #[cfg(not(armv6m))]
- #[inline]
- pub fn cycle_count() -> u32 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).cyccnt.read() }
- }
-
- /// Set the cycle count
- #[cfg(not(armv6m))]
- #[inline]
- pub fn set_cycle_count(&mut self, count: u32) {
- unsafe { self.cyccnt.write(count) }
- }
-
- /// Removes the software lock on the DWT
- ///
- /// Some devices, like the STM32F7, software lock the DWT after a power cycle.
- #[cfg(not(armv6m))]
- #[inline]
- pub fn unlock() {
- // NOTE(unsafe) atomic write to a stateless, write-only register
- unsafe { (*Self::PTR).lar.write(0xC5AC_CE55) }
- }
-
- /// Get the CPI count
- ///
- /// Counts additional cycles required to execute multi-cycle instructions,
- /// except those recorded by [`lsu_count`], and counts any instruction fetch
- /// stalls.
- ///
- /// [`lsu_count`]: DWT::lsu_count
- #[cfg(not(armv6m))]
- #[inline]
- pub fn cpi_count() -> u8 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).cpicnt.read() as u8 }
- }
-
- /// Set the CPI count
- #[cfg(not(armv6m))]
- #[inline]
- pub fn set_cpi_count(&mut self, count: u8) {
- unsafe { self.cpicnt.write(count as u32) }
- }
-
- /// Get the total cycles spent in exception processing
- #[cfg(not(armv6m))]
- #[inline]
- pub fn exception_count() -> u8 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).exccnt.read() as u8 }
- }
-
- /// Set the exception count
- #[cfg(not(armv6m))]
- #[inline]
- pub fn set_exception_count(&mut self, count: u8) {
- unsafe { self.exccnt.write(count as u32) }
- }
-
- /// Get the total number of cycles that the processor is sleeping
- ///
- /// ARM recommends that this counter counts all cycles when the processor is sleeping,
- /// regardless of whether a WFI or WFE instruction, or the sleep-on-exit functionality,
- /// caused the entry to sleep mode.
- /// However, all sleep features are implementation defined and therefore when
- /// this counter counts is implementation defined.
- #[cfg(not(armv6m))]
- #[inline]
- pub fn sleep_count() -> u8 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).sleepcnt.read() as u8 }
- }
-
- /// Set the sleep count
- #[cfg(not(armv6m))]
- #[inline]
- pub fn set_sleep_count(&mut self, count: u8) {
- unsafe { self.sleepcnt.write(count as u32) }
- }
-
- /// Get the additional cycles required to execute all load or store instructions
- #[cfg(not(armv6m))]
- #[inline]
- pub fn lsu_count() -> u8 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).lsucnt.read() as u8 }
- }
-
- /// Set the lsu count
- #[cfg(not(armv6m))]
- #[inline]
- pub fn set_lsu_count(&mut self, count: u8) {
- unsafe { self.lsucnt.write(count as u32) }
- }
-
- /// Get the folded instruction count
- ///
- /// Increments on each instruction that takes 0 cycles.
- #[cfg(not(armv6m))]
- #[inline]
- pub fn fold_count() -> u8 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).foldcnt.read() as u8 }
- }
-
- /// Set the folded instruction count
- #[cfg(not(armv6m))]
- #[inline]
- pub fn set_fold_count(&mut self, count: u8) {
- unsafe { self.foldcnt.write(count as u32) }
- }
-}
-
-/// Whether the comparator should match on read, write or read/write operations.
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub enum AccessType {
- /// Generate packet only when matched address is read from.
- ReadOnly,
- /// Generate packet only when matched address is written to.
- WriteOnly,
- /// Generate packet when matched address is both read from and written to.
- ReadWrite,
-}
-
-/// The sequence of packet(s) or events that should be emitted/generated on comparator match.
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub enum EmitOption {
- /// Emit only trace data value packet.
- Data,
- /// Emit only trace address packet.
- Address,
- /// Emit only trace PC value packet
- ///
- /// *NOTE* only compatible with [AccessType::ReadWrite].
- PC,
- /// Emit trace address and data value packets.
- AddressData,
- /// Emit trace PC value and data value packets.
- PCData,
- /// Generate a watchpoint debug event. Either halts execution or fires a `DebugMonitor` exception.
- ///
- /// See more in section "Watchpoint debug event generation" page C1-729.
- WatchpointDebugEvent,
- /// Generate a `CMPMATCH[N]` event.
- ///
- /// See more in section "CMPMATCH[N] event generation" page C1-730.
- CompareMatchEvent,
-}
-
-/// Settings for address matching
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub struct ComparatorAddressSettings {
- /// The address to match against.
- pub address: u32,
- /// The address mask to match against.
- pub mask: u32,
- /// What sequence of packet(s) to emit on comparator match.
- pub emit: EmitOption,
- /// Whether to match on read, write or read/write operations.
- pub access_type: AccessType,
-}
-
-/// Settings for cycle count matching
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub struct CycleCountSettings {
- /// The function selection used.
- /// See Table C1-15 for DWT cycle count comparison functions.
- pub emit: EmitOption,
- /// The cycle count value to compare against.
- pub compare: u32,
-}
-
-/// The available functions of a DWT comparator.
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-#[non_exhaustive]
-pub enum ComparatorFunction {
- /// Compare accessed memory addresses.
- Address(ComparatorAddressSettings),
- /// Compare cycle count & target value.
- ///
- /// **NOTE**: only supported by comparator 0 and if the HW supports the cycle counter.
- /// Check [`DWT::has_cycle_counter`] for support. See C1.8.1 for more details.
- CycleCount(CycleCountSettings),
-}
-
-/// Possible error values returned on [Comparator::configure].
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-#[non_exhaustive]
-pub enum DwtError {
- /// Invalid combination of [AccessType] and [EmitOption].
- InvalidFunction,
-}
-
-impl Comparator {
- /// Configure the function of the comparator
- #[allow(clippy::missing_inline_in_public_items)]
- pub fn configure(&self, settings: ComparatorFunction) -> Result<(), DwtError> {
- match settings {
- ComparatorFunction::Address(settings) => {
- // FUNCTION, EMITRANGE
- // See Table C1-14
- let (function, emit_range) = match (&settings.access_type, &settings.emit) {
- (AccessType::ReadOnly, EmitOption::Data) => (0b1100, false),
- (AccessType::ReadOnly, EmitOption::Address) => (0b1100, true),
- (AccessType::ReadOnly, EmitOption::AddressData) => (0b1110, true),
- (AccessType::ReadOnly, EmitOption::PCData) => (0b1110, false),
- (AccessType::ReadOnly, EmitOption::WatchpointDebugEvent) => (0b0101, false),
- (AccessType::ReadOnly, EmitOption::CompareMatchEvent) => (0b1001, false),
-
- (AccessType::WriteOnly, EmitOption::Data) => (0b1101, false),
- (AccessType::WriteOnly, EmitOption::Address) => (0b1101, true),
- (AccessType::WriteOnly, EmitOption::AddressData) => (0b1111, true),
- (AccessType::WriteOnly, EmitOption::PCData) => (0b1111, false),
- (AccessType::WriteOnly, EmitOption::WatchpointDebugEvent) => (0b0110, false),
- (AccessType::WriteOnly, EmitOption::CompareMatchEvent) => (0b1010, false),
-
- (AccessType::ReadWrite, EmitOption::Data) => (0b0010, false),
- (AccessType::ReadWrite, EmitOption::Address) => (0b0001, true),
- (AccessType::ReadWrite, EmitOption::AddressData) => (0b0010, true),
- (AccessType::ReadWrite, EmitOption::PCData) => (0b0011, false),
- (AccessType::ReadWrite, EmitOption::WatchpointDebugEvent) => (0b0111, false),
- (AccessType::ReadWrite, EmitOption::CompareMatchEvent) => (0b1011, false),
-
- (AccessType::ReadWrite, EmitOption::PC) => (0b0001, false),
- (_, EmitOption::PC) => return Err(DwtError::InvalidFunction),
- };
-
- unsafe {
- self.function.modify(|mut r| {
- r.set_function(function);
- r.set_emitrange(emit_range);
- // don't compare data value
- r.set_datavmatch(false);
- // don't compare cycle counter value
- // NOTE: only needed for comparator 0, but is SBZP.
- r.set_cycmatch(false);
- // SBZ as needed, see Page 784/C1-724
- r.set_datavsize(0);
- r.set_datavaddr0(0);
- r.set_datavaddr1(0);
-
- r
- });
-
- self.comp.write(settings.address);
- self.mask.write(settings.mask);
- }
- }
- ComparatorFunction::CycleCount(settings) => {
- let function = match &settings.emit {
- EmitOption::PCData => 0b0001,
- EmitOption::WatchpointDebugEvent => 0b0100,
- EmitOption::CompareMatchEvent => 0b1000,
- _ => return Err(DwtError::InvalidFunction),
- };
-
- unsafe {
- self.function.modify(|mut r| {
- r.set_function(function);
- // emit_range is N/A for cycle count compare
- r.set_emitrange(false);
- // don't compare data
- r.set_datavmatch(false);
- // compare cyccnt
- r.set_cycmatch(true);
- // SBZ as needed, see Page 784/C1-724
- r.set_datavsize(0);
- r.set_datavaddr0(0);
- r.set_datavaddr1(0);
-
- r
- });
-
- self.comp.write(settings.compare);
- self.mask.write(0); // SBZ, see Page 784/C1-724
- }
- }
- }
-
- Ok(())
- }
-}
diff --git a/src/peripheral/fpb.rs b/src/peripheral/fpb.rs
deleted file mode 100644
index b86b8b2..0000000
--- a/src/peripheral/fpb.rs
+++ /dev/null
@@ -1,21 +0,0 @@
-//! Flash Patch and Breakpoint unit
-//!
-//! *NOTE* Not available on Armv6-M.
-
-use volatile_register::{RO, RW, WO};
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Control
- pub ctrl: RW<u32>,
- /// Remap
- pub remap: RW<u32>,
- /// Comparator
- pub comp: [RW<u32>; 127],
- reserved: [u32; 875],
- /// Lock Access
- pub lar: WO<u32>,
- /// Lock Status
- pub lsr: RO<u32>,
-}
diff --git a/src/peripheral/fpu.rs b/src/peripheral/fpu.rs
deleted file mode 100644
index 9a047d8..0000000
--- a/src/peripheral/fpu.rs
+++ /dev/null
@@ -1,19 +0,0 @@
-//! Floating Point Unit
-//!
-//! *NOTE* Available only on targets with a Floating Point Unit (FPU) extension.
-
-use volatile_register::{RO, RW};
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- reserved: u32,
- /// Floating Point Context Control
- pub fpccr: RW<u32>,
- /// Floating Point Context Address
- pub fpcar: RW<u32>,
- /// Floating Point Default Status Control
- pub fpdscr: RW<u32>,
- /// Media and FP Feature
- pub mvfr: [RO<u32>; 3],
-}
diff --git a/src/peripheral/icb.rs b/src/peripheral/icb.rs
deleted file mode 100644
index e1de33b..0000000
--- a/src/peripheral/icb.rs
+++ /dev/null
@@ -1,32 +0,0 @@
-//! Implementation Control Block
-
-#[cfg(any(armv7m, armv8m, native))]
-use volatile_register::RO;
-use volatile_register::RW;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Interrupt Controller Type Register
- ///
- /// The bottom four bits of this register give the number of implemented
- /// interrupt lines, divided by 32. So a value of `0b0010` indicates 64
- /// interrupts.
- #[cfg(any(armv7m, armv8m, native))]
- pub ictr: RO<u32>,
-
- /// The ICTR is not defined in the ARMv6-M Architecture Reference manual, so
- /// we replace it with this.
- #[cfg(not(any(armv7m, armv8m, native)))]
- _reserved: u32,
-
- /// Auxiliary Control Register
- ///
- /// This register is entirely implementation defined -- the standard gives
- /// it an address, but does not define its role or contents.
- pub actlr: RW<u32>,
-
- /// Coprocessor Power Control Register
- #[cfg(armv8m)]
- pub cppwr: RW<u32>,
-}
diff --git a/src/peripheral/itm.rs b/src/peripheral/itm.rs
deleted file mode 100644
index 7291ae0..0000000
--- a/src/peripheral/itm.rs
+++ /dev/null
@@ -1,216 +0,0 @@
-//! Instrumentation Trace Macrocell
-//!
-//! *NOTE* Not available on Armv6-M and Armv8-M Baseline.
-
-use core::cell::UnsafeCell;
-use core::ptr;
-
-use volatile_register::{RO, RW, WO};
-
-use crate::peripheral::ITM;
-use bitfield::bitfield;
-
-#[cfg(feature = "serde")]
-use serde::{Deserialize, Serialize};
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Stimulus Port
- pub stim: [Stim; 256],
- reserved0: [u32; 640],
- /// Trace Enable
- pub ter: [RW<u32>; 8],
- reserved1: [u32; 8],
- /// Trace Privilege
- pub tpr: RW<u32>,
- reserved2: [u32; 15],
- /// Trace Control
- pub tcr: RW<Tcr>,
- reserved3: [u32; 75],
- /// Lock Access
- pub lar: WO<u32>,
- /// Lock Status
- pub lsr: RO<u32>,
-}
-
-bitfield! {
- /// Trace Control Register.
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Tcr(u32);
- itmena, set_itmena: 0;
- tsena, set_tsena: 1;
- syncena, set_synena: 2;
- txena, set_txena: 3;
- swoena, set_swoena: 4;
- u8, tsprescale, set_tsprescale: 9, 8;
- u8, gtsfreq, set_gtsfreq: 11, 10;
- u8, tracebusid, set_tracebusid: 22, 16;
- busy, _: 23;
-}
-
-/// Stimulus Port
-pub struct Stim {
- register: UnsafeCell<u32>,
-}
-
-impl Stim {
- /// Writes an `u8` payload into the stimulus port
- #[inline]
- pub fn write_u8(&mut self, value: u8) {
- unsafe { ptr::write_volatile(self.register.get() as *mut u8, value) }
- }
-
- /// Writes an `u16` payload into the stimulus port
- #[inline]
- pub fn write_u16(&mut self, value: u16) {
- unsafe { ptr::write_volatile(self.register.get() as *mut u16, value) }
- }
-
- /// Writes an `u32` payload into the stimulus port
- #[inline]
- pub fn write_u32(&mut self, value: u32) {
- unsafe { ptr::write_volatile(self.register.get(), value) }
- }
-
- /// Returns `true` if the stimulus port is ready to accept more data
- #[cfg(not(armv8m))]
- #[inline]
- pub fn is_fifo_ready(&self) -> bool {
- unsafe { ptr::read_volatile(self.register.get()) & 0b1 == 1 }
- }
-
- /// Returns `true` if the stimulus port is ready to accept more data
- #[cfg(armv8m)]
- #[inline]
- pub fn is_fifo_ready(&self) -> bool {
- // ARMv8-M adds a disabled bit; we indicate that we are ready to
- // proceed with a stimulus write if the port is either ready (bit 0) or
- // disabled (bit 1).
- unsafe { ptr::read_volatile(self.register.get()) & 0b11 != 0 }
- }
-}
-
-/// The possible local timestamp options.
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
-pub enum LocalTimestampOptions {
- /// Disable local timestamps.
- Disabled,
- /// Enable local timestamps and use no prescaling.
- Enabled,
- /// Enable local timestamps and set the prescaler to divide the
- /// reference clock by 4.
- EnabledDiv4,
- /// Enable local timestamps and set the prescaler to divide the
- /// reference clock by 16.
- EnabledDiv16,
- /// Enable local timestamps and set the prescaler to divide the
- /// reference clock by 64.
- EnabledDiv64,
-}
-
-#[cfg(feature = "std")]
-impl core::convert::TryFrom<u8> for LocalTimestampOptions {
- type Error = ();
-
- /// Converts an integer value to an enabled [LocalTimestampOptions]
- /// variant. Accepted values are: 1, 4, 16, 64. Any other value
- /// yields `Err(())`.
- #[inline]
- fn try_from(value: u8) -> Result<Self, Self::Error> {
- match value {
- 1 => Ok(Self::Enabled),
- 4 => Ok(Self::EnabledDiv4),
- 16 => Ok(Self::EnabledDiv16),
- 64 => Ok(Self::EnabledDiv64),
- _ => Err(()),
- }
- }
-}
-
-/// The possible global timestamp options.
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub enum GlobalTimestampOptions {
- /// Disable global timestamps.
- Disabled,
- /// Generate a global timestamp approximately every 128 cycles.
- Every128Cycles,
- /// Generate a global timestamp approximately every 8921 cycles.
- Every8192Cycles,
- /// Generate a global timestamp after every packet, if the output FIFO is empty.
- EveryPacket,
-}
-
-/// The possible clock sources for timestamp counters.
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub enum TimestampClkSrc {
- /// Clock timestamp counters using the system processor clock.
- SystemClock,
- /// Clock timestamp counters using the asynchronous clock from the
- /// TPIU interface.
- ///
- /// NOTE: The timestamp counter is held in reset while the output
- /// line is idle.
- AsyncTPIU,
-}
-
-/// Available settings for the ITM peripheral.
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub struct ITMSettings {
- /// Whether to enable ITM.
- pub enable: bool,
- /// Whether DWT packets should be forwarded to ITM.
- pub forward_dwt: bool,
- /// The local timestamp options that should be applied.
- pub local_timestamps: LocalTimestampOptions,
- /// The global timestamp options that should be applied.
- pub global_timestamps: GlobalTimestampOptions,
- /// The trace bus ID to use when multi-trace sources are in use.
- /// `None` specifies that only a single trace source is in use and
- /// has the same effect as `Some(0)`.
- pub bus_id: Option<u8>,
- /// The clock that should increase timestamp counters.
- pub timestamp_clk_src: TimestampClkSrc,
-}
-
-impl ITM {
- /// Removes the software lock on the ITM.
- #[inline]
- pub fn unlock(&mut self) {
- // NOTE(unsafe) atomic write to a stateless, write-only register
- unsafe { self.lar.write(0xC5AC_CE55) }
- }
-
- /// Configures the ITM with the passed [ITMSettings].
- #[inline]
- pub fn configure(&mut self, settings: ITMSettings) {
- unsafe {
- self.tcr.modify(|mut r| {
- r.set_itmena(settings.enable);
- r.set_tsena(settings.local_timestamps != LocalTimestampOptions::Disabled);
- r.set_txena(settings.forward_dwt);
- r.set_tsprescale(match settings.local_timestamps {
- LocalTimestampOptions::Disabled | LocalTimestampOptions::Enabled => 0b00,
- LocalTimestampOptions::EnabledDiv4 => 0b10,
- LocalTimestampOptions::EnabledDiv16 => 0b10,
- LocalTimestampOptions::EnabledDiv64 => 0b11,
- });
- r.set_gtsfreq(match settings.global_timestamps {
- GlobalTimestampOptions::Disabled => 0b00,
- GlobalTimestampOptions::Every128Cycles => 0b01,
- GlobalTimestampOptions::Every8192Cycles => 0b10,
- GlobalTimestampOptions::EveryPacket => 0b11,
- });
- r.set_swoena(match settings.timestamp_clk_src {
- TimestampClkSrc::SystemClock => false,
- TimestampClkSrc::AsyncTPIU => true,
- });
- r.set_tracebusid(settings.bus_id.unwrap_or(0));
-
- r
- });
- }
- }
-}
diff --git a/src/peripheral/mod.rs b/src/peripheral/mod.rs
deleted file mode 100644
index bf18151..0000000
--- a/src/peripheral/mod.rs
+++ /dev/null
@@ -1,592 +0,0 @@
-//! Core peripherals.
-//!
-//! # API
-//!
-//! To use (most of) the peripheral API first you must get an *instance* of the peripheral. All the
-//! core peripherals are modeled as singletons (there can only ever be, at most, one instance of any
-//! one of them at any given point in time) and the only way to get an instance of them is through
-//! the [`Peripherals::take`](struct.Peripherals.html#method.take) method.
-//!
-//! ``` no_run
-//! # use cortex_m::peripheral::Peripherals;
-//! let mut peripherals = Peripherals::take().unwrap();
-//! peripherals.DCB.enable_trace();
-//! ```
-//!
-//! This method can only be successfully called *once* -- this is why the method returns an
-//! `Option`. Subsequent calls to the method will result in a `None` value being returned.
-//!
-//! ``` no_run, should_panic
-//! # use cortex_m::peripheral::Peripherals;
-//! let ok = Peripherals::take().unwrap();
-//! let panics = Peripherals::take().unwrap();
-//! ```
-//! A part of the peripheral API doesn't require access to a peripheral instance. This part of the
-//! API is provided as static methods on the peripheral types. One example is the
-//! [`DWT::cycle_count`](struct.DWT.html#method.cycle_count) method.
-//!
-//! ``` no_run
-//! # use cortex_m::peripheral::{DWT, Peripherals};
-//! {
-//! let mut peripherals = Peripherals::take().unwrap();
-//! peripherals.DCB.enable_trace();
-//! peripherals.DWT.enable_cycle_counter();
-//! } // all the peripheral singletons are destroyed here
-//!
-//! // but this method can be called without a DWT instance
-//! let cyccnt = DWT::cycle_count();
-//! ```
-//!
-//! The singleton property can be *unsafely* bypassed using the `ptr` static method which is
-//! available on all the peripheral types. This method is a useful building block for implementing
-//! safe higher level abstractions.
-//!
-//! ``` no_run
-//! # use cortex_m::peripheral::{DWT, Peripherals};
-//! {
-//! let mut peripherals = Peripherals::take().unwrap();
-//! peripherals.DCB.enable_trace();
-//! peripherals.DWT.enable_cycle_counter();
-//! } // all the peripheral singletons are destroyed here
-//!
-//! // actually safe because this is an atomic read with no side effects
-//! let cyccnt = unsafe { (*DWT::PTR).cyccnt.read() };
-//! ```
-//!
-//! # References
-//!
-//! - ARMv7-M Architecture Reference Manual (Issue E.b) - Chapter B3
-
-use core::marker::PhantomData;
-use core::ops;
-
-#[cfg(cm7)]
-pub mod ac;
-#[cfg(not(armv6m))]
-pub mod cbp;
-pub mod cpuid;
-pub mod dcb;
-pub mod dwt;
-#[cfg(not(armv6m))]
-pub mod fpb;
-// NOTE(native) is for documentation purposes
-#[cfg(any(has_fpu, native))]
-pub mod fpu;
-pub mod icb;
-#[cfg(all(not(armv6m), not(armv8m_base)))]
-pub mod itm;
-pub mod mpu;
-pub mod nvic;
-#[cfg(armv8m)]
-pub mod sau;
-pub mod scb;
-pub mod syst;
-#[cfg(not(armv6m))]
-pub mod tpiu;
-
-#[cfg(test)]
-mod test;
-
-// NOTE the `PhantomData` used in the peripherals proxy is to make them `Send` but *not* `Sync`
-
-/// Core peripherals
-#[allow(non_snake_case)]
-#[allow(clippy::manual_non_exhaustive)]
-pub struct Peripherals {
- /// Cortex-M7 TCM and cache access control.
- #[cfg(cm7)]
- pub AC: AC,
-
- /// Cache and branch predictor maintenance operations.
- /// Not available on Armv6-M.
- pub CBP: CBP,
-
- /// CPUID
- pub CPUID: CPUID,
-
- /// Debug Control Block
- pub DCB: DCB,
-
- /// Data Watchpoint and Trace unit
- pub DWT: DWT,
-
- /// Flash Patch and Breakpoint unit.
- /// Not available on Armv6-M.
- pub FPB: FPB,
-
- /// Floating Point Unit.
- pub FPU: FPU,
-
- /// Implementation Control Block.
- ///
- /// The name is from the v8-M spec, but the block existed in earlier
- /// revisions, without a name.
- pub ICB: ICB,
-
- /// Instrumentation Trace Macrocell.
- /// Not available on Armv6-M and Armv8-M Baseline.
- pub ITM: ITM,
-
- /// Memory Protection Unit
- pub MPU: MPU,
-
- /// Nested Vector Interrupt Controller
- pub NVIC: NVIC,
-
- /// Security Attribution Unit
- pub SAU: SAU,
-
- /// System Control Block
- pub SCB: SCB,
-
- /// SysTick: System Timer
- pub SYST: SYST,
-
- /// Trace Port Interface Unit.
- /// Not available on Armv6-M.
- pub TPIU: TPIU,
-
- // Private field making `Peripherals` non-exhaustive. We don't use `#[non_exhaustive]` so we
- // can support older Rust versions.
- _priv: (),
-}
-
-// NOTE `no_mangle` is used here to prevent linking different minor versions of this crate as that
-// would let you `take` the core peripherals more than once (one per minor version)
-#[no_mangle]
-static CORE_PERIPHERALS: () = ();
-
-/// Set to `true` when `take` or `steal` was called to make `Peripherals` a singleton.
-static mut TAKEN: bool = false;
-
-impl Peripherals {
- /// Returns all the core peripherals *once*
- #[inline]
- pub fn take() -> Option<Self> {
- critical_section::with(|_| {
- if unsafe { TAKEN } {
- None
- } else {
- Some(unsafe { Peripherals::steal() })
- }
- })
- }
-
- /// Unchecked version of `Peripherals::take`
- #[inline]
- pub unsafe fn steal() -> Self {
- TAKEN = true;
-
- Peripherals {
- #[cfg(cm7)]
- AC: AC {
- _marker: PhantomData,
- },
- CBP: CBP {
- _marker: PhantomData,
- },
- CPUID: CPUID {
- _marker: PhantomData,
- },
- DCB: DCB {
- _marker: PhantomData,
- },
- DWT: DWT {
- _marker: PhantomData,
- },
- FPB: FPB {
- _marker: PhantomData,
- },
- FPU: FPU {
- _marker: PhantomData,
- },
- ICB: ICB {
- _marker: PhantomData,
- },
- ITM: ITM {
- _marker: PhantomData,
- },
- MPU: MPU {
- _marker: PhantomData,
- },
- NVIC: NVIC {
- _marker: PhantomData,
- },
- SAU: SAU {
- _marker: PhantomData,
- },
- SCB: SCB {
- _marker: PhantomData,
- },
- SYST: SYST {
- _marker: PhantomData,
- },
- TPIU: TPIU {
- _marker: PhantomData,
- },
- _priv: (),
- }
- }
-}
-
-/// Access control
-#[cfg(cm7)]
-pub struct AC {
- _marker: PhantomData<*const ()>,
-}
-
-#[cfg(cm7)]
-unsafe impl Send for AC {}
-
-#[cfg(cm7)]
-impl AC {
- /// Pointer to the register block
- pub const PTR: *const self::ac::RegisterBlock = 0xE000_EF90 as *const _;
-}
-
-/// Cache and branch predictor maintenance operations
-#[allow(clippy::upper_case_acronyms)]
-pub struct CBP {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for CBP {}
-
-#[cfg(not(armv6m))]
-impl CBP {
- #[inline(always)]
- pub(crate) const unsafe fn new() -> Self {
- CBP {
- _marker: PhantomData,
- }
- }
-
- /// Pointer to the register block
- pub const PTR: *const self::cbp::RegisterBlock = 0xE000_EF50 as *const _;
-}
-
-#[cfg(not(armv6m))]
-impl ops::Deref for CBP {
- type Target = self::cbp::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// CPUID
-#[allow(clippy::upper_case_acronyms)]
-pub struct CPUID {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for CPUID {}
-
-impl CPUID {
- /// Pointer to the register block
- pub const PTR: *const self::cpuid::RegisterBlock = 0xE000_ED00 as *const _;
-}
-
-impl ops::Deref for CPUID {
- type Target = self::cpuid::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// Debug Control Block
-#[allow(clippy::upper_case_acronyms)]
-pub struct DCB {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for DCB {}
-
-impl DCB {
- /// Pointer to the register block
- pub const PTR: *const dcb::RegisterBlock = 0xE000_EDF0 as *const _;
-}
-
-impl ops::Deref for DCB {
- type Target = self::dcb::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*DCB::PTR }
- }
-}
-
-/// Data Watchpoint and Trace unit
-#[allow(clippy::upper_case_acronyms)]
-pub struct DWT {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for DWT {}
-
-impl DWT {
- /// Pointer to the register block
- pub const PTR: *const dwt::RegisterBlock = 0xE000_1000 as *const _;
-}
-
-impl ops::Deref for DWT {
- type Target = self::dwt::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// Flash Patch and Breakpoint unit
-#[allow(clippy::upper_case_acronyms)]
-pub struct FPB {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for FPB {}
-
-#[cfg(not(armv6m))]
-impl FPB {
- /// Pointer to the register block
- pub const PTR: *const fpb::RegisterBlock = 0xE000_2000 as *const _;
-}
-
-#[cfg(not(armv6m))]
-impl ops::Deref for FPB {
- type Target = self::fpb::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// Floating Point Unit
-#[allow(clippy::upper_case_acronyms)]
-pub struct FPU {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for FPU {}
-
-#[cfg(any(has_fpu, native))]
-impl FPU {
- /// Pointer to the register block
- pub const PTR: *const fpu::RegisterBlock = 0xE000_EF30 as *const _;
-}
-
-#[cfg(any(has_fpu, native))]
-impl ops::Deref for FPU {
- type Target = self::fpu::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// Implementation Control Block.
-///
-/// This block contains implementation-defined registers like `ictr` and
-/// `actlr`. It's called the "implementation control block" in the ARMv8-M
-/// standard, but earlier standards contained the registers, just without a
-/// name.
-#[allow(clippy::upper_case_acronyms)]
-pub struct ICB {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for ICB {}
-
-impl ICB {
- /// Pointer to the register block
- pub const PTR: *mut icb::RegisterBlock = 0xE000_E004 as *mut _;
-}
-
-impl ops::Deref for ICB {
- type Target = self::icb::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-impl ops::DerefMut for ICB {
- #[inline(always)]
- fn deref_mut(&mut self) -> &mut Self::Target {
- unsafe { &mut *Self::PTR }
- }
-}
-
-/// Instrumentation Trace Macrocell
-#[allow(clippy::upper_case_acronyms)]
-pub struct ITM {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for ITM {}
-
-#[cfg(all(not(armv6m), not(armv8m_base)))]
-impl ITM {
- /// Pointer to the register block
- pub const PTR: *mut itm::RegisterBlock = 0xE000_0000 as *mut _;
-}
-
-#[cfg(all(not(armv6m), not(armv8m_base)))]
-impl ops::Deref for ITM {
- type Target = self::itm::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-#[cfg(all(not(armv6m), not(armv8m_base)))]
-impl ops::DerefMut for ITM {
- #[inline(always)]
- fn deref_mut(&mut self) -> &mut Self::Target {
- unsafe { &mut *Self::PTR }
- }
-}
-
-/// Memory Protection Unit
-#[allow(clippy::upper_case_acronyms)]
-pub struct MPU {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for MPU {}
-
-impl MPU {
- /// Pointer to the register block
- pub const PTR: *const mpu::RegisterBlock = 0xE000_ED90 as *const _;
-}
-
-impl ops::Deref for MPU {
- type Target = self::mpu::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// Nested Vector Interrupt Controller
-#[allow(clippy::upper_case_acronyms)]
-pub struct NVIC {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for NVIC {}
-
-impl NVIC {
- /// Pointer to the register block
- pub const PTR: *const nvic::RegisterBlock = 0xE000_E100 as *const _;
-}
-
-impl ops::Deref for NVIC {
- type Target = self::nvic::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// Security Attribution Unit
-#[allow(clippy::upper_case_acronyms)]
-pub struct SAU {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for SAU {}
-
-#[cfg(armv8m)]
-impl SAU {
- /// Pointer to the register block
- pub const PTR: *const sau::RegisterBlock = 0xE000_EDD0 as *const _;
-}
-
-#[cfg(armv8m)]
-impl ops::Deref for SAU {
- type Target = self::sau::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// System Control Block
-#[allow(clippy::upper_case_acronyms)]
-pub struct SCB {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for SCB {}
-
-impl SCB {
- /// Pointer to the register block
- pub const PTR: *const scb::RegisterBlock = 0xE000_ED04 as *const _;
-}
-
-impl ops::Deref for SCB {
- type Target = self::scb::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// SysTick: System Timer
-#[allow(clippy::upper_case_acronyms)]
-pub struct SYST {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for SYST {}
-
-impl SYST {
- /// Pointer to the register block
- pub const PTR: *const syst::RegisterBlock = 0xE000_E010 as *const _;
-}
-
-impl ops::Deref for SYST {
- type Target = self::syst::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
-
-/// Trace Port Interface Unit
-#[allow(clippy::upper_case_acronyms)]
-pub struct TPIU {
- _marker: PhantomData<*const ()>,
-}
-
-unsafe impl Send for TPIU {}
-
-#[cfg(not(armv6m))]
-impl TPIU {
- /// Pointer to the register block
- pub const PTR: *const tpiu::RegisterBlock = 0xE004_0000 as *const _;
-}
-
-#[cfg(not(armv6m))]
-impl ops::Deref for TPIU {
- type Target = self::tpiu::RegisterBlock;
-
- #[inline(always)]
- fn deref(&self) -> &Self::Target {
- unsafe { &*Self::PTR }
- }
-}
diff --git a/src/peripheral/mpu.rs b/src/peripheral/mpu.rs
deleted file mode 100644
index 3a5f5b4..0000000
--- a/src/peripheral/mpu.rs
+++ /dev/null
@@ -1,65 +0,0 @@
-//! Memory Protection Unit
-
-use volatile_register::{RO, RW};
-
-/// Register block for ARMv7-M
-#[cfg(not(armv8m))]
-#[repr(C)]
-pub struct RegisterBlock {
- /// Type
- pub _type: RO<u32>,
- /// Control
- pub ctrl: RW<u32>,
- /// Region Number
- pub rnr: RW<u32>,
- /// Region Base Address
- pub rbar: RW<u32>,
- /// Region Attribute and Size
- pub rasr: RW<u32>,
- /// Alias 1 of RBAR
- pub rbar_a1: RW<u32>,
- /// Alias 1 of RASR
- pub rasr_a1: RW<u32>,
- /// Alias 2 of RBAR
- pub rbar_a2: RW<u32>,
- /// Alias 2 of RASR
- pub rasr_a2: RW<u32>,
- /// Alias 3 of RBAR
- pub rbar_a3: RW<u32>,
- /// Alias 3 of RASR
- pub rasr_a3: RW<u32>,
-}
-
-/// Register block for ARMv8-M
-#[cfg(armv8m)]
-#[repr(C)]
-pub struct RegisterBlock {
- /// Type
- pub _type: RO<u32>,
- /// Control
- pub ctrl: RW<u32>,
- /// Region Number
- pub rnr: RW<u32>,
- /// Region Base Address
- pub rbar: RW<u32>,
- /// Region Limit Address
- pub rlar: RW<u32>,
- /// Alias 1 of RBAR
- pub rbar_a1: RW<u32>,
- /// Alias 1 of RLAR
- pub rlar_a1: RW<u32>,
- /// Alias 2 of RBAR
- pub rbar_a2: RW<u32>,
- /// Alias 2 of RLAR
- pub rlar_a2: RW<u32>,
- /// Alias 3 of RBAR
- pub rbar_a3: RW<u32>,
- /// Alias 3 of RLAR
- pub rlar_a3: RW<u32>,
-
- // Reserved word at offset 0xBC
- _reserved: u32,
-
- /// Memory Attribute Indirection register 0 and 1
- pub mair: [RW<u32>; 2],
-}
diff --git a/src/peripheral/nvic.rs b/src/peripheral/nvic.rs
deleted file mode 100644
index fccd6a2..0000000
--- a/src/peripheral/nvic.rs
+++ /dev/null
@@ -1,272 +0,0 @@
-//! Nested Vector Interrupt Controller
-
-use volatile_register::RW;
-#[cfg(not(armv6m))]
-use volatile_register::{RO, WO};
-
-use crate::interrupt::InterruptNumber;
-use crate::peripheral::NVIC;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Interrupt Set-Enable
- pub iser: [RW<u32>; 16],
-
- _reserved0: [u32; 16],
-
- /// Interrupt Clear-Enable
- pub icer: [RW<u32>; 16],
-
- _reserved1: [u32; 16],
-
- /// Interrupt Set-Pending
- pub ispr: [RW<u32>; 16],
-
- _reserved2: [u32; 16],
-
- /// Interrupt Clear-Pending
- pub icpr: [RW<u32>; 16],
-
- _reserved3: [u32; 16],
-
- /// Interrupt Active Bit (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub iabr: [RO<u32>; 16],
- #[cfg(armv6m)]
- _reserved4: [u32; 16],
-
- _reserved5: [u32; 16],
-
- #[cfg(armv8m)]
- /// Interrupt Target Non-secure (only present on Arm v8-M)
- pub itns: [RW<u32>; 16],
- #[cfg(not(armv8m))]
- _reserved6: [u32; 16],
-
- _reserved7: [u32; 16],
-
- /// Interrupt Priority
- ///
- /// On ARMv7-M, 124 word-sized registers are available. Each of those
- /// contains of 4 interrupt priorities of 8 byte each.The architecture
- /// specifically allows accessing those along byte boundaries, so they are
- /// represented as 496 byte-sized registers, for convenience, and to allow
- /// atomic priority updates.
- ///
- /// On ARMv6-M, the registers must only be accessed along word boundaries,
- /// so convenient byte-sized representation wouldn't work on that
- /// architecture.
- #[cfg(not(armv6m))]
- pub ipr: [RW<u8>; 496],
-
- /// Interrupt Priority
- ///
- /// On ARMv7-M, 124 word-sized registers are available. Each of those
- /// contains of 4 interrupt priorities of 8 byte each.The architecture
- /// specifically allows accessing those along byte boundaries, so they are
- /// represented as 496 byte-sized registers, for convenience, and to allow
- /// atomic priority updates.
- ///
- /// On ARMv6-M, the registers must only be accessed along word boundaries,
- /// so convenient byte-sized representation wouldn't work on that
- /// architecture.
- #[cfg(armv6m)]
- pub ipr: [RW<u32>; 8],
-
- #[cfg(not(armv6m))]
- _reserved8: [u32; 580],
-
- /// Software Trigger Interrupt
- #[cfg(not(armv6m))]
- pub stir: WO<u32>,
-}
-
-impl NVIC {
- /// Request an IRQ in software
- ///
- /// Writing a value to the INTID field is the same as manually pending an interrupt by setting
- /// the corresponding interrupt bit in an Interrupt Set Pending Register. This is similar to
- /// [`NVIC::pend`].
- ///
- /// This method is not available on ARMv6-M chips.
- ///
- /// [`NVIC::pend`]: #method.pend
- #[cfg(not(armv6m))]
- #[inline]
- pub fn request<I>(interrupt: I)
- where
- I: InterruptNumber,
- {
- let nr = interrupt.number();
-
- // NOTE(ptr) this is a write to a stateless register
- unsafe { (*Self::PTR).stir.write(u32::from(nr)) }
- }
-
- /// Disables `interrupt`
- #[inline]
- pub fn mask<I>(interrupt: I)
- where
- I: InterruptNumber,
- {
- let nr = interrupt.number();
- // NOTE(unsafe) this is a write to a stateless register
- unsafe { (*Self::PTR).icer[usize::from(nr / 32)].write(1 << (nr % 32)) }
- }
-
- /// Enables `interrupt`
- ///
- /// This function is `unsafe` because it can break mask-based critical sections
- #[inline]
- pub unsafe fn unmask<I>(interrupt: I)
- where
- I: InterruptNumber,
- {
- let nr = interrupt.number();
- // NOTE(ptr) this is a write to a stateless register
- (*Self::PTR).iser[usize::from(nr / 32)].write(1 << (nr % 32))
- }
-
- /// Returns the NVIC priority of `interrupt`
- ///
- /// *NOTE* NVIC encodes priority in the highest bits of a byte so values like `1` and `2` map
- /// to the same priority. Also for NVIC priorities, a lower value (e.g. `16`) has higher
- /// priority (urgency) than a larger value (e.g. `32`).
- #[inline]
- pub fn get_priority<I>(interrupt: I) -> u8
- where
- I: InterruptNumber,
- {
- #[cfg(not(armv6m))]
- {
- let nr = interrupt.number();
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).ipr[usize::from(nr)].read() }
- }
-
- #[cfg(armv6m)]
- {
- // NOTE(unsafe) atomic read with no side effects
- let ipr_n = unsafe { (*Self::PTR).ipr[Self::ipr_index(interrupt)].read() };
- let prio = (ipr_n >> Self::ipr_shift(interrupt)) & 0x0000_00ff;
- prio as u8
- }
- }
-
- /// Is `interrupt` active or pre-empted and stacked
- #[cfg(not(armv6m))]
- #[inline]
- pub fn is_active<I>(interrupt: I) -> bool
- where
- I: InterruptNumber,
- {
- let nr = interrupt.number();
- let mask = 1 << (nr % 32);
-
- // NOTE(unsafe) atomic read with no side effects
- unsafe { ((*Self::PTR).iabr[usize::from(nr / 32)].read() & mask) == mask }
- }
-
- /// Checks if `interrupt` is enabled
- #[inline]
- pub fn is_enabled<I>(interrupt: I) -> bool
- where
- I: InterruptNumber,
- {
- let nr = interrupt.number();
- let mask = 1 << (nr % 32);
-
- // NOTE(unsafe) atomic read with no side effects
- unsafe { ((*Self::PTR).iser[usize::from(nr / 32)].read() & mask) == mask }
- }
-
- /// Checks if `interrupt` is pending
- #[inline]
- pub fn is_pending<I>(interrupt: I) -> bool
- where
- I: InterruptNumber,
- {
- let nr = interrupt.number();
- let mask = 1 << (nr % 32);
-
- // NOTE(unsafe) atomic read with no side effects
- unsafe { ((*Self::PTR).ispr[usize::from(nr / 32)].read() & mask) == mask }
- }
-
- /// Forces `interrupt` into pending state
- #[inline]
- pub fn pend<I>(interrupt: I)
- where
- I: InterruptNumber,
- {
- let nr = interrupt.number();
-
- // NOTE(unsafe) atomic stateless write; ICPR doesn't store any state
- unsafe { (*Self::PTR).ispr[usize::from(nr / 32)].write(1 << (nr % 32)) }
- }
-
- /// Sets the "priority" of `interrupt` to `prio`
- ///
- /// *NOTE* See [`get_priority`](struct.NVIC.html#method.get_priority) method for an explanation
- /// of how NVIC priorities work.
- ///
- /// On ARMv6-M, updating an interrupt priority requires a read-modify-write operation. On
- /// ARMv7-M, the operation is performed in a single atomic write operation.
- ///
- /// # Unsafety
- ///
- /// Changing priority levels can break priority-based critical sections (see
- /// [`register::basepri`](crate::register::basepri)) and compromise memory safety.
- #[inline]
- pub unsafe fn set_priority<I>(&mut self, interrupt: I, prio: u8)
- where
- I: InterruptNumber,
- {
- #[cfg(not(armv6m))]
- {
- let nr = interrupt.number();
- self.ipr[usize::from(nr)].write(prio)
- }
-
- #[cfg(armv6m)]
- {
- self.ipr[Self::ipr_index(interrupt)].modify(|value| {
- let mask = 0x0000_00ff << Self::ipr_shift(interrupt);
- let prio = u32::from(prio) << Self::ipr_shift(interrupt);
-
- (value & !mask) | prio
- })
- }
- }
-
- /// Clears `interrupt`'s pending state
- #[inline]
- pub fn unpend<I>(interrupt: I)
- where
- I: InterruptNumber,
- {
- let nr = interrupt.number();
-
- // NOTE(unsafe) atomic stateless write; ICPR doesn't store any state
- unsafe { (*Self::PTR).icpr[usize::from(nr / 32)].write(1 << (nr % 32)) }
- }
-
- #[cfg(armv6m)]
- #[inline]
- fn ipr_index<I>(interrupt: I) -> usize
- where
- I: InterruptNumber,
- {
- usize::from(interrupt.number()) / 4
- }
-
- #[cfg(armv6m)]
- #[inline]
- fn ipr_shift<I>(interrupt: I) -> usize
- where
- I: InterruptNumber,
- {
- (usize::from(interrupt.number()) % 4) * 8
- }
-}
diff --git a/src/peripheral/sau.rs b/src/peripheral/sau.rs
deleted file mode 100644
index 6b8477f..0000000
--- a/src/peripheral/sau.rs
+++ /dev/null
@@ -1,242 +0,0 @@
-//! Security Attribution Unit
-//!
-//! *NOTE* Available only on Armv8-M and Armv8.1-M, for the following Rust target triples:
-//! * `thumbv8m.base-none-eabi`
-//! * `thumbv8m.main-none-eabi`
-//! * `thumbv8m.main-none-eabihf`
-//!
-//! For reference please check the section B8.3 of the Armv8-M Architecture Reference Manual.
-
-use crate::peripheral::SAU;
-use bitfield::bitfield;
-use volatile_register::{RO, RW};
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Control Register
- pub ctrl: RW<Ctrl>,
- /// Type Register
- pub _type: RO<Type>,
- /// Region Number Register
- pub rnr: RW<Rnr>,
- /// Region Base Address Register
- pub rbar: RW<Rbar>,
- /// Region Limit Address Register
- pub rlar: RW<Rlar>,
- /// Secure Fault Status Register
- pub sfsr: RO<Sfsr>,
- /// Secure Fault Address Register
- pub sfar: RO<Sfar>,
-}
-
-bitfield! {
- /// Control Register description
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Ctrl(u32);
- get_enable, set_enable: 0;
- get_allns, set_allns: 1;
-}
-
-bitfield! {
- /// Type Register description
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Type(u32);
- u8;
- sregion, _: 7, 0;
-}
-
-bitfield! {
- /// Region Number Register description
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Rnr(u32);
- u8;
- get_region, set_region: 7, 0;
-}
-
-bitfield! {
- /// Region Base Address Register description
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Rbar(u32);
- u32;
- get_baddr, set_baddr: 31, 5;
-}
-
-bitfield! {
- /// Region Limit Address Register description
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Rlar(u32);
- u32;
- get_laddr, set_laddr: 31, 5;
- get_nsc, set_nsc: 1;
- get_enable, set_enable: 0;
-}
-
-bitfield! {
- /// Secure Fault Status Register description
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Sfsr(u32);
- invep, _: 0;
- invis, _: 1;
- inver, _: 2;
- auviol, _: 3;
- invtran, _: 4;
- lsperr, _: 5;
- sfarvalid, _: 6;
- lserr, _: 7;
-}
-
-bitfield! {
- /// Secure Fault Address Register description
- #[repr(C)]
- #[derive(Copy, Clone)]
- pub struct Sfar(u32);
- u32;
- address, _: 31, 0;
-}
-
-/// Possible attribute of a SAU region.
-#[derive(Debug)]
-pub enum SauRegionAttribute {
- /// SAU region is Secure
- Secure,
- /// SAU region is Non-Secure Callable
- NonSecureCallable,
- /// SAU region is Non-Secure
- NonSecure,
-}
-
-/// Description of a SAU region.
-#[derive(Debug)]
-pub struct SauRegion {
- /// First address of the region, its 5 least significant bits must be set to zero.
- pub base_address: u32,
- /// Last address of the region, its 5 least significant bits must be set to one.
- pub limit_address: u32,
- /// Attribute of the region.
- pub attribute: SauRegionAttribute,
-}
-
-/// Possible error values returned by the SAU methods.
-#[derive(Debug)]
-pub enum SauError {
- /// The region number parameter to set or get a region must be between 0 and
- /// region_numbers() - 1.
- RegionNumberTooBig,
- /// Bits 0 to 4 of the base address of a SAU region must be set to zero.
- WrongBaseAddress,
- /// Bits 0 to 4 of the limit address of a SAU region must be set to one.
- WrongLimitAddress,
-}
-
-impl SAU {
- /// Get the number of implemented SAU regions.
- #[inline]
- pub fn region_numbers(&self) -> u8 {
- self._type.read().sregion()
- }
-
- /// Enable the SAU.
- #[inline]
- pub fn enable(&mut self) {
- unsafe {
- self.ctrl.modify(|mut ctrl| {
- ctrl.set_enable(true);
- ctrl
- });
- }
- }
-
- /// Set a SAU region to a region number.
- /// SAU regions must be 32 bytes aligned and their sizes must be a multiple of 32 bytes. It
- /// means that the 5 least significant bits of the base address of a SAU region must be set to
- /// zero and the 5 least significant bits of the limit address must be set to one.
- /// The region number must be valid.
- /// This function is executed under a critical section to prevent having inconsistent results.
- #[inline]
- pub fn set_region(&mut self, region_number: u8, region: SauRegion) -> Result<(), SauError> {
- critical_section::with(|_| {
- let base_address = region.base_address;
- let limit_address = region.limit_address;
- let attribute = region.attribute;
-
- if region_number >= self.region_numbers() {
- Err(SauError::RegionNumberTooBig)
- } else if base_address & 0x1F != 0 {
- Err(SauError::WrongBaseAddress)
- } else if limit_address & 0x1F != 0x1F {
- Err(SauError::WrongLimitAddress)
- } else {
- // All fields of these registers are going to be modified so we don't need to read them
- // before.
- let mut rnr = Rnr(0);
- let mut rbar = Rbar(0);
- let mut rlar = Rlar(0);
-
- rnr.set_region(region_number);
- rbar.set_baddr(base_address >> 5);
- rlar.set_laddr(limit_address >> 5);
-
- match attribute {
- SauRegionAttribute::Secure => {
- rlar.set_nsc(false);
- rlar.set_enable(false);
- }
- SauRegionAttribute::NonSecureCallable => {
- rlar.set_nsc(true);
- rlar.set_enable(true);
- }
- SauRegionAttribute::NonSecure => {
- rlar.set_nsc(false);
- rlar.set_enable(true);
- }
- }
-
- unsafe {
- self.rnr.write(rnr);
- self.rbar.write(rbar);
- self.rlar.write(rlar);
- }
-
- Ok(())
- }
- })
- }
-
- /// Get a region from the SAU.
- /// The region number must be valid.
- /// This function is executed under a critical section to prevent having inconsistent results.
- #[inline]
- pub fn get_region(&mut self, region_number: u8) -> Result<SauRegion, SauError> {
- critical_section::with(|_| {
- if region_number >= self.region_numbers() {
- Err(SauError::RegionNumberTooBig)
- } else {
- unsafe {
- self.rnr.write(Rnr(region_number.into()));
- }
-
- let rbar = self.rbar.read();
- let rlar = self.rlar.read();
-
- let attribute = match (rlar.get_enable(), rlar.get_nsc()) {
- (false, _) => SauRegionAttribute::Secure,
- (true, false) => SauRegionAttribute::NonSecure,
- (true, true) => SauRegionAttribute::NonSecureCallable,
- };
-
- Ok(SauRegion {
- base_address: rbar.get_baddr() << 5,
- limit_address: (rlar.get_laddr() << 5) | 0x1F,
- attribute,
- })
- }
- })
- }
-}
diff --git a/src/peripheral/scb.rs b/src/peripheral/scb.rs
deleted file mode 100644
index b9cf0e4..0000000
--- a/src/peripheral/scb.rs
+++ /dev/null
@@ -1,1110 +0,0 @@
-//! System Control Block
-
-use core::ptr;
-
-use volatile_register::RW;
-
-#[cfg(not(armv6m))]
-use super::cpuid::CsselrCacheType;
-#[cfg(not(armv6m))]
-use super::CBP;
-#[cfg(not(armv6m))]
-use super::CPUID;
-use super::SCB;
-#[cfg(feature = "serde")]
-use serde::{Deserialize, Serialize};
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Interrupt Control and State
- pub icsr: RW<u32>,
-
- /// Vector Table Offset (not present on Cortex-M0 variants)
- pub vtor: RW<u32>,
-
- /// Application Interrupt and Reset Control
- pub aircr: RW<u32>,
-
- /// System Control
- pub scr: RW<u32>,
-
- /// Configuration and Control
- pub ccr: RW<u32>,
-
- /// System Handler Priority (word accessible only on Cortex-M0 variants)
- ///
- /// On ARMv7-M, `shpr[0]` points to SHPR1
- ///
- /// On ARMv6-M, `shpr[0]` points to SHPR2
- #[cfg(not(armv6m))]
- pub shpr: [RW<u8>; 12],
- #[cfg(armv6m)]
- _reserved1: u32,
- /// System Handler Priority (word accessible only on Cortex-M0 variants)
- ///
- /// On ARMv7-M, `shpr[0]` points to SHPR1
- ///
- /// On ARMv6-M, `shpr[0]` points to SHPR2
- #[cfg(armv6m)]
- pub shpr: [RW<u32>; 2],
-
- /// System Handler Control and State
- pub shcsr: RW<u32>,
-
- /// Configurable Fault Status (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub cfsr: RW<u32>,
- #[cfg(armv6m)]
- _reserved2: u32,
-
- /// HardFault Status (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub hfsr: RW<u32>,
- #[cfg(armv6m)]
- _reserved3: u32,
-
- /// Debug Fault Status (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub dfsr: RW<u32>,
- #[cfg(armv6m)]
- _reserved4: u32,
-
- /// MemManage Fault Address (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub mmfar: RW<u32>,
- #[cfg(armv6m)]
- _reserved5: u32,
-
- /// BusFault Address (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub bfar: RW<u32>,
- #[cfg(armv6m)]
- _reserved6: u32,
-
- /// Auxiliary Fault Status (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub afsr: RW<u32>,
- #[cfg(armv6m)]
- _reserved7: u32,
-
- _reserved8: [u32; 18],
-
- /// Coprocessor Access Control (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- pub cpacr: RW<u32>,
- #[cfg(armv6m)]
- _reserved9: u32,
-}
-
-/// FPU access mode
-#[cfg(has_fpu)]
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub enum FpuAccessMode {
- /// FPU is not accessible
- Disabled,
- /// FPU is accessible in Privileged and User mode
- Enabled,
- /// FPU is accessible in Privileged mode only
- Privileged,
-}
-
-#[cfg(has_fpu)]
-mod fpu_consts {
- pub const SCB_CPACR_FPU_MASK: u32 = 0b11_11 << 20;
- pub const SCB_CPACR_FPU_ENABLE: u32 = 0b01_01 << 20;
- pub const SCB_CPACR_FPU_USER: u32 = 0b10_10 << 20;
-}
-
-#[cfg(has_fpu)]
-use self::fpu_consts::*;
-
-#[cfg(has_fpu)]
-impl SCB {
- /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Disabled)`
- #[inline]
- pub fn disable_fpu(&mut self) {
- self.set_fpu_access_mode(FpuAccessMode::Disabled)
- }
-
- /// Shorthand for `set_fpu_access_mode(FpuAccessMode::Enabled)`
- #[inline]
- pub fn enable_fpu(&mut self) {
- self.set_fpu_access_mode(FpuAccessMode::Enabled)
- }
-
- /// Gets FPU access mode
- #[inline]
- pub fn fpu_access_mode() -> FpuAccessMode {
- // NOTE(unsafe) atomic read operation with no side effects
- let cpacr = unsafe { (*Self::PTR).cpacr.read() };
-
- if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER {
- FpuAccessMode::Enabled
- } else if cpacr & SCB_CPACR_FPU_MASK == SCB_CPACR_FPU_ENABLE {
- FpuAccessMode::Privileged
- } else {
- FpuAccessMode::Disabled
- }
- }
-
- /// Sets FPU access mode
- ///
- /// *IMPORTANT* Any function that runs fully or partly with the FPU disabled must *not* take any
- /// floating-point arguments or have any floating-point local variables. Because the compiler
- /// might inline such a function into a caller that does have floating-point arguments or
- /// variables, any such function must be also marked #[inline(never)].
- #[inline]
- pub fn set_fpu_access_mode(&mut self, mode: FpuAccessMode) {
- let mut cpacr = self.cpacr.read() & !SCB_CPACR_FPU_MASK;
- match mode {
- FpuAccessMode::Disabled => (),
- FpuAccessMode::Privileged => cpacr |= SCB_CPACR_FPU_ENABLE,
- FpuAccessMode::Enabled => cpacr |= SCB_CPACR_FPU_ENABLE | SCB_CPACR_FPU_USER,
- }
- unsafe { self.cpacr.write(cpacr) }
- }
-}
-
-impl SCB {
- /// Returns the active exception number
- #[inline]
- pub fn vect_active() -> VectActive {
- let icsr =
- unsafe { ptr::read_volatile(&(*SCB::PTR).icsr as *const _ as *const u32) } & 0x1FF;
-
- match icsr as u16 {
- 0 => VectActive::ThreadMode,
- 2 => VectActive::Exception(Exception::NonMaskableInt),
- 3 => VectActive::Exception(Exception::HardFault),
- #[cfg(not(armv6m))]
- 4 => VectActive::Exception(Exception::MemoryManagement),
- #[cfg(not(armv6m))]
- 5 => VectActive::Exception(Exception::BusFault),
- #[cfg(not(armv6m))]
- 6 => VectActive::Exception(Exception::UsageFault),
- #[cfg(any(armv8m, native))]
- 7 => VectActive::Exception(Exception::SecureFault),
- 11 => VectActive::Exception(Exception::SVCall),
- #[cfg(not(armv6m))]
- 12 => VectActive::Exception(Exception::DebugMonitor),
- 14 => VectActive::Exception(Exception::PendSV),
- 15 => VectActive::Exception(Exception::SysTick),
- irqn => VectActive::Interrupt { irqn: irqn - 16 },
- }
- }
-}
-
-/// Processor core exceptions (internal interrupts)
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
-#[cfg_attr(feature = "std", derive(PartialOrd, Hash))]
-pub enum Exception {
- /// Non maskable interrupt
- NonMaskableInt,
-
- /// Hard fault interrupt
- HardFault,
-
- /// Memory management interrupt (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- MemoryManagement,
-
- /// Bus fault interrupt (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- BusFault,
-
- /// Usage fault interrupt (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- UsageFault,
-
- /// Secure fault interrupt (only on ARMv8-M)
- #[cfg(any(armv8m, native))]
- SecureFault,
-
- /// SV call interrupt
- SVCall,
-
- /// Debug monitor interrupt (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- DebugMonitor,
-
- /// Pend SV interrupt
- PendSV,
-
- /// System Tick interrupt
- SysTick,
-}
-
-impl Exception {
- /// Returns the IRQ number of this `Exception`
- ///
- /// The return value is always within the closed range `[-1, -14]`
- #[inline]
- pub fn irqn(self) -> i8 {
- match self {
- Exception::NonMaskableInt => -14,
- Exception::HardFault => -13,
- #[cfg(not(armv6m))]
- Exception::MemoryManagement => -12,
- #[cfg(not(armv6m))]
- Exception::BusFault => -11,
- #[cfg(not(armv6m))]
- Exception::UsageFault => -10,
- #[cfg(any(armv8m, native))]
- Exception::SecureFault => -9,
- Exception::SVCall => -5,
- #[cfg(not(armv6m))]
- Exception::DebugMonitor => -4,
- Exception::PendSV => -2,
- Exception::SysTick => -1,
- }
- }
-}
-
-/// Active exception number
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
-#[cfg_attr(feature = "std", derive(PartialOrd, Hash))]
-pub enum VectActive {
- /// Thread mode
- ThreadMode,
-
- /// Processor core exception (internal interrupts)
- Exception(Exception),
-
- /// Device specific exception (external interrupts)
- Interrupt {
- /// Interrupt number. This number is always within half open range `[0, 512)` (9 bit)
- irqn: u16,
- },
-}
-
-impl VectActive {
- /// Converts a vector number into `VectActive`
- #[inline]
- pub fn from(vect_active: u16) -> Option<Self> {
- Some(match vect_active {
- 0 => VectActive::ThreadMode,
- 2 => VectActive::Exception(Exception::NonMaskableInt),
- 3 => VectActive::Exception(Exception::HardFault),
- #[cfg(not(armv6m))]
- 4 => VectActive::Exception(Exception::MemoryManagement),
- #[cfg(not(armv6m))]
- 5 => VectActive::Exception(Exception::BusFault),
- #[cfg(not(armv6m))]
- 6 => VectActive::Exception(Exception::UsageFault),
- #[cfg(any(armv8m, native))]
- 7 => VectActive::Exception(Exception::SecureFault),
- 11 => VectActive::Exception(Exception::SVCall),
- #[cfg(not(armv6m))]
- 12 => VectActive::Exception(Exception::DebugMonitor),
- 14 => VectActive::Exception(Exception::PendSV),
- 15 => VectActive::Exception(Exception::SysTick),
- irqn if (16..512).contains(&irqn) => VectActive::Interrupt { irqn: irqn - 16 },
- _ => return None,
- })
- }
-}
-
-#[cfg(not(armv6m))]
-mod scb_consts {
- pub const SCB_CCR_IC_MASK: u32 = 1 << 17;
- pub const SCB_CCR_DC_MASK: u32 = 1 << 16;
-}
-
-#[cfg(not(armv6m))]
-use self::scb_consts::*;
-
-#[cfg(not(armv6m))]
-impl SCB {
- /// Enables I-cache if currently disabled.
- ///
- /// This operation first invalidates the entire I-cache.
- #[inline]
- pub fn enable_icache(&mut self) {
- // Don't do anything if I-cache is already enabled
- if Self::icache_enabled() {
- return;
- }
-
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = unsafe { CBP::new() };
-
- // Invalidate I-cache
- cbp.iciallu();
-
- // Enable I-cache
- extern "C" {
- // see asm-v7m.s
- fn __enable_icache();
- }
-
- // NOTE(unsafe): The asm routine manages exclusive access to the SCB
- // registers and applies the proper barriers; it is technically safe on
- // its own, and is only `unsafe` here because it's `extern "C"`.
- unsafe {
- __enable_icache();
- }
- }
-
- /// Disables I-cache if currently enabled.
- ///
- /// This operation invalidates the entire I-cache after disabling.
- #[inline]
- pub fn disable_icache(&mut self) {
- // Don't do anything if I-cache is already disabled
- if !Self::icache_enabled() {
- return;
- }
-
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = unsafe { CBP::new() };
-
- // Disable I-cache
- // NOTE(unsafe): We have synchronised access by &mut self
- unsafe { self.ccr.modify(|r| r & !SCB_CCR_IC_MASK) };
-
- // Invalidate I-cache
- cbp.iciallu();
-
- crate::asm::dsb();
- crate::asm::isb();
- }
-
- /// Returns whether the I-cache is currently enabled.
- #[inline(always)]
- pub fn icache_enabled() -> bool {
- crate::asm::dsb();
- crate::asm::isb();
-
- // NOTE(unsafe): atomic read with no side effects
- unsafe { (*Self::PTR).ccr.read() & SCB_CCR_IC_MASK == SCB_CCR_IC_MASK }
- }
-
- /// Invalidates the entire I-cache.
- #[inline]
- pub fn invalidate_icache(&mut self) {
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = unsafe { CBP::new() };
-
- // Invalidate I-cache
- cbp.iciallu();
-
- crate::asm::dsb();
- crate::asm::isb();
- }
-
- /// Enables D-cache if currently disabled.
- ///
- /// This operation first invalidates the entire D-cache, ensuring it does
- /// not contain stale values before being enabled.
- #[inline]
- pub fn enable_dcache(&mut self, cpuid: &mut CPUID) {
- // Don't do anything if D-cache is already enabled
- if Self::dcache_enabled() {
- return;
- }
-
- // Invalidate anything currently in the D-cache
- unsafe { self.invalidate_dcache(cpuid) };
-
- // Now turn on the D-cache
- extern "C" {
- // see asm-v7m.s
- fn __enable_dcache();
- }
-
- // NOTE(unsafe): The asm routine manages exclusive access to the SCB
- // registers and applies the proper barriers; it is technically safe on
- // its own, and is only `unsafe` here because it's `extern "C"`.
- unsafe {
- __enable_dcache();
- }
- }
-
- /// Disables D-cache if currently enabled.
- ///
- /// This operation subsequently cleans and invalidates the entire D-cache,
- /// ensuring all contents are safely written back to main memory after disabling.
- #[inline]
- pub fn disable_dcache(&mut self, cpuid: &mut CPUID) {
- // Don't do anything if D-cache is already disabled
- if !Self::dcache_enabled() {
- return;
- }
-
- // Turn off the D-cache
- // NOTE(unsafe): We have synchronised access by &mut self
- unsafe { self.ccr.modify(|r| r & !SCB_CCR_DC_MASK) };
-
- // Clean and invalidate whatever was left in it
- self.clean_invalidate_dcache(cpuid);
- }
-
- /// Returns whether the D-cache is currently enabled.
- #[inline]
- pub fn dcache_enabled() -> bool {
- crate::asm::dsb();
- crate::asm::isb();
-
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).ccr.read() & SCB_CCR_DC_MASK == SCB_CCR_DC_MASK }
- }
-
- /// Invalidates the entire D-cache.
- ///
- /// Note that calling this while the dcache is enabled will probably wipe out the
- /// stack, depending on optimisations, therefore breaking returning to the call point.
- ///
- /// It's used immediately before enabling the dcache, but not exported publicly.
- #[inline]
- unsafe fn invalidate_dcache(&mut self, cpuid: &mut CPUID) {
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = CBP::new();
-
- // Read number of sets and ways
- let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);
-
- // Invalidate entire D-cache
- for set in 0..sets {
- for way in 0..ways {
- cbp.dcisw(set, way);
- }
- }
-
- crate::asm::dsb();
- crate::asm::isb();
- }
-
- /// Cleans the entire D-cache.
- ///
- /// This function causes everything in the D-cache to be written back to main memory,
- /// overwriting whatever is already there.
- #[inline]
- pub fn clean_dcache(&mut self, cpuid: &mut CPUID) {
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = unsafe { CBP::new() };
-
- // Read number of sets and ways
- let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);
-
- for set in 0..sets {
- for way in 0..ways {
- cbp.dccsw(set, way);
- }
- }
-
- crate::asm::dsb();
- crate::asm::isb();
- }
-
- /// Cleans and invalidates the entire D-cache.
- ///
- /// This function causes everything in the D-cache to be written back to main memory,
- /// and then marks the entire D-cache as invalid, causing future reads to first fetch
- /// from main memory.
- #[inline]
- pub fn clean_invalidate_dcache(&mut self, cpuid: &mut CPUID) {
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = unsafe { CBP::new() };
-
- // Read number of sets and ways
- let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified);
-
- for set in 0..sets {
- for way in 0..ways {
- cbp.dccisw(set, way);
- }
- }
-
- crate::asm::dsb();
- crate::asm::isb();
- }
-
- /// Invalidates D-cache by address.
- ///
- /// * `addr`: The address to invalidate, which must be cache-line aligned.
- /// * `size`: Number of bytes to invalidate, which must be a multiple of the cache line size.
- ///
- /// Invalidates D-cache cache lines, starting from the first line containing `addr`,
- /// finishing once at least `size` bytes have been invalidated.
- ///
- /// Invalidation causes the next read access to memory to be fetched from main memory instead
- /// of the cache.
- ///
- /// # Cache Line Sizes
- ///
- /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
- /// to 32 bytes, which means `addr` must be 32-byte aligned and `size` must be a multiple
- /// of 32. At the time of writing, no other Cortex-M cores have data caches.
- ///
- /// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size,
- /// other data before or after the desired memory would also be invalidated, which can very
- /// easily cause memory corruption and undefined behaviour.
- ///
- /// # Safety
- ///
- /// After invalidating, the next read of invalidated data will be from main memory. This may
- /// cause recent writes to be lost, potentially including writes that initialized objects.
- /// Therefore, this method may cause uninitialized memory or invalid values to be read,
- /// resulting in undefined behaviour. You must ensure that main memory contains valid and
- /// initialized values before invalidating.
- ///
- /// `addr` **must** be aligned to the size of the cache lines, and `size` **must** be a
- /// multiple of the cache line size, otherwise this function will invalidate other memory,
- /// easily leading to memory corruption and undefined behaviour. This precondition is checked
- /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
- /// a runtime-dependent `panic!()` call.
- #[inline]
- pub unsafe fn invalidate_dcache_by_address(&mut self, addr: usize, size: usize) {
- // No-op zero sized operations
- if size == 0 {
- return;
- }
-
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = CBP::new();
-
- // dminline is log2(num words), so 2**dminline * 4 gives size in bytes
- let dminline = CPUID::cache_dminline();
- let line_size = (1 << dminline) * 4;
-
- debug_assert!((addr & (line_size - 1)) == 0);
- debug_assert!((size & (line_size - 1)) == 0);
-
- crate::asm::dsb();
-
- // Find number of cache lines to invalidate
- let num_lines = ((size - 1) / line_size) + 1;
-
- // Compute address of first cache line
- let mask = 0xFFFF_FFFF - (line_size - 1);
- let mut addr = addr & mask;
-
- for _ in 0..num_lines {
- cbp.dcimvac(addr as u32);
- addr += line_size;
- }
-
- crate::asm::dsb();
- crate::asm::isb();
- }
-
- /// Invalidates an object from the D-cache.
- ///
- /// * `obj`: The object to invalidate.
- ///
- /// Invalidates D-cache starting from the first cache line containing `obj`,
- /// continuing to invalidate cache lines until all of `obj` has been invalidated.
- ///
- /// Invalidation causes the next read access to memory to be fetched from main memory instead
- /// of the cache.
- ///
- /// # Cache Line Sizes
- ///
- /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
- /// to 32 bytes, which means `obj` must be 32-byte aligned, and its size must be a multiple
- /// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches.
- ///
- /// If `obj` is not cache-line aligned, or its size is not a multiple of the cache line size,
- /// other data before or after the desired memory would also be invalidated, which can very
- /// easily cause memory corruption and undefined behaviour.
- ///
- /// # Safety
- ///
- /// After invalidating, `obj` will be read from main memory on next access. This may cause
- /// recent writes to `obj` to be lost, potentially including the write that initialized it.
- /// Therefore, this method may cause uninitialized memory or invalid values to be read,
- /// resulting in undefined behaviour. You must ensure that main memory contains a valid and
- /// initialized value for T before invalidating `obj`.
- ///
- /// `obj` **must** be aligned to the size of the cache lines, and its size **must** be a
- /// multiple of the cache line size, otherwise this function will invalidate other memory,
- /// easily leading to memory corruption and undefined behaviour. This precondition is checked
- /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
- /// a runtime-dependent `panic!()` call.
- #[inline]
- pub unsafe fn invalidate_dcache_by_ref<T>(&mut self, obj: &mut T) {
- self.invalidate_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>());
- }
-
- /// Invalidates a slice from the D-cache.
- ///
- /// * `slice`: The slice to invalidate.
- ///
- /// Invalidates D-cache starting from the first cache line containing members of `slice`,
- /// continuing to invalidate cache lines until all of `slice` has been invalidated.
- ///
- /// Invalidation causes the next read access to memory to be fetched from main memory instead
- /// of the cache.
- ///
- /// # Cache Line Sizes
- ///
- /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
- /// to 32 bytes, which means `slice` must be 32-byte aligned, and its size must be a multiple
- /// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches.
- ///
- /// If `slice` is not cache-line aligned, or its size is not a multiple of the cache line size,
- /// other data before or after the desired memory would also be invalidated, which can very
- /// easily cause memory corruption and undefined behaviour.
- ///
- /// # Safety
- ///
- /// After invalidating, `slice` will be read from main memory on next access. This may cause
- /// recent writes to `slice` to be lost, potentially including the write that initialized it.
- /// Therefore, this method may cause uninitialized memory or invalid values to be read,
- /// resulting in undefined behaviour. You must ensure that main memory contains valid and
- /// initialized values for T before invalidating `slice`.
- ///
- /// `slice` **must** be aligned to the size of the cache lines, and its size **must** be a
- /// multiple of the cache line size, otherwise this function will invalidate other memory,
- /// easily leading to memory corruption and undefined behaviour. This precondition is checked
- /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid
- /// a runtime-dependent `panic!()` call.
- #[inline]
- pub unsafe fn invalidate_dcache_by_slice<T>(&mut self, slice: &mut [T]) {
- self.invalidate_dcache_by_address(
- slice.as_ptr() as usize,
- slice.len() * core::mem::size_of::<T>(),
- );
- }
-
- /// Cleans D-cache by address.
- ///
- /// * `addr`: The address to start cleaning at.
- /// * `size`: The number of bytes to clean.
- ///
- /// Cleans D-cache cache lines, starting from the first line containing `addr`,
- /// finishing once at least `size` bytes have been invalidated.
- ///
- /// Cleaning the cache causes whatever data is present in the cache to be immediately written
- /// to main memory, overwriting whatever was in main memory.
- ///
- /// # Cache Line Sizes
- ///
- /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed
- /// to 32 bytes, which means `addr` should generally be 32-byte aligned and `size` should be a
- /// multiple of 32. At the time of writing, no other Cortex-M cores have data caches.
- ///
- /// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size,
- /// other data before or after the desired memory will also be cleaned. From the point of view
- /// of the core executing this function, memory remains consistent, so this is not unsound,
- /// but is worth knowing about.
- #[inline]
- pub fn clean_dcache_by_address(&mut self, addr: usize, size: usize) {
- // No-op zero sized operations
- if size == 0 {
- return;
- }
-
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = unsafe { CBP::new() };
-
- crate::asm::dsb();
-
- let dminline = CPUID::cache_dminline();
- let line_size = (1 << dminline) * 4;
- let num_lines = ((size - 1) / line_size) + 1;
-
- let mask = 0xFFFF_FFFF - (line_size - 1);
- let mut addr = addr & mask;
-
- for _ in 0..num_lines {
- cbp.dccmvac(addr as u32);
- addr += line_size;
- }
-
- crate::asm::dsb();
- crate::asm::isb();
- }
-
- /// Cleans an object from the D-cache.
- ///
- /// * `obj`: The object to clean.
- ///
- /// Cleans D-cache starting from the first cache line containing `obj`,
- /// continuing to clean cache lines until all of `obj` has been cleaned.
- ///
- /// It is recommended that `obj` is both aligned to the cache line size and a multiple of
- /// the cache line size long, otherwise surrounding data will also be cleaned.
- ///
- /// Cleaning the cache causes whatever data is present in the cache to be immediately written
- /// to main memory, overwriting whatever was in main memory.
- #[inline]
- pub fn clean_dcache_by_ref<T>(&mut self, obj: &T) {
- self.clean_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>());
- }
-
- /// Cleans a slice from D-cache.
- ///
- /// * `slice`: The slice to clean.
- ///
- /// Cleans D-cache starting from the first cache line containing members of `slice`,
- /// continuing to clean cache lines until all of `slice` has been cleaned.
- ///
- /// It is recommended that `slice` is both aligned to the cache line size and a multiple of
- /// the cache line size long, otherwise surrounding data will also be cleaned.
- ///
- /// Cleaning the cache causes whatever data is present in the cache to be immediately written
- /// to main memory, overwriting whatever was in main memory.
- #[inline]
- pub fn clean_dcache_by_slice<T>(&mut self, slice: &[T]) {
- self.clean_dcache_by_address(
- slice.as_ptr() as usize,
- slice.len() * core::mem::size_of::<T>(),
- );
- }
-
- /// Cleans and invalidates D-cache by address.
- ///
- /// * `addr`: The address to clean and invalidate.
- /// * `size`: The number of bytes to clean and invalidate.
- ///
- /// Cleans and invalidates D-cache starting from the first cache line containing `addr`,
- /// finishing once at least `size` bytes have been cleaned and invalidated.
- ///
- /// It is recommended that `addr` is aligned to the cache line size and `size` is a multiple of
- /// the cache line size, otherwise surrounding data will also be cleaned.
- ///
- /// Cleaning and invalidating causes data in the D-cache to be written back to main memory,
- /// and then marks that data in the D-cache as invalid, causing future reads to first fetch
- /// from main memory.
- #[inline]
- pub fn clean_invalidate_dcache_by_address(&mut self, addr: usize, size: usize) {
- // No-op zero sized operations
- if size == 0 {
- return;
- }
-
- // NOTE(unsafe): No races as all CBP registers are write-only and stateless
- let mut cbp = unsafe { CBP::new() };
-
- crate::asm::dsb();
-
- // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M
- const LINESIZE: usize = 32;
- let num_lines = ((size - 1) / LINESIZE) + 1;
-
- let mut addr = addr & 0xFFFF_FFE0;
-
- for _ in 0..num_lines {
- cbp.dccimvac(addr as u32);
- addr += LINESIZE;
- }
-
- crate::asm::dsb();
- crate::asm::isb();
- }
-}
-
-const SCB_SCR_SLEEPDEEP: u32 = 0x1 << 2;
-
-impl SCB {
- /// Set the SLEEPDEEP bit in the SCR register
- #[inline]
- pub fn set_sleepdeep(&mut self) {
- unsafe {
- self.scr.modify(|scr| scr | SCB_SCR_SLEEPDEEP);
- }
- }
-
- /// Clear the SLEEPDEEP bit in the SCR register
- #[inline]
- pub fn clear_sleepdeep(&mut self) {
- unsafe {
- self.scr.modify(|scr| scr & !SCB_SCR_SLEEPDEEP);
- }
- }
-}
-
-const SCB_SCR_SLEEPONEXIT: u32 = 0x1 << 1;
-
-impl SCB {
- /// Set the SLEEPONEXIT bit in the SCR register
- #[inline]
- pub fn set_sleeponexit(&mut self) {
- unsafe {
- self.scr.modify(|scr| scr | SCB_SCR_SLEEPONEXIT);
- }
- }
-
- /// Clear the SLEEPONEXIT bit in the SCR register
- #[inline]
- pub fn clear_sleeponexit(&mut self) {
- unsafe {
- self.scr.modify(|scr| scr & !SCB_SCR_SLEEPONEXIT);
- }
- }
-}
-
-const SCB_AIRCR_VECTKEY: u32 = 0x05FA << 16;
-const SCB_AIRCR_PRIGROUP_MASK: u32 = 0x7 << 8;
-const SCB_AIRCR_SYSRESETREQ: u32 = 1 << 2;
-
-impl SCB {
- /// Initiate a system reset request to reset the MCU
- #[inline]
- pub fn sys_reset() -> ! {
- crate::asm::dsb();
- unsafe {
- (*Self::PTR).aircr.modify(
- |r| {
- SCB_AIRCR_VECTKEY | // otherwise the write is ignored
- r & SCB_AIRCR_PRIGROUP_MASK | // keep priority group unchanged
- SCB_AIRCR_SYSRESETREQ
- }, // set the bit
- )
- };
- crate::asm::dsb();
- loop {
- // wait for the reset
- crate::asm::nop(); // avoid rust-lang/rust#28728
- }
- }
-}
-
-const SCB_ICSR_PENDSVSET: u32 = 1 << 28;
-const SCB_ICSR_PENDSVCLR: u32 = 1 << 27;
-
-const SCB_ICSR_PENDSTSET: u32 = 1 << 26;
-const SCB_ICSR_PENDSTCLR: u32 = 1 << 25;
-
-impl SCB {
- /// Set the PENDSVSET bit in the ICSR register which will pend the PendSV interrupt
- #[inline]
- pub fn set_pendsv() {
- unsafe {
- (*Self::PTR).icsr.write(SCB_ICSR_PENDSVSET);
- }
- }
-
- /// Check if PENDSVSET bit in the ICSR register is set meaning PendSV interrupt is pending
- #[inline]
- pub fn is_pendsv_pending() -> bool {
- unsafe { (*Self::PTR).icsr.read() & SCB_ICSR_PENDSVSET == SCB_ICSR_PENDSVSET }
- }
-
- /// Set the PENDSVCLR bit in the ICSR register which will clear a pending PendSV interrupt
- #[inline]
- pub fn clear_pendsv() {
- unsafe {
- (*Self::PTR).icsr.write(SCB_ICSR_PENDSVCLR);
- }
- }
-
- /// Set the PENDSTSET bit in the ICSR register which will pend a SysTick interrupt
- #[inline]
- pub fn set_pendst() {
- unsafe {
- (*Self::PTR).icsr.write(SCB_ICSR_PENDSTSET);
- }
- }
-
- /// Check if PENDSTSET bit in the ICSR register is set meaning SysTick interrupt is pending
- #[inline]
- pub fn is_pendst_pending() -> bool {
- unsafe { (*Self::PTR).icsr.read() & SCB_ICSR_PENDSTSET == SCB_ICSR_PENDSTSET }
- }
-
- /// Set the PENDSTCLR bit in the ICSR register which will clear a pending SysTick interrupt
- #[inline]
- pub fn clear_pendst() {
- unsafe {
- (*Self::PTR).icsr.write(SCB_ICSR_PENDSTCLR);
- }
- }
-}
-
-/// System handlers, exceptions with configurable priority
-#[derive(Clone, Copy, Debug, Eq, PartialEq)]
-#[repr(u8)]
-pub enum SystemHandler {
- // NonMaskableInt, // priority is fixed
- // HardFault, // priority is fixed
- /// Memory management interrupt (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- MemoryManagement = 4,
-
- /// Bus fault interrupt (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- BusFault = 5,
-
- /// Usage fault interrupt (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- UsageFault = 6,
-
- /// Secure fault interrupt (only on ARMv8-M)
- #[cfg(any(armv8m, native))]
- SecureFault = 7,
-
- /// SV call interrupt
- SVCall = 11,
-
- /// Debug monitor interrupt (not present on Cortex-M0 variants)
- #[cfg(not(armv6m))]
- DebugMonitor = 12,
-
- /// Pend SV interrupt
- PendSV = 14,
-
- /// System Tick interrupt
- SysTick = 15,
-}
-
-impl SCB {
- /// Returns the hardware priority of `system_handler`
- ///
- /// *NOTE*: Hardware priority does not exactly match logical priority levels. See
- /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details.
- #[inline]
- pub fn get_priority(system_handler: SystemHandler) -> u8 {
- let index = system_handler as u8;
-
- #[cfg(not(armv6m))]
- {
- // NOTE(unsafe) atomic read with no side effects
-
- // NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design.
- // TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
- let priority_ref = unsafe { (*Self::PTR).shpr.get_unchecked(usize::from(index - 4)) };
-
- priority_ref.read()
- }
-
- #[cfg(armv6m)]
- {
- // NOTE(unsafe) atomic read with no side effects
-
- // NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design.
- // TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
- let priority_ref = unsafe {
- (*Self::PTR)
- .shpr
- .get_unchecked(usize::from((index - 8) / 4))
- };
-
- let shpr = priority_ref.read();
- let prio = (shpr >> (8 * (index % 4))) & 0x0000_00ff;
- prio as u8
- }
- }
-
- /// Sets the hardware priority of `system_handler` to `prio`
- ///
- /// *NOTE*: Hardware priority does not exactly match logical priority levels. See
- /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details.
- ///
- /// On ARMv6-M, updating a system handler priority requires a read-modify-write operation. On
- /// ARMv7-M, the operation is performed in a single, atomic write operation.
- ///
- /// # Unsafety
- ///
- /// Changing priority levels can break priority-based critical sections (see
- /// [`register::basepri`](crate::register::basepri)) and compromise memory safety.
- #[inline]
- pub unsafe fn set_priority(&mut self, system_handler: SystemHandler, prio: u8) {
- let index = system_handler as u8;
-
- #[cfg(not(armv6m))]
- {
- // NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design.
- // TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
- let priority_ref = (*Self::PTR).shpr.get_unchecked(usize::from(index - 4));
-
- priority_ref.write(prio)
- }
-
- #[cfg(armv6m)]
- {
- // NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design.
- // TODO: Review it after rust-lang/rust/issues/13926 will be fixed.
- let priority_ref = (*Self::PTR)
- .shpr
- .get_unchecked(usize::from((index - 8) / 4));
-
- priority_ref.modify(|value| {
- let shift = 8 * (index % 4);
- let mask = 0x0000_00ff << shift;
- let prio = u32::from(prio) << shift;
-
- (value & !mask) | prio
- });
- }
- }
-
- /// Return the bit position of the exception enable bit in the SHCSR register
- #[inline]
- #[cfg(not(any(armv6m, armv8m_base)))]
- fn shcsr_enable_shift(exception: Exception) -> Option<u32> {
- match exception {
- Exception::MemoryManagement => Some(16),
- Exception::BusFault => Some(17),
- Exception::UsageFault => Some(18),
- #[cfg(armv8m_main)]
- Exception::SecureFault => Some(19),
- _ => None,
- }
- }
-
- /// Enable the exception
- ///
- /// If the exception is enabled, when the exception is triggered, the exception handler will be executed instead of the
- /// HardFault handler.
- /// This function is only allowed on the following exceptions:
- /// * `MemoryManagement`
- /// * `BusFault`
- /// * `UsageFault`
- /// * `SecureFault` (can only be enabled from Secure state)
- ///
- /// Calling this function with any other exception will do nothing.
- #[inline]
- #[cfg(not(any(armv6m, armv8m_base)))]
- pub fn enable(&mut self, exception: Exception) {
- if let Some(shift) = SCB::shcsr_enable_shift(exception) {
- // The mutable reference to SCB makes sure that only this code is currently modifying
- // the register.
- unsafe { self.shcsr.modify(|value| value | (1 << shift)) }
- }
- }
-
- /// Disable the exception
- ///
- /// If the exception is disabled, when the exception is triggered, the HardFault handler will be executed instead of the
- /// exception handler.
- /// This function is only allowed on the following exceptions:
- /// * `MemoryManagement`
- /// * `BusFault`
- /// * `UsageFault`
- /// * `SecureFault` (can not be changed from Non-secure state)
- ///
- /// Calling this function with any other exception will do nothing.
- #[inline]
- #[cfg(not(any(armv6m, armv8m_base)))]
- pub fn disable(&mut self, exception: Exception) {
- if let Some(shift) = SCB::shcsr_enable_shift(exception) {
- // The mutable reference to SCB makes sure that only this code is currently modifying
- // the register.
- unsafe { self.shcsr.modify(|value| value & !(1 << shift)) }
- }
- }
-
- /// Check if an exception is enabled
- ///
- /// This function is only allowed on the following exception:
- /// * `MemoryManagement`
- /// * `BusFault`
- /// * `UsageFault`
- /// * `SecureFault` (can not be read from Non-secure state)
- ///
- /// Calling this function with any other exception will read `false`.
- #[inline]
- #[cfg(not(any(armv6m, armv8m_base)))]
- pub fn is_enabled(&self, exception: Exception) -> bool {
- if let Some(shift) = SCB::shcsr_enable_shift(exception) {
- (self.shcsr.read() & (1 << shift)) > 0
- } else {
- false
- }
- }
-}
diff --git a/src/peripheral/syst.rs b/src/peripheral/syst.rs
deleted file mode 100644
index 345acc2..0000000
--- a/src/peripheral/syst.rs
+++ /dev/null
@@ -1,185 +0,0 @@
-//! SysTick: System Timer
-
-use volatile_register::{RO, RW};
-
-use crate::peripheral::SYST;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Control and Status
- pub csr: RW<u32>,
- /// Reload Value
- pub rvr: RW<u32>,
- /// Current Value
- pub cvr: RW<u32>,
- /// Calibration Value
- pub calib: RO<u32>,
-}
-
-/// SysTick clock source
-#[derive(Clone, Copy, Debug, PartialEq, Eq)]
-pub enum SystClkSource {
- /// Core-provided clock
- Core,
- /// External reference clock
- External,
-}
-
-const SYST_COUNTER_MASK: u32 = 0x00ff_ffff;
-
-const SYST_CSR_ENABLE: u32 = 1 << 0;
-const SYST_CSR_TICKINT: u32 = 1 << 1;
-const SYST_CSR_CLKSOURCE: u32 = 1 << 2;
-const SYST_CSR_COUNTFLAG: u32 = 1 << 16;
-
-const SYST_CALIB_SKEW: u32 = 1 << 30;
-const SYST_CALIB_NOREF: u32 = 1 << 31;
-
-impl SYST {
- /// Clears current value to 0
- ///
- /// After calling `clear_current()`, the next call to `has_wrapped()` will return `false`.
- #[inline]
- pub fn clear_current(&mut self) {
- unsafe { self.cvr.write(0) }
- }
-
- /// Disables counter
- #[inline]
- pub fn disable_counter(&mut self) {
- unsafe { self.csr.modify(|v| v & !SYST_CSR_ENABLE) }
- }
-
- /// Disables SysTick interrupt
- #[inline]
- pub fn disable_interrupt(&mut self) {
- unsafe { self.csr.modify(|v| v & !SYST_CSR_TICKINT) }
- }
-
- /// Enables counter
- ///
- /// *NOTE* The reference manual indicates that:
- ///
- /// "The SysTick counter reload and current value are undefined at reset, the correct
- /// initialization sequence for the SysTick counter is:
- ///
- /// - Program reload value
- /// - Clear current value
- /// - Program Control and Status register"
- ///
- /// The sequence translates to `self.set_reload(x); self.clear_current(); self.enable_counter()`
- #[inline]
- pub fn enable_counter(&mut self) {
- unsafe { self.csr.modify(|v| v | SYST_CSR_ENABLE) }
- }
-
- /// Enables SysTick interrupt
- #[inline]
- pub fn enable_interrupt(&mut self) {
- unsafe { self.csr.modify(|v| v | SYST_CSR_TICKINT) }
- }
-
- /// Gets clock source
- ///
- /// *NOTE* This takes `&mut self` because the read operation is side effectful and can clear the
- /// bit that indicates that the timer has wrapped (cf. `SYST.has_wrapped`)
- #[inline]
- pub fn get_clock_source(&mut self) -> SystClkSource {
- // NOTE(unsafe) atomic read with no side effects
- if self.csr.read() & SYST_CSR_CLKSOURCE != 0 {
- SystClkSource::Core
- } else {
- SystClkSource::External
- }
- }
-
- /// Gets current value
- #[inline]
- pub fn get_current() -> u32 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).cvr.read() }
- }
-
- /// Gets reload value
- #[inline]
- pub fn get_reload() -> u32 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).rvr.read() }
- }
-
- /// Returns the reload value with which the counter would wrap once per 10
- /// ms
- ///
- /// Returns `0` if the value is not known (e.g. because the clock can
- /// change dynamically).
- #[inline]
- pub fn get_ticks_per_10ms() -> u32 {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).calib.read() & SYST_COUNTER_MASK }
- }
-
- /// Checks if an external reference clock is available
- #[inline]
- pub fn has_reference_clock() -> bool {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).calib.read() & SYST_CALIB_NOREF == 0 }
- }
-
- /// Checks if the counter wrapped (underflowed) since the last check
- ///
- /// *NOTE* This takes `&mut self` because the read operation is side effectful and will clear
- /// the bit of the read register.
- #[inline]
- pub fn has_wrapped(&mut self) -> bool {
- self.csr.read() & SYST_CSR_COUNTFLAG != 0
- }
-
- /// Checks if counter is enabled
- ///
- /// *NOTE* This takes `&mut self` because the read operation is side effectful and can clear the
- /// bit that indicates that the timer has wrapped (cf. `SYST.has_wrapped`)
- #[inline]
- pub fn is_counter_enabled(&mut self) -> bool {
- self.csr.read() & SYST_CSR_ENABLE != 0
- }
-
- /// Checks if SysTick interrupt is enabled
- ///
- /// *NOTE* This takes `&mut self` because the read operation is side effectful and can clear the
- /// bit that indicates that the timer has wrapped (cf. `SYST.has_wrapped`)
- #[inline]
- pub fn is_interrupt_enabled(&mut self) -> bool {
- self.csr.read() & SYST_CSR_TICKINT != 0
- }
-
- /// Checks if the calibration value is precise
- ///
- /// Returns `false` if using the reload value returned by
- /// `get_ticks_per_10ms()` may result in a period significantly deviating
- /// from 10 ms.
- #[inline]
- pub fn is_precise() -> bool {
- // NOTE(unsafe) atomic read with no side effects
- unsafe { (*Self::PTR).calib.read() & SYST_CALIB_SKEW == 0 }
- }
-
- /// Sets clock source
- #[inline]
- pub fn set_clock_source(&mut self, clk_source: SystClkSource) {
- match clk_source {
- SystClkSource::External => unsafe { self.csr.modify(|v| v & !SYST_CSR_CLKSOURCE) },
- SystClkSource::Core => unsafe { self.csr.modify(|v| v | SYST_CSR_CLKSOURCE) },
- }
- }
-
- /// Sets reload value
- ///
- /// Valid values are between `1` and `0x00ffffff`.
- ///
- /// *NOTE* To make the timer wrap every `N` ticks set the reload value to `N - 1`
- #[inline]
- pub fn set_reload(&mut self, value: u32) {
- unsafe { self.rvr.write(value) }
- }
-}
diff --git a/src/peripheral/test.rs b/src/peripheral/test.rs
deleted file mode 100644
index cab064a..0000000
--- a/src/peripheral/test.rs
+++ /dev/null
@@ -1,170 +0,0 @@
-#[test]
-fn cpuid() {
- let cpuid = unsafe { &*crate::peripheral::CPUID::PTR };
-
- assert_eq!(address(&cpuid.base), 0xE000_ED00);
- assert_eq!(address(&cpuid.pfr), 0xE000_ED40);
- assert_eq!(address(&cpuid.dfr), 0xE000_ED48);
- assert_eq!(address(&cpuid.afr), 0xE000_ED4C);
- assert_eq!(address(&cpuid.mmfr), 0xE000_ED50);
- assert_eq!(address(&cpuid.isar), 0xE000_ED60);
- assert_eq!(address(&cpuid.clidr), 0xE000_ED78);
- assert_eq!(address(&cpuid.ctr), 0xE000_ED7C);
- assert_eq!(address(&cpuid.ccsidr), 0xE000_ED80);
- assert_eq!(address(&cpuid.csselr), 0xE000_ED84);
-}
-
-#[test]
-fn dcb() {
- let dcb = unsafe { &*crate::peripheral::DCB::PTR };
-
- assert_eq!(address(&dcb.dhcsr), 0xE000_EDF0);
- assert_eq!(address(&dcb.dcrsr), 0xE000_EDF4);
- assert_eq!(address(&dcb.dcrdr), 0xE000_EDF8);
- assert_eq!(address(&dcb.demcr), 0xE000_EDFC);
-}
-
-#[test]
-fn dwt() {
- let dwt = unsafe { &*crate::peripheral::DWT::PTR };
-
- assert_eq!(address(&dwt.ctrl), 0xE000_1000);
- #[cfg(not(armv6m))]
- assert_eq!(address(&dwt.cyccnt), 0xE000_1004);
- #[cfg(not(armv6m))]
- assert_eq!(address(&dwt.cpicnt), 0xE000_1008);
- #[cfg(not(armv6m))]
- assert_eq!(address(&dwt.exccnt), 0xE000_100C);
- #[cfg(not(armv6m))]
- assert_eq!(address(&dwt.sleepcnt), 0xE000_1010);
- #[cfg(not(armv6m))]
- assert_eq!(address(&dwt.lsucnt), 0xE000_1014);
- #[cfg(not(armv6m))]
- assert_eq!(address(&dwt.foldcnt), 0xE000_1018);
- assert_eq!(address(&dwt.pcsr), 0xE000_101C);
- assert_eq!(address(&dwt.c[0].comp), 0xE000_1020);
- assert_eq!(address(&dwt.c[0].mask), 0xE000_1024);
- assert_eq!(address(&dwt.c[0].function), 0xE000_1028);
- assert_eq!(address(&dwt.c[1].comp), 0xE000_1030);
- assert_eq!(address(&dwt.c[1].mask), 0xE000_1034);
- assert_eq!(address(&dwt.c[1].function), 0xE000_1038);
- #[cfg(not(armv6m))]
- assert_eq!(address(&dwt.lar), 0xE000_1FB0);
- #[cfg(not(armv6m))]
- assert_eq!(address(&dwt.lsr), 0xE000_1FB4);
-}
-
-#[test]
-fn fpb() {
- let fpb = unsafe { &*crate::peripheral::FPB::PTR };
-
- assert_eq!(address(&fpb.ctrl), 0xE000_2000);
- assert_eq!(address(&fpb.remap), 0xE000_2004);
- assert_eq!(address(&fpb.comp), 0xE000_2008);
- assert_eq!(address(&fpb.comp[1]), 0xE000_200C);
- assert_eq!(address(&fpb.lar), 0xE000_2FB0);
- assert_eq!(address(&fpb.lsr), 0xE000_2FB4);
-}
-
-#[test]
-fn fpu() {
- let fpu = unsafe { &*crate::peripheral::FPU::PTR };
-
- assert_eq!(address(&fpu.fpccr), 0xE000_EF34);
- assert_eq!(address(&fpu.fpcar), 0xE000_EF38);
- assert_eq!(address(&fpu.fpdscr), 0xE000_EF3C);
- assert_eq!(address(&fpu.mvfr), 0xE000_EF40);
- assert_eq!(address(&fpu.mvfr[1]), 0xE000_EF44);
- assert_eq!(address(&fpu.mvfr[2]), 0xE000_EF48);
-}
-
-#[test]
-fn itm() {
- let itm = unsafe { &*crate::peripheral::ITM::PTR };
-
- assert_eq!(address(&itm.stim), 0xE000_0000);
- assert_eq!(address(&itm.ter), 0xE000_0E00);
- assert_eq!(address(&itm.tpr), 0xE000_0E40);
- assert_eq!(address(&itm.tcr), 0xE000_0E80);
- assert_eq!(address(&itm.lar), 0xE000_0FB0);
- assert_eq!(address(&itm.lsr), 0xE000_0FB4);
-}
-
-#[test]
-fn mpu() {
- let mpu = unsafe { &*crate::peripheral::MPU::PTR };
-
- assert_eq!(address(&mpu._type), 0xE000ED90);
- assert_eq!(address(&mpu.ctrl), 0xE000ED94);
- assert_eq!(address(&mpu.rnr), 0xE000ED98);
- assert_eq!(address(&mpu.rbar), 0xE000ED9C);
- assert_eq!(address(&mpu.rasr), 0xE000EDA0);
- assert_eq!(address(&mpu.rbar_a1), 0xE000EDA4);
- assert_eq!(address(&mpu.rasr_a1), 0xE000EDA8);
- assert_eq!(address(&mpu.rbar_a2), 0xE000EDAC);
- assert_eq!(address(&mpu.rasr_a2), 0xE000EDB0);
- assert_eq!(address(&mpu.rbar_a3), 0xE000EDB4);
- assert_eq!(address(&mpu.rasr_a3), 0xE000EDB8);
-}
-
-#[test]
-fn nvic() {
- let nvic = unsafe { &*crate::peripheral::NVIC::PTR };
-
- assert_eq!(address(&nvic.iser), 0xE000E100);
- assert_eq!(address(&nvic.icer), 0xE000E180);
- assert_eq!(address(&nvic.ispr), 0xE000E200);
- assert_eq!(address(&nvic.icpr), 0xE000E280);
- assert_eq!(address(&nvic.iabr), 0xE000E300);
- assert_eq!(address(&nvic.ipr), 0xE000E400);
- #[cfg(not(armv6m))]
- assert_eq!(address(&nvic.stir), 0xE000EF00);
-}
-
-#[test]
-fn scb() {
- let scb = unsafe { &*crate::peripheral::SCB::PTR };
-
- assert_eq!(address(&scb.icsr), 0xE000_ED04);
- assert_eq!(address(&scb.vtor), 0xE000_ED08);
- assert_eq!(address(&scb.aircr), 0xE000_ED0C);
- assert_eq!(address(&scb.scr), 0xE000_ED10);
- assert_eq!(address(&scb.ccr), 0xE000_ED14);
- assert_eq!(address(&scb.shpr), 0xE000_ED18);
- assert_eq!(address(&scb.shcsr), 0xE000_ED24);
- assert_eq!(address(&scb.cfsr), 0xE000_ED28);
- assert_eq!(address(&scb.hfsr), 0xE000_ED2C);
- assert_eq!(address(&scb.dfsr), 0xE000_ED30);
- assert_eq!(address(&scb.mmfar), 0xE000_ED34);
- assert_eq!(address(&scb.bfar), 0xE000_ED38);
- assert_eq!(address(&scb.afsr), 0xE000_ED3C);
- assert_eq!(address(&scb.cpacr), 0xE000_ED88);
-}
-
-#[test]
-fn syst() {
- let syst = unsafe { &*crate::peripheral::SYST::PTR };
-
- assert_eq!(address(&syst.csr), 0xE000_E010);
- assert_eq!(address(&syst.rvr), 0xE000_E014);
- assert_eq!(address(&syst.cvr), 0xE000_E018);
- assert_eq!(address(&syst.calib), 0xE000_E01C);
-}
-
-#[test]
-fn tpiu() {
- let tpiu = unsafe { &*crate::peripheral::TPIU::PTR };
-
- assert_eq!(address(&tpiu.sspsr), 0xE004_0000);
- assert_eq!(address(&tpiu.cspsr), 0xE004_0004);
- assert_eq!(address(&tpiu.acpr), 0xE004_0010);
- assert_eq!(address(&tpiu.sppr), 0xE004_00F0);
- assert_eq!(address(&tpiu.ffcr), 0xE004_0304);
- assert_eq!(address(&tpiu.lar), 0xE004_0FB0);
- assert_eq!(address(&tpiu.lsr), 0xE004_0FB4);
- assert_eq!(address(&tpiu._type), 0xE004_0FC8);
-}
-
-fn address<T>(r: *const T) -> usize {
- r as usize
-}
diff --git a/src/peripheral/tpiu.rs b/src/peripheral/tpiu.rs
deleted file mode 100644
index 14dd35c..0000000
--- a/src/peripheral/tpiu.rs
+++ /dev/null
@@ -1,160 +0,0 @@
-//! Trace Port Interface Unit;
-//!
-//! *NOTE* Not available on Armv6-M.
-
-use volatile_register::{RO, RW, WO};
-
-use crate::peripheral::TPIU;
-use bitfield::bitfield;
-
-/// Register block
-#[repr(C)]
-pub struct RegisterBlock {
- /// Supported Parallel Port Sizes
- pub sspsr: RO<u32>,
- /// Current Parallel Port Size
- pub cspsr: RW<u32>,
- reserved0: [u32; 2],
- /// Asynchronous Clock Prescaler
- pub acpr: RW<u32>,
- reserved1: [u32; 55],
- /// Selected Pin Control
- pub sppr: RW<Sppr>,
- reserved2: [u32; 132],
- /// Formatter and Flush Control
- pub ffcr: RW<Ffcr>,
- reserved3: [u32; 810],
- /// Lock Access
- pub lar: WO<u32>,
- /// Lock Status
- pub lsr: RO<u32>,
- reserved4: [u32; 4],
- /// TPIU Type
- pub _type: RO<Type>,
-}
-
-bitfield! {
- /// Formatter and flush control register.
- #[repr(C)]
- #[derive(Clone, Copy)]
- pub struct Ffcr(u32);
- enfcont, set_enfcont: 1;
-}
-
-bitfield! {
- /// TPIU Type Register.
- #[repr(C)]
- #[derive(Clone, Copy)]
- pub struct Type(u32);
- u8, fifosz, _: 8, 6;
- ptinvalid, _: 9;
- mancvalid, _: 10;
- nrzvalid, _: 11;
-}
-
-bitfield! {
- /// Selected pin protocol register.
- #[repr(C)]
- #[derive(Clone, Copy)]
- pub struct Sppr(u32);
- u8, txmode, set_txmode: 1, 0;
-}
-
-/// The available protocols for the trace output.
-#[repr(u8)]
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub enum TraceProtocol {
- /// Parallel trace port mode
- Parallel = 0b00,
- /// Asynchronous SWO, using Manchester encoding
- AsyncSWOManchester = 0b01,
- /// Asynchronous SWO, using NRZ encoding
- AsyncSWONRZ = 0b10,
-}
-impl core::convert::TryFrom<u8> for TraceProtocol {
- type Error = ();
-
- /// Tries to convert from a `TXMODE` field value. Fails if the set mode is
- /// unknown (and thus unpredictable).
- #[inline]
- fn try_from(value: u8) -> Result<Self, Self::Error> {
- match value {
- x if x == Self::Parallel as u8 => Ok(Self::Parallel),
- x if x == Self::AsyncSWOManchester as u8 => Ok(Self::AsyncSWOManchester),
- x if x == Self::AsyncSWONRZ as u8 => Ok(Self::AsyncSWONRZ),
- _ => Err(()), // unknown and unpredictable mode
- }
- }
-}
-
-/// The SWO options supported by the TPIU, and the mimimum size of the
-/// FIFO output queue for trace data.
-#[derive(Debug, Eq, PartialEq, Copy, Clone)]
-pub struct SWOSupports {
- /// Whether UART/NRZ encoding is supported for SWO.
- pub nrz_encoding: bool,
- /// Whether Manchester encoding is supported for SWO.
- pub manchester_encoding: bool,
- /// Whether parallel trace port operation is supported.
- pub parallel_operation: bool,
- /// The minimum implemented FIFO queue size of the TPIU for trace data.
- pub min_queue_size: u8,
-}
-
-impl TPIU {
- /// Sets the prescaler value for a wanted baud rate of the Serial
- /// Wire Output (SWO) in relation to a given asynchronous refernce
- /// clock rate.
- #[inline]
- pub fn set_swo_baud_rate(&mut self, ref_clk_rate: u32, baud_rate: u32) {
- unsafe {
- self.acpr.write((ref_clk_rate / baud_rate) - 1);
- }
- }
-
- /// The used protocol for the trace output. Return `None` if an
- /// unknown (and thus unpredicable mode) is configured by means
- /// other than
- /// [`trace_output_protocol`](Self::set_trace_output_protocol).
- #[inline]
- pub fn trace_output_protocol(&self) -> Option<TraceProtocol> {
- self.sppr.read().txmode().try_into().ok()
- }
-
- /// Sets the used protocol for the trace output.
- #[inline]
- pub fn set_trace_output_protocol(&mut self, proto: TraceProtocol) {
- unsafe {
- self.sppr.modify(|mut r| {
- r.set_txmode(proto as u8);
- r
- });
- }
- }
-
- /// Whether to enable the formatter. If disabled, only ITM and DWT
- /// trace sources are passed through. Data from the ETM is
- /// discarded.
- #[inline]
- pub fn enable_continuous_formatting(&mut self, bit: bool) {
- unsafe {
- self.ffcr.modify(|mut r| {
- r.set_enfcont(bit);
- r
- });
- }
- }
-
- /// Reads the supported trace output modes and the minimum size of
- /// the TPIU FIFO queue for trace data.
- #[inline]
- pub fn swo_supports() -> SWOSupports {
- let _type = unsafe { (*Self::PTR)._type.read() };
- SWOSupports {
- nrz_encoding: _type.nrzvalid(),
- manchester_encoding: _type.mancvalid(),
- parallel_operation: !_type.ptinvalid(),
- min_queue_size: _type.fifosz(),
- }
- }
-}