1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
//! Real Time For the Masses (RTFM), a framework for building concurrent
//! applications, for ARM Cortex-M microcontrollers
//!
//! This crate is based on [the RTFM framework] created by the Embedded Systems
//! group at [Luleå University of Technology][ltu], led by Prof. Per Lindgren,
//! and uses a simplified version of the Stack Resource Policy as scheduling
//! policy (check the [references] for details).
//!
//! [the RTFM framework]: http://www.rtfm-lang.org/
//! [ltu]: https://www.ltu.se/?l=en
//! [per]: https://www.ltu.se/staff/p/pln-1.11258?l=en
//! [references]: ./index.html#references
//!
//! # Features
//!
//! - **Event triggered tasks** as the unit of concurrency.
//! - Support for prioritization of tasks and, thus, **preemptive
//! multitasking**.
//! - **Efficient and data race free memory sharing** through fine grained *non
//! global* critical sections.
//! - **Deadlock free execution** guaranteed at compile time.
//! - **Minimal scheduling overhead** as the scheduler has no "software
//! component": the hardware does all the scheduling.
//! - **Highly efficient memory usage**: All the tasks share a single call stack
//! and there's no hard dependency on a dynamic memory allocator.
//! - **All Cortex M devices are fully supported**.
//! - This task model is amenable to known WCET (Worst Case Execution Time)
//! analysis and scheduling analysis techniques. (Though we haven't yet
//! developed Rust friendly tooling for that.)
//!
//! # Constraints
//!
//! - Tasks must run to completion. That's it, tasks can't contain endless
//! loops. However, you can run an endless event loop in the `idle` function.
//!
//! - Task priorities must remain constant at runtime.
//!
//! # Dependencies
//!
//! - A device crate generated using [`svd2rust`] v0.11.x. The input SVD file
//! *must* contain [`<cpu>`] information.
//! - A `start` lang time: Vanilla `main` must be supported in binary crates.
//! You can use the [`cortex-m-rt`] crate to fulfill the requirement
//!
//! [`svd2rust`]: https://docs.rs/svd2rust/0..0/svd2rust/
//! [`<cpu>`]: https://www.keil.com/pack/doc/CMSIS/SVD/html/elem_cpu.html
//! [`cortex-m-rt`]: https://docs.rs/cortex-m-rt/0.3.0/cortex_m_rt/
//!
//! # Examples
//!
//! In increasing grade of complexity, see the [examples](./examples/index.html)
//! module.
#![deny(missing_docs)]
#![deny(warnings)]
#![feature(asm)]
#![feature(const_fn)]
#![feature(optin_builtin_traits)]
#![feature(proc_macro)]
#![no_std]
extern crate cortex_m;
extern crate cortex_m_rtfm_macros;
extern crate static_ref;
pub use cortex_m::asm::{bkpt, wfi};
pub use cortex_m::interrupt::CriticalSection;
pub use cortex_m::interrupt::free as atomic;
pub use cortex_m_rtfm_macros::app;
pub use static_ref::Static;
use cortex_m::interrupt::Nr;
#[cfg(not(armv6m))]
use cortex_m::register::{basepri, basepri_max};
pub mod examples;
/// A resource, a means to share data between tasks
pub trait Resource {
/// The data protected by the resource
type Data;
/// Borrows the resource data for the duration of a *global* critical
/// section
fn borrow<'cs>(
&'cs self,
cs: &'cs CriticalSection,
) -> &'cs Static<Self::Data>;
/// Mutable variant of `borrow`
fn borrow_mut<'cs>(
&'cs mut self,
cs: &'cs CriticalSection,
) -> &'cs mut Static<Self::Data>;
/// Claims the resource data for the span of the closure `f`. For the
/// duration of the closure other tasks that may access the resource data
/// are prevented from preempting the current task.
fn claim<R, F>(&self, t: &mut Threshold, f: F) -> R
where
F: FnOnce(&Static<Self::Data>, &mut Threshold) -> R;
/// Mutable variant of `claim`
fn claim_mut<R, F>(&mut self, t: &mut Threshold, f: F) -> R
where
F: FnOnce(&mut Static<Self::Data>, &mut Threshold) -> R;
}
impl<T> Resource for Static<T> {
type Data = T;
fn borrow<'cs>(&'cs self, _cs: &'cs CriticalSection) -> &'cs Static<T> {
self
}
fn borrow_mut<'cs>(
&'cs mut self,
_cs: &'cs CriticalSection,
) -> &'cs mut Static<T> {
self
}
fn claim<R, F>(&self, t: &mut Threshold, f: F) -> R
where
F: FnOnce(&Static<Self::Data>, &mut Threshold) -> R,
{
f(self, t)
}
fn claim_mut<R, F>(&mut self, t: &mut Threshold, f: F) -> R
where
F: FnOnce(&mut Static<Self::Data>, &mut Threshold) -> R,
{
f(self, t)
}
}
#[doc(hidden)]
pub unsafe fn claim<T, R, F>(
data: T,
ceiling: u8,
nvic_prio_bits: u8,
t: &mut Threshold,
f: F,
) -> R
where
F: FnOnce(T, &mut Threshold) -> R,
{
let max_priority = 1 << nvic_prio_bits;
if ceiling > t.value {
match () {
#[cfg(armv6m)]
() => {
atomic(|_| f(data, &mut Threshold::new(max_priority)))
}
#[cfg(not(armv6m))]
() => {
if ceiling == max_priority {
atomic(|_| f(data, &mut Threshold::new(max_priority)))
} else {
let old = basepri::read();
let hw = (max_priority - ceiling) << (8 - nvic_prio_bits);
basepri_max::write(hw);
let ret = f(data, &mut Threshold::new(ceiling));
basepri::write(old);
ret
}
}
}
} else {
f(data, t)
}
}
/// Preemption threshold token
///
/// The preemption threshold indicates the priority a task must have to preempt
/// the current context. For example a threshold of 2 indicates that only
/// interrupts / exceptions with a priority of 3 or greater can preempt the
/// current context
pub struct Threshold {
value: u8,
}
impl Threshold {
#[doc(hidden)]
pub unsafe fn new(value: u8) -> Self {
Threshold { value }
}
}
impl !Send for Threshold {}
/// Sets an interrupt as pending
pub fn set_pending<I>(interrupt: I)
where
I: Nr,
{
// NOTE(safe) atomic write
let nvic = unsafe { &*cortex_m::peripheral::NVIC.get() };
nvic.set_pending(interrupt);
}
/// Binds a task `$handler` to the interrupt / exception `$NAME`
///
/// This macro takes two arguments: the name of an exception / interrupt and the
/// path to the function that will be used as the task handler. That function
/// must have signature `fn(&mut Threshold, $NAME::Resources)`.
///
/// Optionally, a third argument may be used to declare task local data.
/// The handler will have exclusive access to these *local* variables on each
/// invocation. If the third argument is used then the signature of the handler
/// function must be `fn(&mut Threshold, &mut $locals, $NAME::Resources)`.
#[macro_export]
macro_rules! task {
($NAME:ident, $handler:path) => {
#[allow(non_snake_case)]
#[allow(unsafe_code)]
#[no_mangle]
pub unsafe extern "C" fn $NAME() {
let f: fn(&mut $crate::Threshold, ::$NAME::Resources) = $handler;
f(
&mut $crate::Threshold::new(::$NAME::$NAME),
::$NAME::Resources::new(),
);
}
};
($NAME:ident, $handler:path, $locals:ident {
$(static $var:ident: $ty:ty = $expr:expr;)+
}) => {
#[allow(non_snake_case)]
struct $locals {
$($var: $crate::Static<$ty>,)+
}
#[allow(non_snake_case)]
#[allow(unsafe_code)]
#[no_mangle]
pub unsafe extern "C" fn $NAME() {
let f: fn(
&mut $crate::Threshold,
&mut $locals,
::$NAME::Resources,
) = $handler;
static mut LOCALS: $locals = $locals {
$($var: unsafe { $crate::Static::new($expr) },)+
};
f(
&mut $crate::Threshold::new(::$NAME::$NAME),
&mut LOCALS,
::$NAME::Resources::new(),
);
}
};
}
#[allow(non_camel_case_types)]
#[doc(hidden)]
pub enum Exception {
/// System service call via SWI instruction
SVCALL,
/// Pendable request for system service
PENDSV,
/// System tick timer
SYS_TICK,
}
impl Exception {
#[doc(hidden)]
pub fn nr(&self) -> usize {
match *self {
Exception::SVCALL => 11,
Exception::PENDSV => 14,
Exception::SYS_TICK => 15,
}
}
}
|