//! [`Monotonic`] impl for the STM32. //! //! Not all timers are available on all parts. Ensure that only available //! timers are exposed by having the correct `stm32*` feature enabled for `rtic-monotonics`. //! //! # Example //! //! ``` //! use rtic_monotonics::stm32::*; //! use rtic_monotonics::stm32::Tim2 as Mono; //! use rtic_monotonics::Monotonic; //! use embassy_stm32::peripherals::TIM2; //! use embassy_stm32::rcc::low_level::RccPeripheral; //! //! fn init() { //! // Generate timer token to ensure correct timer interrupt handler is used. //! let token = rtic_monotonics::create_stm32_tim2_monotonic_token!(); //! //! // If using `embassy-stm32` HAL, timer clock can be read out like this: //! let timer_clock_hz = TIM2::frequency(); //! // Or define it manually if you are using other HAL or know correct frequency: //! let timer_clock_hz = 64_000_000; //! //! // Start the monotonic //! Mono::start(timer_clock_hz, token); //! } //! //! async fn usage() { //! loop { //! // Use the monotonic //! let timestamp = Mono::now().ticks(); //! Mono::delay(100.millis()).await; //! } //! } //! ``` use crate::{Monotonic, TimeoutError, TimerQueue}; use atomic_polyfill::{compiler_fence, AtomicU64, Ordering}; pub use fugit::{self, ExtU64, ExtU64Ceil}; use stm32_metapac as pac; mod _generated { #![allow(dead_code)] #![allow(unused_imports)] #![allow(non_snake_case)] include!(concat!(env!("OUT_DIR"), "/_generated.rs")); } const TIMER_HZ: u32 = 1_000_000; #[doc(hidden)] #[macro_export] macro_rules! __internal_create_stm32_timer_interrupt { ($mono_timer:ident, $timer:ident, $timer_token:ident) => {{ #[no_mangle] #[allow(non_snake_case)] unsafe extern "C" fn $timer() { $crate::stm32::$mono_timer::__tq().on_monotonic_interrupt(); } pub struct $timer_token; unsafe impl $crate::InterruptToken<$crate::stm32::$mono_timer> for $timer_token {} $timer_token }}; } /// Register TIM2 interrupt for the monotonic. #[cfg(feature = "stm32_tim2")] #[macro_export] macro_rules! create_stm32_tim2_monotonic_token { () => {{ $crate::__internal_create_stm32_timer_interrupt!(Tim2, TIM2, Tim2Token) }}; } /// Register TIM3 interrupt for the monotonic. #[cfg(feature = "stm32_tim3")] #[macro_export] macro_rules! create_stm32_tim3_monotonic_token { () => {{ $crate::__internal_create_stm32_timer_interrupt!(Tim3, TIM3, Tim3Token) }}; } /// Register TIM4 interrupt for the monotonic. #[cfg(feature = "stm32_tim4")] #[macro_export] macro_rules! create_stm32_tim4_monotonic_token { () => {{ $crate::__internal_create_stm32_timer_interrupt!(Tim4, TIM4, Tim4Token) }}; } /// Register TIM5 interrupt for the monotonic. #[cfg(feature = "stm32_tim5")] #[macro_export] macro_rules! create_stm32_tim5_monotonic_token { () => {{ $crate::__internal_create_stm32_timer_interrupt!(Tim5, TIM5, Tim5Token) }}; } /// Register TIM12 interrupt for the monotonic. #[cfg(feature = "stm32_tim12")] #[macro_export] macro_rules! create_stm32_tim12_monotonic_token { () => {{ $crate::__internal_create_stm32_timer_interrupt!(Tim12, TIM12, Tim12Token) }}; } /// Register TIM15 interrupt for the monotonic. #[cfg(feature = "stm32_tim15")] #[macro_export] macro_rules! create_stm32_tim15_monotonic_token { () => {{ $crate::__internal_create_stm32_timer_interrupt!(Tim15, TIM15, Tim15Token) }}; } macro_rules! make_timer { ($mono_name:ident, $timer:ident, $bits:ident, $overflow:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => { /// Monotonic timer queue implementation. $( #[cfg_attr(docsrs, doc(cfg($($doc)*)))] )? pub struct $mono_name; use pac::$timer; static $overflow: AtomicU64 = AtomicU64::new(0); static $tq: TimerQueue<$mono_name> = TimerQueue::new(); impl $mono_name { /// Starts the monotonic timer. /// /// - `tim_clock_hz`: `TIMx` peripheral clock frequency. /// - `_interrupt_token`: Required for correct timer interrupt handling. /// /// This method must be called only once. pub fn start(tim_clock_hz: u32, _interrupt_token: impl crate::InterruptToken) { _generated::$timer::enable(); _generated::$timer::reset(); $timer.cr1().modify(|r| r.set_cen(false)); assert!((tim_clock_hz % TIMER_HZ) == 0, "Unable to find suitable timer prescaler value!"); let psc = tim_clock_hz / TIMER_HZ - 1; $timer.psc().write(|r| r.set_psc(psc as u16)); // Enable full-period interrupt. $timer.dier().modify(|r| r.set_uie(true)); // Configure and enable half-period interrupt $timer.ccr(2).write(|r| r.set_ccr($bits::MAX - ($bits::MAX >> 1))); $timer.dier().modify(|r| r.set_ccie(2, true)); // Trigger an update event to load the prescaler value to the clock. $timer.egr().write(|r| r.set_ug(true)); // The above line raises an update event which will indicate that the timer is already finished. // Since this is not the case, it should be cleared. $timer.sr().modify(|r| r.set_uif(false)); // Start the counter. $timer.cr1().modify(|r| { r.set_cen(true); }); $tq.initialize(Self {}); // SAFETY: We take full ownership of the peripheral and interrupt vector, // plus we are not using any external shared resources so we won't impact // basepri/source masking based critical sections. unsafe { crate::set_monotonic_prio(_generated::NVIC_PRIO_BITS, pac::Interrupt::$timer); cortex_m::peripheral::NVIC::unmask(pac::Interrupt::$timer); } } /// Used to access the underlying timer queue #[doc(hidden)] pub fn __tq() -> &'static TimerQueue<$mono_name> { &$tq } /// Delay for some duration of time. #[inline] pub async fn delay(duration: ::Duration) { $tq.delay(duration).await; } /// Timeout at a specific time. pub async fn timeout_at( instant: ::Instant, future: F, ) -> Result { $tq.timeout_at(instant, future).await } /// Timeout after a specific duration. #[inline] pub async fn timeout_after( duration: ::Duration, future: F, ) -> Result { $tq.timeout_after(duration, future).await } /// Delay to some specific time instant. #[inline] pub async fn delay_until(instant: ::Instant) { $tq.delay_until(instant).await; } } rtic_time::embedded_hal_delay_impl_fugit64!($mono_name); #[cfg(feature = "embedded-hal-async")] rtic_time::embedded_hal_async_delay_impl_fugit64!($mono_name); impl Monotonic for $mono_name { type Instant = fugit::TimerInstantU64; type Duration = fugit::TimerDurationU64; const ZERO: Self::Instant = Self::Instant::from_ticks(0); const TICK_PERIOD: Self::Duration = Self::Duration::from_ticks(1); fn now() -> Self::Instant { // Credits to the `time-driver` of `embassy-stm32`. // For more info, see the `imxrt` driver. fn calc_now(period: u64, counter: $bits) -> u64 { (period << ($bits::BITS - 1)) + u64::from(counter ^ (((period & 1) as $bits) << ($bits::BITS - 1))) } // Important: period **must** be read first. let period = $overflow.load(Ordering::Relaxed); compiler_fence(Ordering::Acquire); let counter = $timer.cnt().read().cnt(); Self::Instant::from_ticks(calc_now(period, counter)) } fn set_compare(instant: Self::Instant) { let now = Self::now(); // Since the timer may or may not overflow based on the requested compare val, we check how many ticks are left. let val = match instant.checked_duration_since(now) { None => 0, // In the past Some(x) if x.ticks() <= ($bits::MAX as u64) => instant.duration_since_epoch().ticks() as $bits, // Will not overflow Some(_x) => 0, // Will overflow }; $timer.ccr(1).write(|r| r.set_ccr(val)); } fn clear_compare_flag() { $timer.sr().modify(|r| r.set_ccif(1, false)); } fn pend_interrupt() { cortex_m::peripheral::NVIC::pend(pac::Interrupt::$timer); } fn enable_timer() { $timer.dier().modify(|r| r.set_ccie(1, true)); } fn disable_timer() { $timer.dier().modify(|r| r.set_ccie(1, false)); } fn on_interrupt() { // Full period if $timer.sr().read().uif() { $timer.sr().modify(|r| r.set_uif(false)); $overflow.fetch_add(1, Ordering::Relaxed); } // Half period if $timer.sr().read().ccif(2) { $timer.sr().modify(|r| r.set_ccif(2, false)); $overflow.fetch_add(1, Ordering::Relaxed); } } } }; } #[cfg(feature = "stm32_tim2")] make_timer!(Tim2, TIM2, u32, TIMER2_OVERFLOWS, TIMER2_TQ); #[cfg(feature = "stm32_tim3")] make_timer!(Tim3, TIM3, u16, TIMER3_OVERFLOWS, TIMER3_TQ); #[cfg(feature = "stm32_tim4")] make_timer!(Tim4, TIM4, u16, TIMER4_OVERFLOWS, TIMER4_TQ); #[cfg(feature = "stm32_tim5")] make_timer!(Tim5, TIM5, u16, TIMER5_OVERFLOWS, TIMER5_TQ); #[cfg(feature = "stm32_tim12")] make_timer!(Tim12, TIM12, u16, TIMER12_OVERFLOWS, TIMER12_TQ); #[cfg(feature = "stm32_tim15")] make_timer!(Tim15, TIM15, u16, TIMER15_OVERFLOWS, TIMER15_TQ);