aboutsummaryrefslogtreecommitdiff
path: root/rtic-monotonics/src/imxrt.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rtic-monotonics/src/imxrt.rs')
-rw-r--r--rtic-monotonics/src/imxrt.rs300
1 files changed, 300 insertions, 0 deletions
diff --git a/rtic-monotonics/src/imxrt.rs b/rtic-monotonics/src/imxrt.rs
new file mode 100644
index 00000000..ee7e2ffe
--- /dev/null
+++ b/rtic-monotonics/src/imxrt.rs
@@ -0,0 +1,300 @@
+//! [`Monotonic`] impl for the i.MX RT.
+//!
+//! # Example
+//!
+//! ```
+//! use rtic_monotonics::imxrt::*;
+//! use rtic_monotonics::imxrt::Gpt1 as Mono;
+//!
+//! fn init() {
+//! // Obtain ownership of the timer register block
+//! let gpt1 = unsafe { imxrt_ral::gpt::GPT1::instance() };
+//!
+//! // Configure the timer clock source and determine its tick rate
+//! let timer_tickrate_hz = 1_000_000;
+//!
+//! // Generate timer token to ensure correct timer interrupt handler is used
+//! let token = rtic_monotonics::create_imxrt_gpt1_token!();
+//!
+//! // Start the monotonic
+//! Mono::start(timer_tickrate_hz, gpt1, token);
+//! }
+//!
+//! async fn usage() {
+//! loop {
+//! // Use the monotonic
+//! let timestamp = Mono::now().ticks();
+//! Mono::delay(100.millis()).await;
+//! }
+//! }
+//! ```
+
+use crate::{Monotonic, TimeoutError, TimerQueue};
+use atomic_polyfill::{compiler_fence, AtomicU32, Ordering};
+pub use fugit::{self, ExtU64};
+
+use imxrt_ral as ral;
+
+const TIMER_HZ: u32 = 1_000_000;
+
+#[doc(hidden)]
+#[macro_export]
+macro_rules! __internal_create_imxrt_timer_interrupt {
+ ($mono_timer:ident, $timer:ident, $timer_token:ident) => {{
+ #[no_mangle]
+ #[allow(non_snake_case)]
+ unsafe extern "C" fn $timer() {
+ $crate::imxrt::$mono_timer::__tq().on_monotonic_interrupt();
+ }
+
+ pub struct $timer_token;
+
+ unsafe impl $crate::InterruptToken<$crate::imxrt::$mono_timer> for $timer_token {}
+
+ $timer_token
+ }};
+}
+
+/// Register GPT1 interrupt for the monotonic.
+#[cfg(feature = "imxrt_gpt1")]
+#[macro_export]
+macro_rules! create_imxrt_gpt1_token {
+ () => {{
+ $crate::__internal_create_imxrt_timer_interrupt!(Gpt1, GPT1, Gpt1Token)
+ }};
+}
+
+/// Register GPT2 interrupt for the monotonic.
+#[cfg(feature = "imxrt_gpt2")]
+#[macro_export]
+macro_rules! create_imxrt_gpt2_token {
+ () => {{
+ $crate::__internal_create_imxrt_timer_interrupt!(Gpt2, GPT2, Gpt2Token)
+ }};
+}
+
+// Credits to the `time-driver` of `embassy-stm32`.
+//
+// Clock timekeeping works with something we call "periods", which are time intervals
+// of 2^31 ticks. The Clock counter value is 32 bits, so one "overflow cycle" is 2 periods.
+//
+// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
+// - `period` and `counter` start at 0
+// - `period` is incremented on overflow (at counter value 0)
+// - `period` is incremented "midway" between overflows (at counter value 0x8000_0000)
+//
+// Therefore, when `period` is even, counter is in 0..0x7FFF_FFFF. When odd, counter is in 0x8000_0000..0xFFFF_FFFF
+// This allows for now() to return the correct value even if it races an overflow.
+//
+// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
+// the expected range for the `period` parity, we're done. If it doesn't, this means that
+// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
+// corresponds to the next period.
+//
+// `period` is a 32bit integer, so it overflows on 2^32 * 2^31 / 1_000_000 seconds of uptime, which is 292471 years.
+fn calc_now(period: u32, counter: u32) -> u64 {
+ (u64::from(period) << 31) + u64::from(counter ^ ((period & 1) << 31))
+}
+
+macro_rules! make_timer {
+ ($mono_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
+ /// Monotonic timer queue implementation.
+ $(
+ #[cfg_attr(docsrs, doc(cfg($($doc)*)))]
+ )?
+
+ pub struct $mono_name;
+
+ use ral::gpt::$timer;
+
+ /// Number of 2^31 periods elapsed since boot.
+ static $period: AtomicU32 = AtomicU32::new(0);
+ static $tq: TimerQueue<$mono_name> = TimerQueue::new();
+
+ impl $mono_name {
+ /// Starts the monotonic timer.
+ /// - `tick_freq_hz`: The tick frequency of the given timer.
+ /// - `gpt`: The GPT timer register block instance.
+ /// - `_interrupt_token`: Required for correct timer interrupt handling.
+ /// This method must be called only once.
+ pub fn start(tick_freq_hz: u32, gpt: $timer, _interrupt_token: impl crate::InterruptToken<Self>) {
+ // Find a prescaler that creates our desired tick frequency
+ let previous_prescaler = ral::read_reg!(ral::gpt, gpt, PR, PRESCALER) + 1;
+ let previous_clock_freq = tick_freq_hz * previous_prescaler;
+ assert!((previous_clock_freq % TIMER_HZ) == 0,
+ "Unable to find a fitting prescaler value!\n Input: {}/{}\n Desired: {}",
+ previous_clock_freq, previous_prescaler, TIMER_HZ);
+ let prescaler = previous_clock_freq / TIMER_HZ;
+ assert!(prescaler > 0);
+ assert!(prescaler <= 4096);
+
+ // Disable the timer.
+ ral::modify_reg!(ral::gpt, gpt, CR, EN: 0);
+ // Clear all status registers.
+ ral::write_reg!(ral::gpt, gpt, SR, 0b11_1111);
+
+ // Base configuration
+ ral::modify_reg!(ral::gpt, gpt, CR,
+ ENMOD: 1, // Clear timer state
+ FRR: 1, // Free-Run mode
+ );
+
+ // Reset period
+ $period.store(0, Ordering::Relaxed);
+
+ // Prescaler
+ ral::modify_reg!(ral::gpt, gpt, PR,
+ PRESCALER: (prescaler - 1), // Scale to our desired clock rate
+ );
+
+ // Enable interrupts
+ ral::write_reg!(ral::gpt, gpt, IR,
+ ROVIE: 1, // Rollover interrupt
+ OF1IE: 1, // Timer compare 1 interrupt (for half-periods)
+ OF2IE: 1, // Timer compare 2 interrupt (for dynamic wakeup)
+ );
+
+ // Configure half-period interrupt
+ ral::write_reg!(ral::gpt, gpt, OCR[0], 0x8000_0000);
+
+ // Dynamic interrupt register; for now initialize to zero
+ // so it gets combined with rollover interrupt
+ ral::write_reg!(ral::gpt, gpt, OCR[1], 0x0000_0000);
+
+ // Enable the timer
+ ral::modify_reg!(ral::gpt, gpt, CR, EN: 1);
+ ral::modify_reg!(ral::gpt, gpt, CR,
+ ENMOD: 0, // Keep state when disabled
+ );
+
+ $tq.initialize(Self {});
+
+ // SAFETY: We take full ownership of the peripheral and interrupt vector,
+ // plus we are not using any external shared resources so we won't impact
+ // basepri/source masking based critical sections.
+ unsafe {
+ crate::set_monotonic_prio(ral::NVIC_PRIO_BITS, ral::Interrupt::$timer);
+ cortex_m::peripheral::NVIC::unmask(ral::Interrupt::$timer);
+ }
+ }
+
+ /// Used to access the underlying timer queue
+ #[doc(hidden)]
+ pub fn __tq() -> &'static TimerQueue<$mono_name> {
+ &$tq
+ }
+
+ /// Delay for some duration of time.
+ #[inline]
+ pub async fn delay(duration: <Self as Monotonic>::Duration) {
+ $tq.delay(duration).await;
+ }
+
+ /// Timeout at a specific time.
+ pub async fn timeout_at<F: core::future::Future>(
+ instant: <Self as rtic_time::Monotonic>::Instant,
+ future: F,
+ ) -> Result<F::Output, TimeoutError> {
+ $tq.timeout_at(instant, future).await
+ }
+
+ /// Timeout after a specific duration.
+ #[inline]
+ pub async fn timeout_after<F: core::future::Future>(
+ duration: <Self as Monotonic>::Duration,
+ future: F,
+ ) -> Result<F::Output, TimeoutError> {
+ $tq.timeout_after(duration, future).await
+ }
+
+ /// Delay to some specific time instant.
+ #[inline]
+ pub async fn delay_until(instant: <Self as Monotonic>::Instant) {
+ $tq.delay_until(instant).await;
+ }
+ }
+
+ #[cfg(feature = "embedded-hal-async")]
+ impl embedded_hal_async::delay::DelayUs for $mono_name {
+ #[inline]
+ async fn delay_us(&mut self, us: u32) {
+ Self::delay((us as u64).micros()).await;
+ }
+
+ #[inline]
+ async fn delay_ms(&mut self, ms: u32) {
+ Self::delay((ms as u64).millis()).await;
+ }
+ }
+
+ impl embedded_hal::delay::DelayUs for $mono_name {
+ fn delay_us(&mut self, us: u32) {
+ let done = Self::now() + (us as u64).micros();
+ while Self::now() < done {}
+ }
+ }
+
+ impl Monotonic for $mono_name {
+ type Instant = fugit::TimerInstantU64<TIMER_HZ>;
+ type Duration = fugit::TimerDurationU64<TIMER_HZ>;
+
+ const ZERO: Self::Instant = Self::Instant::from_ticks(0);
+
+ fn now() -> Self::Instant {
+ let gpt = unsafe{ $timer::instance() };
+
+ // Important: period **must** be read first.
+ let period = $period.load(Ordering::Relaxed);
+ compiler_fence(Ordering::Acquire);
+ let counter = ral::read_reg!(ral::gpt, gpt, CNT);
+
+ Self::Instant::from_ticks(calc_now(period, counter))
+ }
+
+ fn set_compare(instant: Self::Instant) {
+ let gpt = unsafe{ $timer::instance() };
+
+ // Set the timer regardless of whether it is multiple periods in the future,
+ // or even already in the past.
+ // The worst thing that can happen is a spurious wakeup, and with a timer
+ // period of half an hour, this is hardly a problem.
+
+ let ticks = instant.duration_since_epoch().ticks();
+ let ticks_wrapped = ticks as u32;
+
+ ral::write_reg!(ral::gpt, gpt, OCR[1], ticks_wrapped);
+ }
+
+ fn clear_compare_flag() {
+ let gpt = unsafe{ $timer::instance() };
+ ral::write_reg!(ral::gpt, gpt, SR, OF2: 1);
+ }
+
+ fn pend_interrupt() {
+ cortex_m::peripheral::NVIC::pend(ral::Interrupt::$timer);
+ }
+
+ fn on_interrupt() {
+ let gpt = unsafe{ $timer::instance() };
+
+ let (rollover, half_rollover) = ral::read_reg!(ral::gpt, gpt, SR, ROV, OF1);
+
+ if rollover != 0 {
+ $period.fetch_add(1, Ordering::Relaxed);
+ ral::write_reg!(ral::gpt, gpt, SR, ROV: 1);
+ }
+
+ if half_rollover != 0 {
+ $period.fetch_add(1, Ordering::Relaxed);
+ ral::write_reg!(ral::gpt, gpt, SR, OF1: 1);
+ }
+ }
+ }
+ };
+}
+
+#[cfg(feature = "imxrt_gpt1")]
+make_timer!(Gpt1, GPT1, GPT1_HALFPERIODS, GPT1_TQ);
+
+#[cfg(feature = "imxrt_gpt2")]
+make_timer!(Gpt2, GPT2, GPT2_HALFPERIODS, GPT2_TQ);