diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/asm.rs | 172 | ||||
-rw-r--r-- | src/cmse.rs | 240 | ||||
-rw-r--r-- | src/itm.rs | 112 | ||||
-rw-r--r-- | src/lib.rs | 5 | ||||
-rw-r--r-- | src/peripheral/cbp.rs | 46 | ||||
-rw-r--r-- | src/peripheral/cpuid.rs | 24 | ||||
-rw-r--r-- | src/peripheral/mod.rs | 62 | ||||
-rw-r--r-- | src/peripheral/nvic.rs | 49 | ||||
-rw-r--r-- | src/peripheral/scb.rs | 420 | ||||
-rw-r--r-- | src/register/mod.rs | 21 |
10 files changed, 849 insertions, 302 deletions
@@ -42,7 +42,7 @@ pub fn delay(_n: u32) { bne.n 1b" : "+r"(_n / 4 + 1) : - : + : "cpsr" : "volatile"); }, @@ -81,6 +81,35 @@ pub fn nop() { } } + +/// Generate an Undefined Instruction exception. +/// +/// Can be used as a stable alternative to `core::intrinsics::abort`. +#[inline] +pub fn udf() -> ! { + match () { + #[cfg(all(cortex_m, feature = "inline-asm"))] + () => unsafe { + asm!("udf" :::: "volatile"); + core::hint::unreachable_unchecked(); + }, + + #[cfg(all(cortex_m, not(feature = "inline-asm")))] + () => unsafe { + extern "C" { + fn __udf(); + } + + __udf(); + + core::hint::unreachable_unchecked(); + }, + + #[cfg(not(cortex_m))] + () => unimplemented!(), + } +} + /// Wait For Event #[inline] pub fn wfe() { @@ -222,3 +251,144 @@ pub fn dmb() { () => unimplemented!(), } } + +/// Test Target +/// +/// Queries the Security state and access permissions of a memory location. +/// Returns a Test Target Response Payload (cf section D1.2.215 of +/// Armv8-M Architecture Reference Manual). +#[inline] +#[cfg(armv8m)] +// The __tt function does not dereference the pointer received. +#[allow(clippy::not_unsafe_ptr_arg_deref)] +pub fn tt(addr: *mut u32) -> u32 { + match () { + #[cfg(all(cortex_m, feature = "inline-asm"))] + () => { + let tt_resp: u32; + unsafe { + asm!("tt $0, $1" : "=r"(tt_resp) : "r"(addr) :: "volatile"); + } + tt_resp + } + + #[cfg(all(cortex_m, not(feature = "inline-asm")))] + () => unsafe { + extern "C" { + fn __tt(_: *mut u32) -> u32; + } + + __tt(addr) + }, + + #[cfg(not(cortex_m))] + () => unimplemented!(), + } +} + +/// Test Target Unprivileged +/// +/// Queries the Security state and access permissions of a memory location for an unprivileged +/// access to that location. +/// Returns a Test Target Response Payload (cf section D1.2.215 of +/// Armv8-M Architecture Reference Manual). +#[inline] +#[cfg(armv8m)] +// The __ttt function does not dereference the pointer received. +#[allow(clippy::not_unsafe_ptr_arg_deref)] +pub fn ttt(addr: *mut u32) -> u32 { + match () { + #[cfg(all(cortex_m, feature = "inline-asm"))] + () => { + let tt_resp: u32; + unsafe { + asm!("ttt $0, $1" : "=r"(tt_resp) : "r"(addr) :: "volatile"); + } + tt_resp + } + + #[cfg(all(cortex_m, not(feature = "inline-asm")))] + () => unsafe { + extern "C" { + fn __ttt(_: *mut u32) -> u32; + } + + __ttt(addr) + }, + + #[cfg(not(cortex_m))] + () => unimplemented!(), + } +} + +/// Test Target Alternate Domain +/// +/// Queries the Security state and access permissions of a memory location for a Non-Secure access +/// to that location. This instruction is only valid when executing in Secure state and is +/// undefined if used from Non-Secure state. +/// Returns a Test Target Response Payload (cf section D1.2.215 of +/// Armv8-M Architecture Reference Manual). +#[inline] +#[cfg(armv8m)] +// The __tta function does not dereference the pointer received. +#[allow(clippy::not_unsafe_ptr_arg_deref)] +pub fn tta(addr: *mut u32) -> u32 { + match () { + #[cfg(all(cortex_m, feature = "inline-asm"))] + () => { + let tt_resp: u32; + unsafe { + asm!("tta $0, $1" : "=r"(tt_resp) : "r"(addr) :: "volatile"); + } + tt_resp + } + + #[cfg(all(cortex_m, not(feature = "inline-asm")))] + () => unsafe { + extern "C" { + fn __tta(_: *mut u32) -> u32; + } + + __tta(addr) + }, + + #[cfg(not(cortex_m))] + () => unimplemented!(), + } +} + +/// Test Target Alternate Domain Unprivileged +/// +/// Queries the Security state and access permissions of a memory location for a Non-Secure and +/// unprivileged access to that location. This instruction is only valid when executing in Secure +/// state and is undefined if used from Non-Secure state. +/// Returns a Test Target Response Payload (cf section D1.2.215 of +/// Armv8-M Architecture Reference Manual). +#[inline] +#[cfg(armv8m)] +// The __ttat function does not dereference the pointer received. +#[allow(clippy::not_unsafe_ptr_arg_deref)] +pub fn ttat(addr: *mut u32) -> u32 { + match () { + #[cfg(all(cortex_m, feature = "inline-asm"))] + () => { + let tt_resp: u32; + unsafe { + asm!("ttat $0, $1" : "=r"(tt_resp) : "r"(addr) :: "volatile"); + } + tt_resp + } + + #[cfg(all(cortex_m, not(feature = "inline-asm")))] + () => unsafe { + extern "C" { + fn __ttat(_: *mut u32) -> u32; + } + + __ttat(addr) + }, + + #[cfg(not(cortex_m))] + () => unimplemented!(), + } +} diff --git a/src/cmse.rs b/src/cmse.rs new file mode 100644 index 0000000..393e463 --- /dev/null +++ b/src/cmse.rs @@ -0,0 +1,240 @@ +//! Cortex-M Security Extensions +//! +//! This module provides several helper functions to support Armv8-M and Armv8.1-M Security +//! Extensions. +//! Most of this implementation is directly inspired by the "Armv8-M Security Extensions: +//! Requirements on Development Tools" document available here: +//! https://developer.arm.com/docs/ecm0359818/latest +//! +//! Please note that the TT instructions support as described part 4 of the document linked above is +//! not part of CMSE but is still present in this module. The TT instructions return the +//! configuration of the Memory Protection Unit at an address. +//! +//! # Notes +//! +//! * Non-Secure Unprivileged code will always read zeroes from TestTarget and should not use it. +//! * Non-Secure Privileged code can check current (AccessType::Current) and Non-Secure Unprivileged +//! accesses (AccessType::Unprivileged). +//! * Secure Unprivileged code can check Non-Secure Unprivileged accesses (AccessType::NonSecure). +//! * Secure Privileged code can check all access types. +//! +//! # Example +//! +//! ``` +//! use cortex_m::cmse::{TestTarget, AccessType}; +//! +//! // suspect_address was given by Non-Secure to a Secure function to write at it. +//! // But is it allowed to? +//! let suspect_address_test = TestTarget::check(0xDEADBEEF as *mut u32, +//! AccessType::NonSecureUnprivileged); +//! if suspect_address_test.ns_read_and_writable() { +//! // Non-Secure can not read or write this address! +//! } +//! ``` + +use crate::asm::{tt, tta, ttat, ttt}; +use bitfield::bitfield; + +/// Memory access behaviour: determine which privilege execution mode is used and which Memory +/// Protection Unit (MPU) is used. +#[allow(clippy::missing_inline_in_public_items)] +#[derive(PartialEq, Copy, Clone, Debug)] +pub enum AccessType { + /// Access using current privilege level and reading from current security state MPU. + /// Uses the TT instruction. + Current, + /// Unprivileged access reading from current security state MPU. Uses the TTT instruction. + Unprivileged, + /// Access using current privilege level reading from Non-Secure MPU. Uses the TTA instruction. + /// Undefined if used from Non-Secure state. + NonSecure, + /// Unprivilege access reading from Non-Secure MPU. Uses the TTAT instruction. + /// Undefined if used from Non-Secure state. + NonSecureUnprivileged, +} + +/// Abstraction of TT instructions and helper functions to determine the security and privilege +/// attribute of a target address, accessed in different ways. +#[allow(clippy::missing_inline_in_public_items)] +#[derive(PartialEq, Copy, Clone, Debug)] +pub struct TestTarget { + tt_resp: TtResp, + access_type: AccessType, +} + +bitfield! { + /// Test Target Response Payload + /// + /// Provides the response payload from a TT, TTA, TTT or TTAT instruction. + #[derive(PartialEq, Copy, Clone)] + struct TtResp(u32); + impl Debug; + mregion, _: 7, 0; + sregion, _: 15, 8; + mrvalid, _: 16; + srvalid, _: 17; + r, _: 18; + rw, _: 19; + nsr, _: 20; + nsrw, _: 21; + s, _: 22; + irvalid, _: 23; + iregion, _: 31, 24; +} + +impl TestTarget { + /// Creates a Test Target Response Payload by testing addr using access_type. + #[inline] + pub fn check(addr: *mut u32, access_type: AccessType) -> Self { + let tt_resp = match access_type { + AccessType::Current => TtResp(tt(addr)), + AccessType::Unprivileged => TtResp(ttt(addr)), + AccessType::NonSecure => TtResp(tta(addr)), + AccessType::NonSecureUnprivileged => TtResp(ttat(addr)), + }; + + TestTarget { + tt_resp, + access_type, + } + } + + /// Creates a Test Target Response Payload by testing the zone from addr to addr + size - 1 + /// using access_type. + /// Returns None if: + /// * the address zone overlaps SAU, IDAU or MPU region boundaries + /// * size is 0 + /// * addr + size - 1 overflows + #[inline] + pub fn check_range(addr: *mut u32, size: usize, access_type: AccessType) -> Option<Self> { + let begin: usize = addr as usize; + // Last address of the range (addr + size - 1). This also checks if size is 0. + let end: usize = begin.checked_add(size.checked_sub(1)?)?; + + // Regions are aligned at 32-byte boundaries. If the address range fits in one 32-byte + // address line, a single TT instruction suffices. This is the case when the following + // constraint holds. + let single_check: bool = (begin % 32).checked_add(size)? <= 32usize; + + let test_start = TestTarget::check(addr, access_type); + + if single_check { + Some(test_start) + } else { + let test_end = TestTarget::check(end as *mut u32, access_type); + // Check that the range does not cross SAU, IDAU or MPU region boundaries. + if test_start != test_end { + None + } else { + Some(test_start) + } + } + } + + /// Access type that was used for this test target. + #[inline] + pub fn access_type(self) -> AccessType { + self.access_type + } + + /// Get the raw u32 value returned by the TT instruction used. + #[inline] + pub fn as_u32(self) -> u32 { + self.tt_resp.0 + } + + /// Read accessibility of the target address. Only returns the MPU settings without checking + /// the Security state of the target. + /// For Unprivileged and NonSecureUnprivileged access types, returns the permissions for + /// unprivileged access, regardless of whether the current mode is privileged or unprivileged. + /// Returns false if the TT instruction was executed from an unprivileged mode + /// and the NonSecure access type was not specified. + /// Returns false if the address matches multiple MPU regions. + #[inline] + pub fn readable(self) -> bool { + self.tt_resp.r() + } + + /// Read and write accessibility of the target address. Only returns the MPU settings without + /// checking the Security state of the target. + /// For Unprivileged and NonSecureUnprivileged access types, returns the permissions for + /// unprivileged access, regardless of whether the current mode is privileged or unprivileged. + /// Returns false if the TT instruction was executed from an unprivileged mode + /// and the NonSecure access type was not specified. + /// Returns false if the address matches multiple MPU regions. + #[inline] + pub fn read_and_writable(self) -> bool { + self.tt_resp.rw() + } + + /// Indicate the MPU region number containing the target address. + /// Returns None if the value is not valid: + /// * the MPU is not implemented or MPU_CTRL.ENABLE is set to zero + /// * the register argument specified by the MREGION field does not match any enabled MPU regions + /// * the address matched multiple MPU regions + /// * the address specified by the SREGION field is exempt from the secure memory attribution + /// * the TT instruction was executed from an unprivileged mode and the A flag was not specified. + #[inline] + pub fn mpu_region(self) -> Option<u8> { + if self.tt_resp.srvalid() { + // Cast is safe as SREGION field is defined on 8 bits. + Some(self.tt_resp.sregion() as u8) + } else { + None + } + } + + /// Indicates the Security attribute of the target address. Independent of AccessType. + /// Always zero when the test target is done in the Non-Secure state. + #[inline] + pub fn secure(self) -> bool { + self.tt_resp.s() + } + + /// Non-Secure Read accessibility of the target address. + /// Same as readable() && !secure() + #[inline] + pub fn ns_readable(self) -> bool { + self.tt_resp.nsr() + } + + /// Non-Secure Read and Write accessibility of the target address. + /// Same as read_and_writable() && !secure() + #[inline] + pub fn ns_read_and_writable(self) -> bool { + self.tt_resp.nsrw() + } + + /// Indicate the IDAU region number containing the target address. Independent of AccessType. + /// Returns None if the value is not valid: + /// * the IDAU cannot provide a region number + /// * the address is exempt from security attribution + /// * the test target is done from Non-Secure state + #[inline] + pub fn idau_region(self) -> Option<u8> { + if self.tt_resp.irvalid() { + // Cast is safe as IREGION field is defined on 8 bits. + Some(self.tt_resp.iregion() as u8) + } else { + None + } + } + + /// Indicate the SAU region number containing the target address. Independent of AccessType. + /// Returns None if the value is not valid: + /// * SAU_CTRL.ENABLE is set to zero + /// * the register argument specified in the SREGION field does not match any enabled SAU regions + /// * the address specified matches multiple enabled SAU regions + /// * the address specified by the SREGION field is exempt from the secure memory attribution + /// * the TT instruction was executed from the Non-secure state or the Security Extension is not + /// implemented + #[inline] + pub fn sau_region(self) -> Option<u8> { + if self.tt_resp.srvalid() { + // Cast is safe as SREGION field is defined on 8 bits. + Some(self.tt_resp.sregion() as u8) + } else { + None + } + } +} @@ -1,15 +1,12 @@ //! Instrumentation Trace Macrocell //! -//! **NOTE** This module is only available on ARMv7-M and newer +//! **NOTE** This module is only available on ARMv7-M and newer. -use core::{fmt, mem, ptr, slice}; - -use aligned::{Aligned, A4}; +use core::{fmt, ptr, slice}; use crate::peripheral::itm::Stim; // NOTE assumes that `bytes` is 32-bit aligned -#[allow(clippy::missing_inline_in_public_items)] unsafe fn write_words(stim: &mut Stim, bytes: &[u32]) { let mut p = bytes.as_ptr(); for _ in 0..bytes.len() { @@ -19,6 +16,45 @@ unsafe fn write_words(stim: &mut Stim, bytes: &[u32]) { } } +/// Writes an aligned byte slice to the ITM. +/// +/// `buffer` must be 4-byte aligned. +unsafe fn write_aligned_impl(port: &mut Stim, buffer: &[u8]) { + let len = buffer.len(); + + if len == 0 { + return; + } + + let split = len & !0b11; + #[allow(clippy::cast_ptr_alignment)] + write_words( + port, + slice::from_raw_parts(buffer.as_ptr() as *const u32, split >> 2), + ); + + // 3 bytes or less left + let mut left = len & 0b11; + let mut ptr = buffer.as_ptr().add(split); + + // at least 2 bytes left + if left > 1 { + while !port.is_fifo_ready() {} + + #[allow(clippy::cast_ptr_alignment)] + port.write_u16(ptr::read(ptr as *const u16)); + + ptr = ptr.offset(2); + left -= 2; + } + + // final byte + if left == 1 { + while !port.is_fifo_ready() {} + port.write_u8(*ptr); + } +} + struct Port<'p>(&'p mut Stim); impl<'p> fmt::Write for Port<'p> { @@ -29,10 +65,15 @@ impl<'p> fmt::Write for Port<'p> { } } -/// Writes a `buffer` to the ITM `port` -#[allow(clippy::cast_ptr_alignment)] +/// A wrapper type that aligns its contents on a 4-Byte boundary. +/// +/// ITM transfers are most efficient when the data is 4-Byte-aligned. This type provides an easy +/// way to accomplish and enforce such an alignment. +#[repr(align(4))] +pub struct Aligned<T: ?Sized>(pub T); + +/// Writes `buffer` to an ITM port. #[allow(clippy::missing_inline_in_public_items)] -#[allow(clippy::transmute_ptr_to_ptr)] pub fn write_all(port: &mut Stim, buffer: &[u8]) { unsafe { let mut len = buffer.len(); @@ -57,6 +98,9 @@ pub fn write_all(port: &mut Stim, buffer: &[u8]) { if len > 1 { // at least 2 bytes while !port.is_fifo_ready() {} + + // We checked the alignment above, so this is safe + #[allow(clippy::cast_ptr_alignment)] port.write_u16(ptr::read(ptr as *const u16)); // 0x04 @@ -73,59 +117,31 @@ pub fn write_all(port: &mut Stim, buffer: &[u8]) { } } - write_aligned(port, mem::transmute(slice::from_raw_parts(ptr, len))); + // The remaining data is 4-byte aligned, but might not be a multiple of 4 bytes + write_aligned_impl(port, slice::from_raw_parts(ptr, len)); } } -/// Writes a 4-byte aligned `buffer` to the ITM `port` +/// Writes a 4-byte aligned `buffer` to an ITM port. /// /// # Examples /// -/// ``` ignore -/// let mut buffer: Aligned<A4, _> = Aligned([0; 14]); +/// ```no_run +/// # use cortex_m::{itm::{self, Aligned}, peripheral::ITM}; +/// # let port = unsafe { &mut (*ITM::ptr()).stim[0] }; +/// let mut buffer = Aligned([0; 14]); /// -/// buffer.copy_from_slice(b"Hello, world!\n"); +/// buffer.0.copy_from_slice(b"Hello, world!\n"); /// -/// itm::write_aligned(&itm.stim[0], &buffer); +/// itm::write_aligned(port, &buffer); /// /// // Or equivalently -/// itm::write_aligned(&itm.stim[0], &Aligned(*b"Hello, world!\n")); +/// itm::write_aligned(port, &Aligned(*b"Hello, world!\n")); /// ``` -#[allow(clippy::cast_ptr_alignment)] #[allow(clippy::missing_inline_in_public_items)] -#[allow(clippy::transmute_ptr_to_ptr)] -pub fn write_aligned(port: &mut Stim, buffer: &Aligned<A4, [u8]>) { +pub fn write_aligned(port: &mut Stim, buffer: &Aligned<[u8]>) { unsafe { - let len = buffer.len(); - - if len == 0 { - return; - } - - let split = len & !0b11; - write_words( - port, - slice::from_raw_parts(buffer.as_ptr() as *const u32, split >> 2), - ); - - // 3 bytes or less left - let mut left = len & 0b11; - let mut ptr = buffer.as_ptr().add(split); - - // at least 2 bytes left - if left > 1 { - while !port.is_fifo_ready() {} - port.write_u16(ptr::read(ptr as *const u16)); - - ptr = ptr.offset(2); - left -= 2; - } - - // final byte - if left == 1 { - while !port.is_fifo_ready() {} - port.write_u8(*ptr); - } + write_aligned_impl(port, &buffer.0) } } @@ -34,6 +34,8 @@ #![no_std] #![allow(clippy::identity_op)] #![allow(clippy::missing_safety_doc)] +// Prevent clippy from complaining about empty match expression that are used for cfg gating. +#![allow(clippy::match_single_binding)] // This makes clippy warn about public functions which are not #[inline]. // @@ -50,7 +52,6 @@ // to be applied to the struct). #![deny(clippy::missing_inline_in_public_items)] -extern crate aligned; extern crate bare_metal; extern crate volatile_register; @@ -58,6 +59,8 @@ extern crate volatile_register; mod macros; pub mod asm; +#[cfg(armv8m)] +pub mod cmse; pub mod interrupt; #[cfg(not(armv6m))] pub mod itm; diff --git a/src/peripheral/cbp.rs b/src/peripheral/cbp.rs index 8d82e2a..6a1defd 100644 --- a/src/peripheral/cbp.rs +++ b/src/peripheral/cbp.rs @@ -39,34 +39,28 @@ const CBP_SW_SET_MASK: u32 = 0x1FF << CBP_SW_SET_POS; impl CBP { /// I-cache invalidate all to PoU - #[inline] + #[inline(always)] pub fn iciallu(&mut self) { - unsafe { - self.iciallu.write(0); - } + unsafe { self.iciallu.write(0) }; } /// I-cache invalidate by MVA to PoU - #[inline] + #[inline(always)] pub fn icimvau(&mut self, mva: u32) { - unsafe { - self.icimvau.write(mva); - } + unsafe { self.icimvau.write(mva) }; } /// D-cache invalidate by MVA to PoC - #[inline] - pub fn dcimvac(&mut self, mva: u32) { - unsafe { - self.dcimvac.write(mva); - } + #[inline(always)] + pub unsafe fn dcimvac(&mut self, mva: u32) { + self.dcimvac.write(mva); } /// D-cache invalidate by set-way /// /// `set` is masked to be between 0 and 3, and `way` between 0 and 511. - #[inline] - pub fn dcisw(&mut self, set: u16, way: u16) { + #[inline(always)] + pub unsafe fn dcisw(&mut self, set: u16, way: u16) { // The ARMv7-M Architecture Reference Manual, as of Revision E.b, says these set/way // operations have a register data format which depends on the implementation's // associativity and number of sets. Specifically the 'way' and 'set' fields have @@ -76,16 +70,14 @@ impl CBP { // Generic User Guide section 4.8.3. Since no other ARMv7-M implementations except the // Cortex-M7 have a DCACHE or ICACHE at all, it seems safe to do the same thing as the // CMSIS-Core implementation and use fixed values. - unsafe { - self.dcisw.write( - ((u32::from(way) & (CBP_SW_WAY_MASK >> CBP_SW_WAY_POS)) << CBP_SW_WAY_POS) - | ((u32::from(set) & (CBP_SW_SET_MASK >> CBP_SW_SET_POS)) << CBP_SW_SET_POS), - ); - } + self.dcisw.write( + ((u32::from(way) & (CBP_SW_WAY_MASK >> CBP_SW_WAY_POS)) << CBP_SW_WAY_POS) + | ((u32::from(set) & (CBP_SW_SET_MASK >> CBP_SW_SET_POS)) << CBP_SW_SET_POS), + ); } /// D-cache clean by MVA to PoU - #[inline] + #[inline(always)] pub fn dccmvau(&mut self, mva: u32) { unsafe { self.dccmvau.write(mva); @@ -93,7 +85,7 @@ impl CBP { } /// D-cache clean by MVA to PoC - #[inline] + #[inline(always)] pub fn dccmvac(&mut self, mva: u32) { unsafe { self.dccmvac.write(mva); @@ -103,7 +95,7 @@ impl CBP { /// D-cache clean by set-way /// /// `set` is masked to be between 0 and 3, and `way` between 0 and 511. - #[inline] + #[inline(always)] pub fn dccsw(&mut self, set: u16, way: u16) { // See comment for dcisw() about the format here unsafe { @@ -115,7 +107,7 @@ impl CBP { } /// D-cache clean and invalidate by MVA to PoC - #[inline] + #[inline(always)] pub fn dccimvac(&mut self, mva: u32) { unsafe { self.dccimvac.write(mva); @@ -125,7 +117,7 @@ impl CBP { /// D-cache clean and invalidate by set-way /// /// `set` is masked to be between 0 and 3, and `way` between 0 and 511. - #[inline] + #[inline(always)] pub fn dccisw(&mut self, set: u16, way: u16) { // See comment for dcisw() about the format here unsafe { @@ -137,7 +129,7 @@ impl CBP { } /// Branch predictor invalidate all - #[inline] + #[inline(always)] pub fn bpiall(&mut self) { unsafe { self.bpiall.write(0); diff --git a/src/peripheral/cpuid.rs b/src/peripheral/cpuid.rs index 787be5c..32d0baf 100644 --- a/src/peripheral/cpuid.rs +++ b/src/peripheral/cpuid.rs @@ -114,4 +114,28 @@ impl CPUID { (1 + ((ccsidr & CCSIDR_ASSOCIATIVITY_MASK) >> CCSIDR_ASSOCIATIVITY_POS)) as u16, ) } + + /// Returns log2 of the number of words in the smallest cache line of all the data cache and + /// unified caches that are controlled by the processor. + /// + /// This is the `DminLine` field of the CTR register. + #[inline(always)] + pub fn cache_dminline() -> u32 { + const CTR_DMINLINE_POS: u32 = 16; + const CTR_DMINLINE_MASK: u32 = 0xF << CTR_DMINLINE_POS; + let ctr = unsafe { (*Self::ptr()).ctr.read() }; + (ctr & CTR_DMINLINE_MASK) >> CTR_DMINLINE_POS + } + + /// Returns log2 of the number of words in the smallest cache line of all the instruction + /// caches that are controlled by the processor. + /// + /// This is the `IminLine` field of the CTR register. + #[inline(always)] + pub fn cache_iminline() -> u32 { + const CTR_IMINLINE_POS: u32 = 0; + const CTR_IMINLINE_MASK: u32 = 0xF << CTR_IMINLINE_POS; + let ctr = unsafe { (*Self::ptr()).ctr.read() }; + (ctr & CTR_IMINLINE_MASK) >> CTR_IMINLINE_POS + } } diff --git a/src/peripheral/mod.rs b/src/peripheral/mod.rs index 22dd9cf..7af4b90 100644 --- a/src/peripheral/mod.rs +++ b/src/peripheral/mod.rs @@ -1,5 +1,4 @@ -#![allow(clippy::needless_doctest_main)] -//! Core peripherals +//! Core peripherals. //! //! # API //! @@ -9,41 +8,32 @@ //! the [`Peripherals::take`](struct.Peripherals.html#method.take) method. //! //! ``` no_run -//! use cortex_m::peripheral::Peripherals; -//! -//! fn main() { -//! let mut peripherals = Peripherals::take().unwrap(); -//! peripherals.DWT.enable_cycle_counter(); -//! } +//! # use cortex_m::peripheral::Peripherals; +//! let mut peripherals = Peripherals::take().unwrap(); +//! peripherals.DWT.enable_cycle_counter(); //! ``` //! //! This method can only be successfully called *once* -- this is why the method returns an //! `Option`. Subsequent calls to the method will result in a `None` value being returned. //! -//! ``` no_run -//! use cortex_m::peripheral::Peripherals; -//! -//! fn main() { -//! let ok = Peripherals::take().unwrap(); -//! let panics = Peripherals::take().unwrap(); -//! } +//! ``` no_run, should_panic +//! # use cortex_m::peripheral::Peripherals; +//! let ok = Peripherals::take().unwrap(); +//! let panics = Peripherals::take().unwrap(); //! ``` //! A part of the peripheral API doesn't require access to a peripheral instance. This part of the //! API is provided as static methods on the peripheral types. One example is the //! [`DWT::get_cycle_count`](struct.DWT.html#method.get_cycle_count) method. //! //! ``` no_run -//! use cortex_m::peripheral::{DWT, Peripherals}; -//! -//! fn main() { -//! { -//! let mut peripherals = Peripherals::take().unwrap(); -//! peripherals.DWT.enable_cycle_counter(); -//! } // all the peripheral singletons are destroyed here +//! # use cortex_m::peripheral::{DWT, Peripherals}; +//! { +//! let mut peripherals = Peripherals::take().unwrap(); +//! peripherals.DWT.enable_cycle_counter(); +//! } // all the peripheral singletons are destroyed here //! -//! // but this method can be called without a DWT instance -//! let cyccnt = DWT::get_cycle_count(); -//! } +//! // but this method can be called without a DWT instance +//! let cyccnt = DWT::get_cycle_count(); //! ``` //! //! The singleton property can be *unsafely* bypassed using the `ptr` static method which is @@ -51,17 +41,14 @@ //! safe higher level abstractions. //! //! ``` no_run -//! use cortex_m::peripheral::{DWT, Peripherals}; -//! -//! fn main() { -//! { -//! let mut peripherals = Peripherals::take().unwrap(); -//! peripherals.DWT.enable_cycle_counter(); -//! } // all the peripheral singletons are destroyed here +//! # use cortex_m::peripheral::{DWT, Peripherals}; +//! { +//! let mut peripherals = Peripherals::take().unwrap(); +//! peripherals.DWT.enable_cycle_counter(); +//! } // all the peripheral singletons are destroyed here //! -//! // actually safe because this is an atomic read with no side effects -//! let cyccnt = unsafe { (*DWT::ptr()).cyccnt.read() }; -//! } +//! // actually safe because this is an atomic read with no side effects +//! let cyccnt = unsafe { (*DWT::ptr()).cyccnt.read() }; //! ``` //! //! # References @@ -142,6 +129,10 @@ pub struct Peripherals { /// Trace Port Interface Unit (not present on Cortex-M0 variants) pub TPIU: TPIU, + + // Private field making `Peripherals` non-exhaustive. We don't use `#[non_exhaustive]` so we + // can support older Rust versions. + _priv: (), } // NOTE `no_mangle` is used here to prevent linking different minor versions of this crate as that @@ -207,6 +198,7 @@ impl Peripherals { TPIU: TPIU { _marker: PhantomData, }, + _priv: (), } } } diff --git a/src/peripheral/nvic.rs b/src/peripheral/nvic.rs index 1ecfc6e..6627e60 100644 --- a/src/peripheral/nvic.rs +++ b/src/peripheral/nvic.rs @@ -38,7 +38,6 @@ pub struct RegisterBlock { _reserved5: [u32; 48], - #[cfg(not(armv6m))] /// Interrupt Priority /// /// On ARMv7-M, 124 word-sized registers are available. Each of those @@ -50,9 +49,9 @@ pub struct RegisterBlock { /// On ARMv6-M, the registers must only be accessed along word boundaries, /// so convenient byte-sized representation wouldn't work on that /// architecture. + #[cfg(not(armv6m))] pub ipr: [RW<u8>; 496], - #[cfg(armv6m)] /// Interrupt Priority /// /// On ARMv7-M, 124 word-sized registers are available. Each of those @@ -64,18 +63,18 @@ pub struct RegisterBlock { /// On ARMv6-M, the registers must only be accessed along word boundaries, /// so convenient byte-sized representation wouldn't work on that /// architecture. + #[cfg(armv6m)] pub ipr: [RW<u32>; 8], #[cfg(not(armv6m))] _reserved6: [u32; 580], - #[cfg(not(armv6m))] /// Software Trigger Interrupt + #[cfg(not(armv6m))] pub stir: WO<u32>, } impl NVIC { - #[cfg(not(armv6m))] /// Request an IRQ in software /// /// Writing a value to the INTID field is the same as manually pending an interrupt by setting @@ -83,6 +82,7 @@ impl NVIC { /// `set_pending`. /// /// This method is not available on ARMv6-M chips. + #[cfg(not(armv6m))] #[inline] pub fn request<I>(&mut self, interrupt: I) where @@ -95,16 +95,6 @@ impl NVIC { } } - /// Clears `interrupt`'s pending state - #[deprecated(since = "0.5.8", note = "Use `NVIC::unpend`")] - #[inline] - pub fn clear_pending<I>(&mut self, interrupt: I) - where - I: Nr, - { - Self::unpend(interrupt) - } - /// Disables `interrupt` #[inline] pub fn mask<I>(interrupt: I) @@ -129,27 +119,6 @@ impl NVIC { (*Self::ptr()).iser[usize::from(nr / 32)].write(1 << (nr % 32)) } - /// Disables `interrupt` - #[deprecated(since = "0.6.1", note = "Use `NVIC::mask`")] - #[inline] - pub fn disable<I>(&mut self, interrupt: I) - where - I: Nr, - { - Self::mask(interrupt) - } - - /// **WARNING** This method is a soundness hole in the API; it should actually be an `unsafe` - /// function. Use `NVIC::unmask` which has the right unsafety. - #[deprecated(since = "0.6.1", note = "Use `NVIC::unmask`")] - #[inline] - pub fn enable<I>(&mut self, interrupt: I) - where - I: Nr, - { - unsafe { Self::unmask(interrupt) } - } - /// Returns the NVIC priority of `interrupt` /// /// *NOTE* NVIC encodes priority in the highest bits of a byte so values like `1` and `2` map @@ -228,16 +197,6 @@ impl NVIC { unsafe { (*Self::ptr()).ispr[usize::from(nr / 32)].write(1 << (nr % 32)) } } - /// Forces `interrupt` into pending state - #[deprecated(since = "0.5.8", note = "Use `NVIC::pend`")] - #[inline] - pub fn set_pending<I>(&mut self, interrupt: I) - where - I: Nr, - { - Self::pend(interrupt) - } - /// Sets the "priority" of `interrupt` to `prio` /// /// *NOTE* See [`get_priority`](struct.NVIC.html#method.get_priority) method for an explanation diff --git a/src/peripheral/scb.rs b/src/peripheral/scb.rs index 9d58b03..940809e 100644 --- a/src/peripheral/scb.rs +++ b/src/peripheral/scb.rs @@ -305,8 +305,8 @@ impl VectActive { #[cfg(not(armv6m))] mod scb_consts { - pub const SCB_CCR_IC_MASK: u32 = (1 << 17); - pub const SCB_CCR_DC_MASK: u32 = (1 << 16); + pub const SCB_CCR_IC_MASK: u32 = 1 << 17; + pub const SCB_CCR_DC_MASK: u32 = 1 << 16; } #[cfg(not(armv6m))] @@ -314,105 +314,119 @@ use self::scb_consts::*; #[cfg(not(armv6m))] impl SCB { - /// Enables I-Cache if currently disabled + /// Enables I-cache if currently disabled. + /// + /// This operation first invalidates the entire I-cache. #[inline] pub fn enable_icache(&mut self) { - // Don't do anything if ICache is already enabled + // Don't do anything if I-cache is already enabled if Self::icache_enabled() { return; } - // NOTE(unsafe) All CBP registers are write-only and stateless + // NOTE(unsafe): No races as all CBP registers are write-only and stateless let mut cbp = unsafe { CBP::new() }; - // Invalidate I-Cache + // Invalidate I-cache cbp.iciallu(); - // Enable I-Cache + // Enable I-cache + // NOTE(unsafe): We have synchronised access by &mut self unsafe { self.ccr.modify(|r| r | SCB_CCR_IC_MASK) }; crate::asm::dsb(); crate::asm::isb(); } - /// Disables I-Cache if currently enabled + /// Disables I-cache if currently enabled. + /// + /// This operation invalidates the entire I-cache after disabling. #[inline] pub fn disable_icache(&mut self) { - // Don't do anything if ICache is already disabled + // Don't do anything if I-cache is already disabled if !Self::icache_enabled() { return; } - // NOTE(unsafe) All CBP registers are write-only and stateless + // NOTE(unsafe): No races as all CBP registers are write-only and stateless let mut cbp = unsafe { CBP::new() }; - // Disable I-Cache + // Disable I-cache + // NOTE(unsafe): We have synchronised access by &mut self unsafe { self.ccr.modify(|r| r & !SCB_CCR_IC_MASK) }; - // Invalidate I-Cache + // Invalidate I-cache cbp.iciallu(); crate::asm::dsb(); crate::asm::isb(); } - /// Returns whether the I-Cache is currently enabled - #[inline] + /// Returns whether the I-cache is currently enabled. + #[inline(always)] pub fn icache_enabled() -> bool { crate::asm::dsb(); crate::asm::isb(); - // NOTE(unsafe) atomic read with no side effects + // NOTE(unsafe): atomic read with no side effects unsafe { (*Self::ptr()).ccr.read() & SCB_CCR_IC_MASK == SCB_CCR_IC_MASK } } - /// Invalidates I-Cache + /// Invalidates the entire I-cache. #[inline] pub fn invalidate_icache(&mut self) { - // NOTE(unsafe) All CBP registers are write-only and stateless + // NOTE(unsafe): No races as all CBP registers are write-only and stateless let mut cbp = unsafe { CBP::new() }; - // Invalidate I-Cache + // Invalidate I-cache cbp.iciallu(); crate::asm::dsb(); crate::asm::isb(); } - /// Enables D-cache if currently disabled + /// Enables D-cache if currently disabled. + /// + /// This operation first invalidates the entire D-cache, ensuring it does + /// not contain stale values before being enabled. #[inline] pub fn enable_dcache(&mut self, cpuid: &mut CPUID) { - // Don't do anything if DCache is already enabled + // Don't do anything if D-cache is already enabled if Self::dcache_enabled() { return; } - // Invalidate anything currently in the DCache - self.invalidate_dcache(cpuid); + // Invalidate anything currently in the D-cache + unsafe { self.invalidate_dcache(cpuid) }; - // Now turn on the DCache + // Now turn on the D-cache + // NOTE(unsafe): We have synchronised access by &mut self unsafe { self.ccr.modify(|r| r | SCB_CCR_DC_MASK) }; crate::asm::dsb(); crate::asm::isb(); } - /// Disables D-cache if currently enabled + /// Disables D-cache if currently enabled. + /// + /// This operation subsequently cleans and invalidates the entire D-cache, + /// ensuring all contents are safely written back to main memory after disabling. #[inline] pub fn disable_dcache(&mut self, cpuid: &mut CPUID) { - // Don't do anything if DCache is already disabled + // Don't do anything if D-cache is already disabled if !Self::dcache_enabled() { return; } - // Turn off the DCache + // Turn off the D-cache + // NOTE(unsafe): We have synchronised access by &mut self unsafe { self.ccr.modify(|r| r & !SCB_CCR_DC_MASK) }; // Clean and invalidate whatever was left in it self.clean_invalidate_dcache(cpuid); } - /// Returns whether the D-Cache is currently enabled + /// Returns whether the D-cache is currently enabled. #[inline] pub fn dcache_enabled() -> bool { crate::asm::dsb(); @@ -422,20 +436,21 @@ impl SCB { unsafe { (*Self::ptr()).ccr.read() & SCB_CCR_DC_MASK == SCB_CCR_DC_MASK } } - /// Invalidates D-cache + /// Invalidates the entire D-cache. + /// + /// Note that calling this while the dcache is enabled will probably wipe out the + /// stack, depending on optimisations, therefore breaking returning to the call point. /// - /// Note that calling this while the dcache is enabled will probably wipe out your - /// stack, depending on optimisations, breaking returning to the call point. /// It's used immediately before enabling the dcache, but not exported publicly. #[inline] - fn invalidate_dcache(&mut self, cpuid: &mut CPUID) { - // NOTE(unsafe) All CBP registers are write-only and stateless - let mut cbp = unsafe { CBP::new() }; + unsafe fn invalidate_dcache(&mut self, cpuid: &mut CPUID) { + // NOTE(unsafe): No races as all CBP registers are write-only and stateless + let mut cbp = CBP::new(); // Read number of sets and ways let (sets, ways) = cpuid.cache_num_sets_ways(0, CsselrCacheType::DataOrUnified); - // Invalidate entire D-Cache + // Invalidate entire D-cache for set in 0..sets { for way in 0..ways { cbp.dcisw(set, way); @@ -446,10 +461,13 @@ impl SCB { crate::asm::isb(); } - /// Cleans D-cache + /// Cleans the entire D-cache. + /// + /// This function causes everything in the D-cache to be written back to main memory, + /// overwriting whatever is already there. #[inline] pub fn clean_dcache(&mut self, cpuid: &mut CPUID) { - // NOTE(unsafe) All CBP registers are write-only and stateless + // NOTE(unsafe): No races as all CBP registers are write-only and stateless let mut cbp = unsafe { CBP::new() }; // Read number of sets and ways @@ -465,10 +483,14 @@ impl SCB { crate::asm::isb(); } - /// Cleans and invalidates D-cache + /// Cleans and invalidates the entire D-cache. + /// + /// This function causes everything in the D-cache to be written back to main memory, + /// and then marks the entire D-cache as invalid, causing future reads to first fetch + /// from main memory. #[inline] pub fn clean_invalidate_dcache(&mut self, cpuid: &mut CPUID) { - // NOTE(unsafe) All CBP registers are write-only and stateless + // NOTE(unsafe): No races as all CBP registers are write-only and stateless let mut cbp = unsafe { CBP::new() }; // Read number of sets and ways @@ -484,47 +506,175 @@ impl SCB { crate::asm::isb(); } - /// Invalidates D-cache by address + /// Invalidates D-cache by address. + /// + /// * `addr`: The address to invalidate, which must be cache-line aligned. + /// * `size`: Number of bytes to invalidate, which must be a multiple of the cache line size. + /// + /// Invalidates D-cache cache lines, starting from the first line containing `addr`, + /// finishing once at least `size` bytes have been invalidated. + /// + /// Invalidation causes the next read access to memory to be fetched from main memory instead + /// of the cache. + /// + /// # Cache Line Sizes + /// + /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed + /// to 32 bytes, which means `addr` must be 32-byte aligned and `size` must be a multiple + /// of 32. At the time of writing, no other Cortex-M cores have data caches. /// - /// `addr`: the address to invalidate - /// `size`: size of the memory block, in number of bytes + /// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size, + /// other data before or after the desired memory would also be invalidated, which can very + /// easily cause memory corruption and undefined behaviour. /// - /// Invalidates cache starting from the lowest 32-byte aligned address represented by `addr`, - /// in blocks of 32 bytes until at least `size` bytes have been invalidated. + /// # Safety + /// + /// After invalidating, the next read of invalidated data will be from main memory. This may + /// cause recent writes to be lost, potentially including writes that initialized objects. + /// Therefore, this method may cause uninitialized memory or invalid values to be read, + /// resulting in undefined behaviour. You must ensure that main memory contains valid and + /// initialized values before invalidating. + /// + /// `addr` **must** be aligned to the size of the cache lines, and `size` **must** be a + /// multiple of the cache line size, otherwise this function will invalidate other memory, + /// easily leading to memory corruption and undefined behaviour. This precondition is checked + /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid + /// a runtime-dependent `panic!()` call. #[inline] - pub fn invalidate_dcache_by_address(&mut self, addr: usize, size: usize) { + pub unsafe fn invalidate_dcache_by_address(&mut self, addr: usize, size: usize) { // No-op zero sized operations if size == 0 { return; } - // NOTE(unsafe) All CBP registers are write-only and stateless - let mut cbp = unsafe { CBP::new() }; + // NOTE(unsafe): No races as all CBP registers are write-only and stateless + let mut cbp = CBP::new(); + + // dminline is log2(num words), so 2**dminline * 4 gives size in bytes + let dminline = CPUID::cache_dminline(); + let line_size = (1 << dminline) * 4; + + debug_assert!((addr & (line_size - 1)) == 0); + debug_assert!((size & (line_size - 1)) == 0); crate::asm::dsb(); - // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M - const LINESIZE: usize = 32; - let num_lines = ((size - 1) / LINESIZE) + 1; + // Find number of cache lines to invalidate + let num_lines = ((size - 1) / line_size) + 1; - let mut addr = addr & 0xFFFF_FFE0; + // Compute address of first cache line + let mask = 0xFFFF_FFFF - (line_size - 1); + let mut addr = addr & mask; for _ in 0..num_lines { cbp.dcimvac(addr as u32); - addr += LINESIZE; + addr += line_size; } crate::asm::dsb(); crate::asm::isb(); } - /// Cleans D-cache by address + /// Invalidates an object from the D-cache. + /// + /// * `obj`: The object to invalidate. + /// + /// Invalidates D-cache starting from the first cache line containing `obj`, + /// continuing to invalidate cache lines until all of `obj` has been invalidated. + /// + /// Invalidation causes the next read access to memory to be fetched from main memory instead + /// of the cache. + /// + /// # Cache Line Sizes + /// + /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed + /// to 32 bytes, which means `obj` must be 32-byte aligned, and its size must be a multiple + /// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches. + /// + /// If `obj` is not cache-line aligned, or its size is not a multiple of the cache line size, + /// other data before or after the desired memory would also be invalidated, which can very + /// easily cause memory corruption and undefined behaviour. + /// + /// # Safety + /// + /// After invalidating, `obj` will be read from main memory on next access. This may cause + /// recent writes to `obj` to be lost, potentially including the write that initialized it. + /// Therefore, this method may cause uninitialized memory or invalid values to be read, + /// resulting in undefined behaviour. You must ensure that main memory contains a valid and + /// initialized value for T before invalidating `obj`. + /// + /// `obj` **must** be aligned to the size of the cache lines, and its size **must** be a + /// multiple of the cache line size, otherwise this function will invalidate other memory, + /// easily leading to memory corruption and undefined behaviour. This precondition is checked + /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid + /// a runtime-dependent `panic!()` call. + #[inline] + pub unsafe fn invalidate_dcache_by_ref<T>(&mut self, obj: &mut T) { + self.invalidate_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>()); + } + + /// Invalidates a slice from the D-cache. + /// + /// * `slice`: The slice to invalidate. + /// + /// Invalidates D-cache starting from the first cache line containing members of `slice`, + /// continuing to invalidate cache lines until all of `slice` has been invalidated. + /// + /// Invalidation causes the next read access to memory to be fetched from main memory instead + /// of the cache. + /// + /// # Cache Line Sizes + /// + /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed + /// to 32 bytes, which means `slice` must be 32-byte aligned, and its size must be a multiple + /// of 32 bytes. At the time of writing, no other Cortex-M cores have data caches. + /// + /// If `slice` is not cache-line aligned, or its size is not a multiple of the cache line size, + /// other data before or after the desired memory would also be invalidated, which can very + /// easily cause memory corruption and undefined behaviour. + /// + /// # Safety /// - /// `addr`: the address to clean - /// `size`: size of the memory block, in number of bytes + /// After invalidating, `slice` will be read from main memory on next access. This may cause + /// recent writes to `slice` to be lost, potentially including the write that initialized it. + /// Therefore, this method may cause uninitialized memory or invalid values to be read, + /// resulting in undefined behaviour. You must ensure that main memory contains valid and + /// initialized values for T before invalidating `slice`. /// - /// Cleans cache starting from the lowest 32-byte aligned address represented by `addr`, - /// in blocks of 32 bytes until at least `size` bytes have been cleaned. + /// `slice` **must** be aligned to the size of the cache lines, and its size **must** be a + /// multiple of the cache line size, otherwise this function will invalidate other memory, + /// easily leading to memory corruption and undefined behaviour. This precondition is checked + /// in debug builds using a `debug_assert!()`, but not checked in release builds to avoid + /// a runtime-dependent `panic!()` call. + #[inline] + pub unsafe fn invalidate_dcache_by_slice<T>(&mut self, slice: &mut [T]) { + self.invalidate_dcache_by_address( + slice.as_ptr() as usize, + slice.len() * core::mem::size_of::<T>(), + ); + } + + /// Cleans D-cache by address. + /// + /// * `addr`: The address to start cleaning at. + /// * `size`: The number of bytes to clean. + /// + /// Cleans D-cache cache lines, starting from the first line containing `addr`, + /// finishing once at least `size` bytes have been invalidated. + /// + /// Cleaning the cache causes whatever data is present in the cache to be immediately written + /// to main memory, overwriting whatever was in main memory. + /// + /// # Cache Line Sizes + /// + /// Cache line sizes vary by core. For all Cortex-M7 cores, the cache line size is fixed + /// to 32 bytes, which means `addr` should generally be 32-byte aligned and `size` should be a + /// multiple of 32. At the time of writing, no other Cortex-M cores have data caches. + /// + /// If `addr` is not cache-line aligned, or `size` is not a multiple of the cache line size, + /// other data before or after the desired memory will also be cleaned. From the point of view + /// of the core executing this function, memory remains consistent, so this is not unsound, + /// but is worth knowing about. #[inline] pub fn clean_dcache_by_address(&mut self, addr: usize, size: usize) { // No-op zero sized operations @@ -532,34 +682,78 @@ impl SCB { return; } - // NOTE(unsafe) All CBP registers are write-only and stateless + // NOTE(unsafe): No races as all CBP registers are write-only and stateless let mut cbp = unsafe { CBP::new() }; crate::asm::dsb(); - // Cache lines are fixed to 32 bit on Cortex-M7 and not present in earlier Cortex-M - const LINESIZE: usize = 32; - let num_lines = ((size - 1) / LINESIZE) + 1; + let dminline = CPUID::cache_dminline(); + let line_size = (1 << dminline) * 4; + let num_lines = ((size - 1) / line_size) + 1; - let mut addr = addr & 0xFFFF_FFE0; + let mask = 0xFFFF_FFFF - (line_size - 1); + let mut addr = addr & mask; for _ in 0..num_lines { cbp.dccmvac(addr as u32); - addr += LINESIZE; + addr += line_size; } crate::asm::dsb(); crate::asm::isb(); } - /// Cleans and invalidates D-cache by address + /// Cleans an object from the D-cache. /// - /// `addr`: the address to clean and invalidate - /// `size`: size of the memory block, in number of bytes + /// * `obj`: The object to clean. /// - /// Cleans and invalidates cache starting from the lowest 32-byte aligned address represented - /// by `addr`, in blocks of 32 bytes until at least `size` bytes have been cleaned and - /// invalidated. + /// Cleans D-cache starting from the first cache line containing `obj`, + /// continuing to clean cache lines until all of `obj` has been cleaned. + /// + /// It is recommended that `obj` is both aligned to the cache line size and a multiple of + /// the cache line size long, otherwise surrounding data will also be cleaned. + /// + /// Cleaning the cache causes whatever data is present in the cache to be immediately written + /// to main memory, overwriting whatever was in main memory. + #[inline] + pub fn clean_dcache_by_ref<T>(&mut self, obj: &T) { + self.clean_dcache_by_address(obj as *const T as usize, core::mem::size_of::<T>()); + } + + /// Cleans a slice from D-cache. + /// + /// * `slice`: The slice to clean. + /// + /// Cleans D-cache starting from the first cache line containing members of `slice`, + /// continuing to clean cache lines until all of `slice` has been cleaned. + /// + /// It is recommended that `slice` is both aligned to the cache line size and a multiple of + /// the cache line size long, otherwise surrounding data will also be cleaned. + /// + /// Cleaning the cache causes whatever data is present in the cache to be immediately written + /// to main memory, overwriting whatever was in main memory. + #[inline] + pub fn clean_dcache_by_slice<T>(&mut self, slice: &[T]) { + self.clean_dcache_by_address( + slice.as_ptr() as usize, + slice.len() * core::mem::size_of::<T>(), + ); + } + + /// Cleans and invalidates D-cache by address. + /// + /// * `addr`: The address to clean and invalidate. + /// * `size`: The number of bytes to clean and invalidate. + /// + /// Cleans and invalidates D-cache starting from the first cache line containing `addr`, + /// finishing once at least `size` bytes have been cleaned and invalidated. + /// + /// It is recommended that `addr` is aligned to the cache line size and `size` is a multiple of + /// the cache line size, otherwise surrounding data will also be cleaned. + /// + /// Cleaning and invalidating causes data in the D-cache to be written back to main memory, + /// and then marks that data in the D-cache as invalid, causing future reads to first fetch + /// from main memory. #[inline] pub fn clean_invalidate_dcache_by_address(&mut self, addr: usize, size: usize) { // No-op zero sized operations @@ -567,7 +761,7 @@ impl SCB { return; } - // NOTE(unsafe) All CBP registers are write-only and stateless + // NOTE(unsafe): No races as all CBP registers are write-only and stateless let mut cbp = unsafe { CBP::new() }; crate::asm::dsb(); @@ -634,27 +828,6 @@ const SCB_AIRCR_SYSRESETREQ: u32 = 1 << 2; impl SCB { /// Initiate a system reset request to reset the MCU - #[deprecated(since = "0.6.1", note = "Use `SCB::sys_reset`")] - #[inline] - pub fn system_reset(&mut self) -> ! { - crate::asm::dsb(); - unsafe { - self.aircr.modify( - |r| { - SCB_AIRCR_VECTKEY | // otherwise the write is ignored - r & SCB_AIRCR_PRIGROUP_MASK | // keep priority group unchanged - SCB_AIRCR_SYSRESETREQ - }, // set the bit - ) - }; - crate::asm::dsb(); - loop { - // wait for the reset - crate::asm::nop(); // avoid rust-lang/rust#28728 - } - } - - /// Initiate a system reset request to reset the MCU #[inline] pub fn sys_reset() -> ! { crate::asm::dsb(); @@ -730,57 +903,38 @@ impl SCB { /// System handlers, exceptions with configurable priority #[allow(clippy::missing_inline_in_public_items)] #[derive(Clone, Copy, Debug, Eq, PartialEq)] +#[repr(u8)] pub enum SystemHandler { // NonMaskableInt, // priority is fixed // HardFault, // priority is fixed /// Memory management interrupt (not present on Cortex-M0 variants) #[cfg(not(armv6m))] - MemoryManagement, + MemoryManagement = 4, /// Bus fault interrupt (not present on Cortex-M0 variants) #[cfg(not(armv6m))] - BusFault, + BusFault = 5, /// Usage fault interrupt (not present on Cortex-M0 variants) #[cfg(not(armv6m))] - UsageFault, + UsageFault = 6, /// Secure fault interrupt (only on ARMv8-M) #[cfg(any(armv8m, target_arch = "x86_64"))] - SecureFault, + SecureFault = 7, /// SV call interrupt - SVCall, + SVCall = 11, /// Debug monitor interrupt (not present on Cortex-M0 variants) #[cfg(not(armv6m))] - DebugMonitor, + DebugMonitor = 12, /// Pend SV interrupt - PendSV, + PendSV = 14, /// System Tick interrupt - SysTick, -} - -impl SystemHandler { - fn index(self) -> u8 { - match self { - #[cfg(not(armv6m))] - SystemHandler::MemoryManagement => 4, - #[cfg(not(armv6m))] - SystemHandler::BusFault => 5, - #[cfg(not(armv6m))] - SystemHandler::UsageFault => 6, - #[cfg(any(armv8m, target_arch = "x86_64"))] - SystemHandler::SecureFault => 7, - SystemHandler::SVCall => 11, - #[cfg(not(armv6m))] - SystemHandler::DebugMonitor => 12, - SystemHandler::PendSV => 14, - SystemHandler::SysTick => 15, - } - } + SysTick = 15, } impl SCB { @@ -790,18 +944,28 @@ impl SCB { /// [`NVIC.get_priority`](struct.NVIC.html#method.get_priority) for more details. #[inline] pub fn get_priority(system_handler: SystemHandler) -> u8 { - let index = system_handler.index(); + let index = system_handler as u8; #[cfg(not(armv6m))] { // NOTE(unsafe) atomic read with no side effects - unsafe { (*Self::ptr()).shpr[usize::from(index - 4)].read() } + + // NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design. + // TODO: Review it after rust-lang/rust/issues/13926 will be fixed. + let priority_ref = unsafe {(*Self::ptr()).shpr.get_unchecked(usize::from(index - 4))}; + + priority_ref.read() } #[cfg(armv6m)] { // NOTE(unsafe) atomic read with no side effects - let shpr = unsafe { (*Self::ptr()).shpr[usize::from((index - 8) / 4)].read() }; + + // NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design. + // TODO: Review it after rust-lang/rust/issues/13926 will be fixed. + let priority_ref = unsafe {(*Self::ptr()).shpr.get_unchecked(usize::from((index - 8) / 4))}; + + let shpr = priority_ref.read(); let prio = (shpr >> (8 * (index % 4))) & 0x0000_00ff; prio as u8 } @@ -821,16 +985,24 @@ impl SCB { /// [`register::basepri`](../register/basepri/index.html)) and compromise memory safety. #[inline] pub unsafe fn set_priority(&mut self, system_handler: SystemHandler, prio: u8) { - let index = system_handler.index(); + let index = system_handler as u8; #[cfg(not(armv6m))] { - self.shpr[usize::from(index - 4)].write(prio) + // NOTE(unsafe): Index is bounded to [4,15] by SystemHandler design. + // TODO: Review it after rust-lang/rust/issues/13926 will be fixed. + let priority_ref = (*Self::ptr()).shpr.get_unchecked(usize::from(index - 4)); + + priority_ref.write(prio) } #[cfg(armv6m)] { - self.shpr[usize::from((index - 8) / 4)].modify(|value| { + // NOTE(unsafe): Index is bounded to [11,15] by SystemHandler design. + // TODO: Review it after rust-lang/rust/issues/13926 will be fixed. + let priority_ref = (*Self::ptr()).shpr.get_unchecked(usize::from((index - 8) / 4)); + + priority_ref.modify(|value| { let shift = 8 * (index % 4); let mask = 0x0000_00ff << shift; let prio = u32::from(prio) << shift; diff --git a/src/register/mod.rs b/src/register/mod.rs index e7879c5..d69c1a5 100644 --- a/src/register/mod.rs +++ b/src/register/mod.rs @@ -29,35 +29,14 @@ #[cfg(all(not(armv6m), not(armv8m_base)))] pub mod basepri; -#[cfg(armv8m_base)] -#[deprecated( - since = "0.6.2", - note = "basepri is unavailable on thumbv8.base, and will be removed in the next release" -)] -pub mod basepri; - #[cfg(all(not(armv6m), not(armv8m_base)))] pub mod basepri_max; -#[cfg(armv8m_base)] -#[deprecated( - since = "0.6.2", - note = "basepri is unavailable on thumbv8m.base, and will be removed in the next release" -)] -pub mod basepri_max; - pub mod control; #[cfg(all(not(armv6m), not(armv8m_base)))] pub mod faultmask; -#[cfg(armv8m_base)] -#[deprecated( - since = "0.6.2", - note = "faultmask is unavailable on thumbv8m.base, and will be removed in the next release" -)] -pub mod faultmask; - pub mod msp; pub mod primask; |