aboutsummaryrefslogtreecommitdiff
path: root/book/en/src/migration/migration_v5.md
blob: 8edefd2dfb8d3fadd986e4296bc7936459bbf8d9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Migrating from v0.5.x to v0.6.0

This section describes how to upgrade from v0.5.x to v0.6.0 of the RTIC framework.

## `Cargo.toml` - version bump

Change the version of `cortex-m-rtic` to `"0.6.0"`.

## `mod` instead of `const`

With the support of attributes on modules the `const APP` workaround is not needed.

Change

``` rust
#[rtic::app(/* .. */)]
const APP: () = {
  [code here]
};
```

into

``` rust
#[rtic::app(/* .. */)]
mod app {
  [code here]
}
```

Now that a regular Rust module is used it means it is possible to have custom
user code within that module.
Additionally, it means that `use`-statements for resources etc may be required.

## Move Dispatchers from `extern "C"` to app arguments.

Change

``` rust
#[rtic::app(/* .. */)]
const APP: () = {
    [code here]

    // RTIC requires that unused interrupts are declared in an extern block when
    // using software tasks; these free interrupts will be used to dispatch the
    // software tasks.
    extern "C" {
        fn SSI0();
        fn QEI0();
    }
};
```

into

``` rust
#[rtic::app(/* .. */, dispatchers = [SSI0, QEI0])]
mod app {
  [code here]
}
```

This works also for ram functions, see examples/ramfunc.rs


## Init always returns late resources

In order to make the API more symmetric the #[init]-task always returns a late resource.

From this:

``` rust
#[rtic::app(device = lm3s6965)]
mod app {
    #[init]
    fn init(_: init::Context) {
        rtic::pend(Interrupt::UART0);
    }

    // [more code]
}
```

to this:

``` rust
#[rtic::app(device = lm3s6965)]
mod app {
    #[init]
    fn init(_: init::Context) -> init::LateResources {
        rtic::pend(Interrupt::UART0);

        init::LateResources {}
    }

    // [more code]
}
```

## Resources struct - `#[resources]`

Previously the RTIC resources had to be in in a struct named exactly "Resources":

``` rust
struct Resources {
    // Resources defined in here
}
```

With RTIC v0.6.0 the resources struct is annotated similarly like
`#[task]`, `#[init]`, `#[idle]`: with an attribute `#[resources]`

``` rust
#[resources]
struct Resources {
    // Resources defined in here
}
```

In fact, the name of the struct is now up to the developer:

``` rust
#[resources]
struct Whateveryouwant {
    // Resources defined in here
}
```

would work equally well.

## Spawn/schedule from anywhere

With the new "spawn/schedule from anywhere", old code such as:



``` rust
#[task(spawn = [bar])]
fn foo(cx: foo::Context) {
    cx.spawn.bar().unwrap();
}

#[task(schedule = [bar])]
fn bar(cx: bar::Context) {
    cx.schedule.foo(/* ... */).unwrap();
}
```

Will now be written as:

``` rust
#[task]
fn foo(_c: foo::Context) {
    bar::spawn().unwrap();
}

#[task]
fn bar(_c: bar::Context) {
    foo::schedule(/* ... */).unwrap();
}
```

Note that the attributes `spawn` and `schedule` are no longer needed.

## Symmetric locks

Now RTIC utilizes symmetric locks, this means that the `lock` method need to be used for all resource access. In old code one could do the following as the high priority task has exclusive access to the resource:

``` rust
#[task(priority = 2, resources = [r])]
fn foo(cx: foo::Context) {
    cx.resources.r = /* ... */;
}

#[task(resources = [r])]
fn bar(cx: bar::Context) {
    cx.resources.r.lock(|r| r = /* ... */);
}
```

And with symmetric locks one needs to use locks in both tasks:

``` rust
#[task(priority = 2, resources = [r])]
fn foo(cx: foo::Context) {
    cx.resources.r.lock(|r| r = /* ... */);
}

#[task(resources = [r])]
fn bar(cx: bar::Context) {
    cx.resources.r.lock(|r| r = /* ... */);
}
```

Note that the performance does not change thanks to LLVM's optimizations which optimizes away unnecessary locks.

---

## Additions

### Extern tasks

Both software and hardware tasks can now be defined external to the `mod app`. Previously this was possible only by implementing a trampoline calling out the task implementation.

See examples `examples/extern_binds.rs` and `examples/extern_spawn.rs`.