aboutsummaryrefslogtreecommitdiff
path: root/rtic-monotonics/src/imxrt.rs
blob: 5f9fc08873b0ac436936633cb01406803dd0635a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
//! [`Monotonic`] implementations for i.MX RT's GPT peripherals.
//!
//! # Example
//!
//! ```
//! use rtic_monotonics::imxrt::*;
//! use rtic_monotonics::imxrt::Gpt1 as Mono;
//!
//! fn init() {
//!     // Obtain ownership of the timer register block
//!     let gpt1 = unsafe { imxrt_ral::gpt::GPT1::instance() };
//!
//!     // Configure the timer clock source and determine its tick rate
//!     let timer_tickrate_hz = 1_000_000;
//!
//!     // Generate timer token to ensure correct timer interrupt handler is used
//!     let token = rtic_monotonics::create_imxrt_gpt1_token!();
//!
//!     // Start the monotonic
//!     Mono::start(timer_tickrate_hz, gpt1, token);
//! }
//!
//! async fn usage() {
//!     loop {
//!          // Use the monotonic
//!          let timestamp = Mono::now().ticks();
//!          Mono::delay(100.millis()).await;
//!     }
//! }
//! ```

use crate::{Monotonic, TimeoutError, TimerQueue};
use atomic_polyfill::{AtomicU32, Ordering};
pub use fugit::{self, ExtU64, ExtU64Ceil};
use rtic_time::half_period_counter::calculate_now;

use imxrt_ral as ral;

const TIMER_HZ: u32 = 1_000_000;

#[doc(hidden)]
#[macro_export]
macro_rules! __internal_create_imxrt_timer_interrupt {
    ($mono_timer:ident, $timer:ident, $timer_token:ident) => {{
        #[no_mangle]
        #[allow(non_snake_case)]
        unsafe extern "C" fn $timer() {
            $crate::imxrt::$mono_timer::__tq().on_monotonic_interrupt();
        }

        pub struct $timer_token;

        unsafe impl $crate::InterruptToken<$crate::imxrt::$mono_timer> for $timer_token {}

        $timer_token
    }};
}

/// Register the GPT1 interrupt for the monotonic.
#[cfg(feature = "imxrt_gpt1")]
#[macro_export]
macro_rules! create_imxrt_gpt1_token {
    () => {{
        $crate::__internal_create_imxrt_timer_interrupt!(Gpt1, GPT1, Gpt1Token)
    }};
}

/// Register the GPT2 interrupt for the monotonic.
#[cfg(feature = "imxrt_gpt2")]
#[macro_export]
macro_rules! create_imxrt_gpt2_token {
    () => {{
        $crate::__internal_create_imxrt_timer_interrupt!(Gpt2, GPT2, Gpt2Token)
    }};
}

macro_rules! make_timer {
    ($mono_name:ident, $timer:ident, $period:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => {
        /// Timer implementing [`Monotonic`] which runs at 1 MHz.
        $(
            #[cfg_attr(docsrs, doc(cfg($($doc)*)))]
        )?

        pub struct $mono_name;

        use ral::gpt::$timer;

        /// Number of 2^31 periods elapsed since boot.
        static $period: AtomicU32 = AtomicU32::new(0);
        static $tq: TimerQueue<$mono_name> = TimerQueue::new();

        impl $mono_name {
            /// Starts the monotonic timer.
            ///
            /// - `tick_freq_hz`: The tick frequency of the given timer.
            /// - `gpt`: The GPT timer register block instance.
            /// - `_interrupt_token`: Required for correct timer interrupt handling.
            ///
            /// This method must be called only once.
            pub fn start(tick_freq_hz: u32, gpt: $timer, _interrupt_token: impl crate::InterruptToken<Self>) {
                // Find a prescaler that creates our desired tick frequency
                let previous_prescaler = ral::read_reg!(ral::gpt, gpt, PR, PRESCALER) + 1;
                let previous_clock_freq = tick_freq_hz * previous_prescaler;
                assert!((previous_clock_freq % TIMER_HZ) == 0,
                        "Unable to find a fitting prescaler value!\n    Input: {}/{}\n    Desired: {}",
                        previous_clock_freq, previous_prescaler, TIMER_HZ);
                let prescaler = previous_clock_freq / TIMER_HZ;
                assert!(prescaler > 0);
                assert!(prescaler <= 4096);

                // Disable the timer.
                ral::modify_reg!(ral::gpt, gpt, CR, EN: 0);
                // Clear all status registers.
                ral::write_reg!(ral::gpt, gpt, SR, 0b11_1111);

                // Base configuration
                ral::modify_reg!(ral::gpt, gpt, CR,
                    ENMOD: 1,   // Clear timer state
                    FRR: 1,     // Free-Run mode
                );

                // Reset period
                $period.store(0, Ordering::SeqCst);

                // Prescaler
                ral::modify_reg!(ral::gpt, gpt, PR,
                    PRESCALER: (prescaler - 1), // Scale to our desired clock rate
                );

                // Enable interrupts
                ral::write_reg!(ral::gpt, gpt, IR,
                    ROVIE: 1,   // Rollover interrupt
                    OF1IE: 1,   // Timer compare 1 interrupt (for half-periods)
                    OF2IE: 1,   // Timer compare 2 interrupt (for dynamic wakeup)
                );

                // Configure half-period interrupt
                ral::write_reg!(ral::gpt, gpt, OCR[0], 0x8000_0000);

                // Dynamic interrupt register; for now initialize to zero
                // so it gets combined with rollover interrupt
                ral::write_reg!(ral::gpt, gpt, OCR[1], 0x0000_0000);

                // Enable the timer
                ral::modify_reg!(ral::gpt, gpt, CR, EN: 1);
                ral::modify_reg!(ral::gpt, gpt, CR,
                    ENMOD: 0,   // Keep state when disabled
                );

                $tq.initialize(Self {});

                // SAFETY: We take full ownership of the peripheral and interrupt vector,
                // plus we are not using any external shared resources so we won't impact
                // basepri/source masking based critical sections.
                unsafe {
                    crate::set_monotonic_prio(ral::NVIC_PRIO_BITS, ral::Interrupt::$timer);
                    cortex_m::peripheral::NVIC::unmask(ral::Interrupt::$timer);
                }
            }

            /// Used to access the underlying timer queue
            #[doc(hidden)]
            pub fn __tq() -> &'static TimerQueue<$mono_name> {
                &$tq
            }

            /// Delay for some duration of time.
            #[inline]
            pub async fn delay(duration: <Self as Monotonic>::Duration) {
                $tq.delay(duration).await;
            }

            /// Timeout at a specific time.
            pub async fn timeout_at<F: core::future::Future>(
                instant: <Self as rtic_time::Monotonic>::Instant,
                future: F,
            ) -> Result<F::Output, TimeoutError> {
                $tq.timeout_at(instant, future).await
            }

            /// Timeout after a specific duration.
            #[inline]
            pub async fn timeout_after<F: core::future::Future>(
                duration: <Self as Monotonic>::Duration,
                future: F,
            ) -> Result<F::Output, TimeoutError> {
                $tq.timeout_after(duration, future).await
            }

            /// Delay to some specific time instant.
            #[inline]
            pub async fn delay_until(instant: <Self as Monotonic>::Instant) {
                $tq.delay_until(instant).await;
            }
        }

        rtic_time::embedded_hal_delay_impl_fugit64!($mono_name);

        #[cfg(feature = "embedded-hal-async")]
        rtic_time::embedded_hal_async_delay_impl_fugit64!($mono_name);

        impl Monotonic for $mono_name {
            type Instant = fugit::TimerInstantU64<TIMER_HZ>;
            type Duration = fugit::TimerDurationU64<TIMER_HZ>;

            const ZERO: Self::Instant = Self::Instant::from_ticks(0);
            const TICK_PERIOD: Self::Duration = Self::Duration::from_ticks(1);

            fn now() -> Self::Instant {
                let gpt = unsafe{ $timer::instance() };

                Self::Instant::from_ticks(calculate_now(
                    $period.load(Ordering::Relaxed),
                    || ral::read_reg!(ral::gpt, gpt, CNT)
                ))
            }

            fn set_compare(instant: Self::Instant) {
                let gpt = unsafe{ $timer::instance() };

                // Set the timer regardless of whether it is multiple periods in the future,
                // or even already in the past.
                // The worst thing that can happen is a spurious wakeup, and with a timer
                // period of half an hour, this is hardly a problem.

                let ticks = instant.duration_since_epoch().ticks();
                let ticks_wrapped = ticks as u32;

                ral::write_reg!(ral::gpt, gpt, OCR[1], ticks_wrapped);
            }

            fn clear_compare_flag() {
                let gpt = unsafe{ $timer::instance() };
                ral::write_reg!(ral::gpt, gpt, SR, OF2: 1);
            }

            fn pend_interrupt() {
                cortex_m::peripheral::NVIC::pend(ral::Interrupt::$timer);
            }

            fn on_interrupt() {
                let gpt = unsafe{ $timer::instance() };

                let (rollover, half_rollover) = ral::read_reg!(ral::gpt, gpt, SR, ROV, OF1);

                if rollover != 0 {
                    $period.fetch_add(1, Ordering::Relaxed);
                    ral::write_reg!(ral::gpt, gpt, SR, ROV: 1);
                }

                if half_rollover != 0 {
                    $period.fetch_add(1, Ordering::Relaxed);
                    ral::write_reg!(ral::gpt, gpt, SR, OF1: 1);
                }
            }
        }
    };
}

#[cfg(feature = "imxrt_gpt1")]
make_timer!(Gpt1, GPT1, GPT1_HALFPERIODS, GPT1_TQ);

#[cfg(feature = "imxrt_gpt2")]
make_timer!(Gpt2, GPT2, GPT2_HALFPERIODS, GPT2_TQ);