diff options
author | 2024-02-23 22:20:50 -0800 | |
---|---|---|
committer | 2024-02-23 22:20:50 -0800 | |
commit | 9b2ac979ef4f2f679a3efdfeff786e697c066cd3 (patch) | |
tree | 67f4d068c522782c9708f07fffbf4f57661ef931 | |
parent | e1d130be7d7792d28df5d231e90f3202f8e33faa (diff) | |
parent | 51c3bba43a508786100e3d9a6f396aaf1a820529 (diff) | |
download | CS105MiniProject-9b2ac979ef4f2f679a3efdfeff786e697c066cd3.tar.gz CS105MiniProject-9b2ac979ef4f2f679a3efdfeff786e697c066cd3.tar.zst CS105MiniProject-9b2ac979ef4f2f679a3efdfeff786e697c066cd3.zip |
Merge pull request #27 from ansg191/stacked-bar
Adds stacked bars
-rw-r--r-- | CS105MiniProject.ipynb | 225 |
1 files changed, 187 insertions, 38 deletions
diff --git a/CS105MiniProject.ipynb b/CS105MiniProject.ipynb index 7d983cb..2bbfd79 100644 --- a/CS105MiniProject.ipynb +++ b/CS105MiniProject.ipynb @@ -31,15 +31,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:10.428394Z", - "start_time": "2024-02-24T05:38:10.392848Z" + "end_time": "2024-02-24T06:19:10.685764Z", + "start_time": "2024-02-24T06:19:10.663631Z" } }, "outputs": [ { "data": { - "text/plain": " What is your current class standing? What is your age? \\\n0 Senior 23+ \n1 Junior 20 \n2 Junior 23+ \n3 Senior 23+ \n4 Graduate 22 \n.. ... ... \n255 Junior 21 \n256 NaN 21 \n257 Senior 21 \n258 Sophomore 21 \n259 Sophomore 18 \n\n Who do you live with? \\\n0 Neither \n1 Both \n2 Friends \n3 Neither \n4 Neither \n.. ... \n255 Friends \n256 Family \n257 Family \n258 Family \n259 Friends \n\n Do you currently live in a house, apartment, or dorm? \\\n0 House \n1 Apartment \n2 House \n3 Apartment \n4 Apartment \n.. ... \n255 House \n256 Apartment \n257 House \n258 Apartment \n259 Dorm \n\n How many people live in your household? \\\n0 6 \n1 4 \n2 4 \n3 1 \n4 1 \n.. ... \n255 5 \n256 North District 4 bed 2 bath \n257 9 \n258 4 \n259 3 (room), 8 (hall), ~70 (building) \n\n What was your GPA your very first quarter at UCR? Do you currently work? \\\n0 2.73 Yes \n1 3.7 No \n2 3.75 No \n3 3.81 No \n4 3.23 Yes \n.. ... ... \n255 4 Yes \n256 3.5 No \n257 3.7 No \n258 3 Yes \n259 4 No \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n1 NaN \n2 NaN \n3 NaN \n4 10 - 20 \n.. ... \n255 10 - 20 \n256 NaN \n257 1 - 5 \n258 5 - 10 \n259 NaN \n\n Do you work on or off campus? \\\n0 Off-campus \n1 NaN \n2 NaN \n3 NaN \n4 Off-campus \n.. ... \n255 On-campus \n256 NaN \n257 Off-campus \n258 On-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n0 No \n1 NaN \n2 NaN \n3 No \n4 Yes \n.. ... \n255 No \n256 NaN \n257 No \n258 No \n259 NaN \n\n Do you have roommates that are part of your major? \n0 No \n1 Yes \n2 No \n3 No \n4 No \n.. ... \n255 No \n256 No \n257 No \n258 No \n259 Yes \n\n[260 rows x 11 columns]", - "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>What is your current class standing?</th>\n <th>What is your age?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>What was your GPA your very first quarter at UCR?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>2.73</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>1</th>\n <td>Junior</td>\n <td>20</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.7</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>Junior</td>\n <td>23+</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>3.75</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.81</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>Graduate</td>\n <td>22</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.23</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>255</th>\n <td>Junior</td>\n <td>21</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>4</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>256</th>\n <td>NaN</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>North District 4 bed 2 bath</td>\n <td>3.5</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>Senior</td>\n <td>21</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>3.7</td>\n <td>No</td>\n <td>1 - 5</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>Sophomore</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>Sophomore</td>\n <td>18</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3 (room), 8 (hall), ~70 (building)</td>\n <td>4</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>260 rows × 11 columns</p>\n</div>" + "text/plain": " Timestamp What is your current class standing? \\\n0 2/9/2024 20:12:14 Senior \n1 2/9/2024 20:16:34 Junior \n2 2/9/2024 20:18:55 Junior \n3 2/9/2024 20:24:00 Senior \n4 2/9/2024 20:26:16 Graduate \n.. ... ... \n255 2/14/2024 19:46:28 Junior \n256 2/15/2024 0:28:38 NaN \n257 2/15/2024 8:33:45 Senior \n258 2/15/2024 16:10:40 Sophomore \n259 2/15/2024 16:14:11 Sophomore \n\n What is your age? Who do you live with? \\\n0 23+ Neither \n1 20 Both \n2 23+ Friends \n3 23+ Neither \n4 22 Neither \n.. ... ... \n255 21 Friends \n256 21 Family \n257 21 Family \n258 21 Family \n259 18 Friends \n\n Do you currently live in a house, apartment, or dorm? \\\n0 House \n1 Apartment \n2 House \n3 Apartment \n4 Apartment \n.. ... \n255 House \n256 Apartment \n257 House \n258 Apartment \n259 Dorm \n\n How many people live in your household? \\\n0 6 \n1 4 \n2 4 \n3 1 \n4 1 \n.. ... \n255 5 \n256 North District 4 bed 2 bath \n257 9 \n258 4 \n259 3 (room), 8 (hall), ~70 (building) \n\n What was your GPA your very first quarter at UCR? \\\n0 2.73 \n1 3.7 \n2 3.75 \n3 3.81 \n4 3.23 \n.. ... \n255 4 \n256 3.5 \n257 3.7 \n258 3 \n259 4 \n\n What are your career plans right after graduation? Do you currently work? \\\n0 Get into the Job Industry Yes \n1 Get into the Job Industry No \n2 If no job go to graduate school No \n3 Not Sure Yet No \n4 Get into the Job Industry Yes \n.. ... ... \n255 Get into the Job Industry Yes \n256 Get into the Job Industry No \n257 Attend Grad School No \n258 Get into the Job Industry Yes \n259 Attend Grad School No \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n1 NaN \n2 NaN \n3 NaN \n4 10 - 20 \n.. ... \n255 10 - 20 \n256 NaN \n257 1 - 5 \n258 5 - 10 \n259 NaN \n\n Do you work on or off campus? \\\n0 Off-campus \n1 NaN \n2 NaN \n3 NaN \n4 Off-campus \n.. ... \n255 On-campus \n256 NaN \n257 Off-campus \n258 On-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n0 No \n1 NaN \n2 NaN \n3 No \n4 Yes \n.. ... \n255 No \n256 NaN \n257 No \n258 No \n259 NaN \n\n Do you have family members who have careers related to your career aspirations? \\\n0 No family in related fields/careers \n1 No family in related fields/careers \n2 1 person in my immediate family (parent/legal ... \n3 No family in related fields/careers \n4 1 person in my immediate family (parent/legal ... \n.. ... \n255 1 person in my immediate family (parent/legal ... \n256 1 person in my immediate family (parent/legal ... \n257 No family in related fields/careers \n258 No family in related fields/careers \n259 1 person in my immediate family (parent/legal ... \n\n Do you have roommates that are part of your major? \n0 No \n1 Yes \n2 No \n3 No \n4 No \n.. ... \n255 No \n256 No \n257 No \n258 No \n259 Yes \n\n[260 rows x 14 columns]", + "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Timestamp</th>\n <th>What is your current class standing?</th>\n <th>What is your age?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>What was your GPA your very first quarter at UCR?</th>\n <th>What are your career plans right after graduation?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have family members who have careers related to your career aspirations?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2/9/2024 20:12:14</td>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>2.73</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2/9/2024 20:16:34</td>\n <td>Junior</td>\n <td>20</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.7</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No family in related fields/careers</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2/9/2024 20:18:55</td>\n <td>Junior</td>\n <td>23+</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>3.75</td>\n <td>If no job go to graduate school</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2/9/2024 20:24:00</td>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.81</td>\n <td>Not Sure Yet</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2/9/2024 20:26:16</td>\n <td>Graduate</td>\n <td>22</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.23</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>255</th>\n <td>2/14/2024 19:46:28</td>\n <td>Junior</td>\n <td>21</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>4</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>256</th>\n <td>2/15/2024 0:28:38</td>\n <td>NaN</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>North District 4 bed 2 bath</td>\n <td>3.5</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>2/15/2024 8:33:45</td>\n <td>Senior</td>\n <td>21</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>3.7</td>\n <td>Attend Grad School</td>\n <td>No</td>\n <td>1 - 5</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>2/15/2024 16:10:40</td>\n <td>Sophomore</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>2/15/2024 16:14:11</td>\n <td>Sophomore</td>\n <td>18</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3 (room), 8 (hall), ~70 (building)</td>\n <td>4</td>\n <td>Attend Grad School</td>\n <td>No</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>260 rows × 14 columns</p>\n</div>" }, "execution_count": 1, "metadata": {}, @@ -58,7 +58,7 @@ "df = pd.read_csv(\"data.csv\")\n", "\n", "# Select relevant columns\n", - "df = df.iloc[:, [2, 3, 7, 8, 9, 34, 58, 59, 60, 61, 26]]\n", + "df = df.iloc[:, [0, 2, 3, 7, 8, 9, 34, 55, 58, 59, 60, 61, 62, 26]]\n", "df" ] }, @@ -79,15 +79,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:10.445114Z", - "start_time": "2024-02-24T05:38:10.429806Z" + "end_time": "2024-02-24T06:19:10.697650Z", + "start_time": "2024-02-24T06:19:10.686423Z" } }, "outputs": [ { "data": { - "text/plain": " What is your current class standing? What is your age? \\\n0 Senior 23+ \n1 Junior 20 \n2 Junior 23+ \n3 Senior 23+ \n4 Graduate 22 \n.. ... ... \n255 Junior 21 \n256 NaN 21 \n257 Senior 21 \n258 Sophomore 21 \n259 Sophomore 18 \n\n Who do you live with? \\\n0 Neither \n1 Both \n2 Friends \n3 Neither \n4 Neither \n.. ... \n255 Friends \n256 Family \n257 Family \n258 Family \n259 Friends \n\n Do you currently live in a house, apartment, or dorm? \\\n0 House \n1 Apartment \n2 House \n3 Apartment \n4 Apartment \n.. ... \n255 House \n256 Apartment \n257 House \n258 Apartment \n259 Dorm \n\n How many people live in your household? \\\n0 6 \n1 4 \n2 4 \n3 1 \n4 1 \n.. ... \n255 5 \n256 4 \n257 9 \n258 4 \n259 3 \n\n What was your GPA your very first quarter at UCR? Do you currently work? \\\n0 2.73 Yes \n1 3.70 No \n2 3.75 No \n3 3.81 No \n4 3.23 Yes \n.. ... ... \n255 4.00 Yes \n256 3.50 No \n257 3.70 No \n258 3.00 Yes \n259 4.00 No \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n1 0 \n2 0 \n3 0 \n4 10 - 20 \n.. ... \n255 10 - 20 \n256 0 \n257 0 \n258 5 - 10 \n259 0 \n\n Do you work on or off campus? \\\n0 Off-campus \n1 NaN \n2 NaN \n3 NaN \n4 Off-campus \n.. ... \n255 On-campus \n256 NaN \n257 Off-campus \n258 On-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n0 No \n1 NaN \n2 NaN \n3 NaN \n4 Yes \n.. ... \n255 No \n256 NaN \n257 NaN \n258 No \n259 NaN \n\n Do you have roommates that are part of your major? \n0 No \n1 Yes \n2 No \n3 No \n4 No \n.. ... \n255 No \n256 No \n257 No \n258 No \n259 Yes \n\n[260 rows x 11 columns]", - "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>What is your current class standing?</th>\n <th>What is your age?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>What was your GPA your very first quarter at UCR?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>2.73</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>1</th>\n <td>Junior</td>\n <td>20</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.70</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>Junior</td>\n <td>23+</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>3.75</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.81</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>Graduate</td>\n <td>22</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.23</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>255</th>\n <td>Junior</td>\n <td>21</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>4.00</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>256</th>\n <td>NaN</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.50</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>Senior</td>\n <td>21</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>3.70</td>\n <td>No</td>\n <td>0</td>\n <td>Off-campus</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>Sophomore</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.00</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>Sophomore</td>\n <td>18</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3</td>\n <td>4.00</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>260 rows × 11 columns</p>\n</div>" + "text/plain": " Timestamp What is your current class standing? \\\n0 2/9/2024 20:12:14 Senior \n1 2/9/2024 20:16:34 Junior \n2 2/9/2024 20:18:55 Junior \n3 2/9/2024 20:24:00 Senior \n4 2/9/2024 20:26:16 Graduate \n.. ... ... \n255 2/14/2024 19:46:28 Junior \n256 2/15/2024 0:28:38 NaN \n257 2/15/2024 8:33:45 Senior \n258 2/15/2024 16:10:40 Sophomore \n259 2/15/2024 16:14:11 Sophomore \n\n What is your age? Who do you live with? \\\n0 23+ Neither \n1 20 Both \n2 23+ Friends \n3 23+ Neither \n4 22 Neither \n.. ... ... \n255 21 Friends \n256 21 Family \n257 21 Family \n258 21 Family \n259 18 Friends \n\n Do you currently live in a house, apartment, or dorm? \\\n0 House \n1 Apartment \n2 House \n3 Apartment \n4 Apartment \n.. ... \n255 House \n256 Apartment \n257 House \n258 Apartment \n259 Dorm \n\n How many people live in your household? \\\n0 6 \n1 4 \n2 4 \n3 1 \n4 1 \n.. ... \n255 5 \n256 4 \n257 9 \n258 4 \n259 3 \n\n What was your GPA your very first quarter at UCR? \\\n0 2.73 \n1 3.70 \n2 3.75 \n3 3.81 \n4 3.23 \n.. ... \n255 4.00 \n256 3.50 \n257 3.70 \n258 3.00 \n259 4.00 \n\n What are your career plans right after graduation? Do you currently work? \\\n0 Get into the Job Industry Yes \n1 Get into the Job Industry No \n2 If no job go to graduate school No \n3 Not Sure Yet No \n4 Get into the Job Industry Yes \n.. ... ... \n255 Get into the Job Industry Yes \n256 Get into the Job Industry No \n257 Attend Grad School No \n258 Get into the Job Industry Yes \n259 Attend Grad School No \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n1 0 \n2 0 \n3 0 \n4 10 - 20 \n.. ... \n255 10 - 20 \n256 0 \n257 0 \n258 5 - 10 \n259 0 \n\n Do you work on or off campus? \\\n0 Off-campus \n1 NaN \n2 NaN \n3 NaN \n4 Off-campus \n.. ... \n255 On-campus \n256 NaN \n257 Off-campus \n258 On-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n0 No \n1 NaN \n2 NaN \n3 NaN \n4 Yes \n.. ... \n255 No \n256 NaN \n257 NaN \n258 No \n259 NaN \n\n Do you have family members who have careers related to your career aspirations? \\\n0 No family in related fields/careers \n1 No family in related fields/careers \n2 1 person in my immediate family (parent/legal ... \n3 No family in related fields/careers \n4 1 person in my immediate family (parent/legal ... \n.. ... \n255 1 person in my immediate family (parent/legal ... \n256 1 person in my immediate family (parent/legal ... \n257 No family in related fields/careers \n258 No family in related fields/careers \n259 1 person in my immediate family (parent/legal ... \n\n Do you have roommates that are part of your major? \n0 No \n1 Yes \n2 No \n3 No \n4 No \n.. ... \n255 No \n256 No \n257 No \n258 No \n259 Yes \n\n[260 rows x 14 columns]", + "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Timestamp</th>\n <th>What is your current class standing?</th>\n <th>What is your age?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>What was your GPA your very first quarter at UCR?</th>\n <th>What are your career plans right after graduation?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have family members who have careers related to your career aspirations?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2/9/2024 20:12:14</td>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>2.73</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2/9/2024 20:16:34</td>\n <td>Junior</td>\n <td>20</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.70</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No family in related fields/careers</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2/9/2024 20:18:55</td>\n <td>Junior</td>\n <td>23+</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>3.75</td>\n <td>If no job go to graduate school</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2/9/2024 20:24:00</td>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.81</td>\n <td>Not Sure Yet</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2/9/2024 20:26:16</td>\n <td>Graduate</td>\n <td>22</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.23</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>255</th>\n <td>2/14/2024 19:46:28</td>\n <td>Junior</td>\n <td>21</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>4.00</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>256</th>\n <td>2/15/2024 0:28:38</td>\n <td>NaN</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.50</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>2/15/2024 8:33:45</td>\n <td>Senior</td>\n <td>21</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>3.70</td>\n <td>Attend Grad School</td>\n <td>No</td>\n <td>0</td>\n <td>Off-campus</td>\n <td>NaN</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>2/15/2024 16:10:40</td>\n <td>Sophomore</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.00</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>2/15/2024 16:14:11</td>\n <td>Sophomore</td>\n <td>18</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3</td>\n <td>4.00</td>\n <td>Attend Grad School</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>260 rows × 14 columns</p>\n</div>" }, "execution_count": 2, "metadata": {}, @@ -140,15 +140,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:10.456195Z", - "start_time": "2024-02-24T05:38:10.447401Z" + "end_time": "2024-02-24T06:19:10.705920Z", + "start_time": "2024-02-24T06:19:10.699096Z" } }, "outputs": [ { "data": { - "text/plain": " What is your current class standing? What is your age? \\\n0 Senior 23+ \n4 Graduate 22 \n8 Junior 20 \n9 Senior 22 \n13 Junior 21 \n.. ... ... \n246 Graduate 23+ \n247 Senior 21 \n252 Junior 20 \n255 Junior 21 \n258 Sophomore 21 \n\n Who do you live with? \\\n0 Neither \n4 Neither \n8 Friends \n9 Family \n13 Family \n.. ... \n246 Family \n247 Friends \n252 Family \n255 Friends \n258 Family \n\n Do you currently live in a house, apartment, or dorm? \\\n0 House \n4 Apartment \n8 House \n9 House \n13 Apartment \n.. ... \n246 House \n247 Apartment \n252 House \n255 House \n258 Apartment \n\n How many people live in your household? \\\n0 6 \n4 1 \n8 6 \n9 5 \n13 4 \n.. ... \n246 2 \n247 3 \n252 5 \n255 5 \n258 4 \n\n What was your GPA your very first quarter at UCR? Do you currently work? \\\n0 2.73 Yes \n4 3.23 Yes \n8 3.40 Yes \n9 NaN Yes \n13 3.50 Yes \n.. ... ... \n246 4.00 Yes \n247 3.60 Yes \n252 3.50 Yes \n255 4.00 Yes \n258 3.00 Yes \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n4 10 - 20 \n8 10 - 20 \n9 1 - 5 \n13 10 - 20 \n.. ... \n246 10 - 20 \n247 20 - 40 \n252 20 - 40 \n255 10 - 20 \n258 5 - 10 \n\n Do you work on or off campus? \\\n0 Off-campus \n4 Off-campus \n8 On-campus \n9 On-campus \n13 Off-campus \n.. ... \n246 On-campus \n247 Off-campus \n252 Off-campus \n255 On-campus \n258 On-campus \n\n Do you work in a department related to your major? \\\n0 No \n4 Yes \n8 No \n9 No \n13 No \n.. ... \n246 Yes \n247 No \n252 No \n255 No \n258 No \n\n Do you have roommates that are part of your major? \n0 No \n4 No \n8 No \n9 No \n13 No \n.. ... \n246 No \n247 Yes \n252 No \n255 No \n258 No \n\n[77 rows x 11 columns]", - "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>What is your current class standing?</th>\n <th>What is your age?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>What was your GPA your very first quarter at UCR?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>2.73</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>Graduate</td>\n <td>22</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.23</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>No</td>\n </tr>\n <tr>\n <th>8</th>\n <td>Junior</td>\n <td>20</td>\n <td>Friends</td>\n <td>House</td>\n <td>6</td>\n <td>3.40</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>9</th>\n <td>Senior</td>\n <td>22</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>NaN</td>\n <td>Yes</td>\n <td>1 - 5</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>13</th>\n <td>Junior</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.50</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>246</th>\n <td>Graduate</td>\n <td>23+</td>\n <td>Family</td>\n <td>House</td>\n <td>2</td>\n <td>4.00</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>Yes</td>\n <td>No</td>\n </tr>\n <tr>\n <th>247</th>\n <td>Senior</td>\n <td>21</td>\n <td>Friends</td>\n <td>Apartment</td>\n <td>3</td>\n <td>3.60</td>\n <td>Yes</td>\n <td>20 - 40</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>252</th>\n <td>Junior</td>\n <td>20</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>3.50</td>\n <td>Yes</td>\n <td>20 - 40</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>255</th>\n <td>Junior</td>\n <td>21</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>4.00</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>Sophomore</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.00</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No</td>\n </tr>\n </tbody>\n</table>\n<p>77 rows × 11 columns</p>\n</div>" + "text/plain": " Timestamp What is your current class standing? \\\n0 2/9/2024 20:12:14 Senior \n4 2/9/2024 20:26:16 Graduate \n8 2/9/2024 22:02:49 Junior \n9 2/9/2024 22:08:43 Senior \n13 2/9/2024 22:15:13 Junior \n.. ... ... \n246 2/13/2024 19:37:02 Graduate \n247 2/13/2024 21:39:14 Senior \n252 2/14/2024 9:48:12 Junior \n255 2/14/2024 19:46:28 Junior \n258 2/15/2024 16:10:40 Sophomore \n\n What is your age? Who do you live with? \\\n0 23+ Neither \n4 22 Neither \n8 20 Friends \n9 22 Family \n13 21 Family \n.. ... ... \n246 23+ Family \n247 21 Friends \n252 20 Family \n255 21 Friends \n258 21 Family \n\n Do you currently live in a house, apartment, or dorm? \\\n0 House \n4 Apartment \n8 House \n9 House \n13 Apartment \n.. ... \n246 House \n247 Apartment \n252 House \n255 House \n258 Apartment \n\n How many people live in your household? \\\n0 6 \n4 1 \n8 6 \n9 5 \n13 4 \n.. ... \n246 2 \n247 3 \n252 5 \n255 5 \n258 4 \n\n What was your GPA your very first quarter at UCR? \\\n0 2.73 \n4 3.23 \n8 3.40 \n9 NaN \n13 3.50 \n.. ... \n246 4.00 \n247 3.60 \n252 3.50 \n255 4.00 \n258 3.00 \n\n What are your career plans right after graduation? Do you currently work? \\\n0 Get into the Job Industry Yes \n4 Get into the Job Industry Yes \n8 Get into the Job Industry Yes \n9 Not Sure Yet Yes \n13 Attend Grad School Yes \n.. ... ... \n246 Get into the Job Industry Yes \n247 Get into the Job Industry Yes \n252 Get into the Job Industry Yes \n255 Get into the Job Industry Yes \n258 Get into the Job Industry Yes \n\n How many hours do you work per week on average? \\\n0 5 - 10 \n4 10 - 20 \n8 10 - 20 \n9 1 - 5 \n13 10 - 20 \n.. ... \n246 10 - 20 \n247 20 - 40 \n252 20 - 40 \n255 10 - 20 \n258 5 - 10 \n\n Do you work on or off campus? \\\n0 Off-campus \n4 Off-campus \n8 On-campus \n9 On-campus \n13 Off-campus \n.. ... \n246 On-campus \n247 Off-campus \n252 Off-campus \n255 On-campus \n258 On-campus \n\n Do you work in a department related to your major? \\\n0 No \n4 Yes \n8 No \n9 No \n13 No \n.. ... \n246 Yes \n247 No \n252 No \n255 No \n258 No \n\n Do you have family members who have careers related to your career aspirations? \\\n0 No family in related fields/careers \n4 1 person in my immediate family (parent/legal ... \n8 No family in related fields/careers \n9 No family in related fields/careers \n13 Extended family (Aunts, uncles, cousins) \n.. ... \n246 1 person in my immediate family (parent/legal ... \n247 No family in related fields/careers \n252 No family in related fields/careers \n255 1 person in my immediate family (parent/legal ... \n258 No family in related fields/careers \n\n Do you have roommates that are part of your major? \n0 No \n4 No \n8 No \n9 No \n13 No \n.. ... \n246 No \n247 Yes \n252 No \n255 No \n258 No \n\n[77 rows x 14 columns]", + "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Timestamp</th>\n <th>What is your current class standing?</th>\n <th>What is your age?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>What was your GPA your very first quarter at UCR?</th>\n <th>What are your career plans right after graduation?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have family members who have careers related to your career aspirations?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2/9/2024 20:12:14</td>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>House</td>\n <td>6</td>\n <td>2.73</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2/9/2024 20:26:16</td>\n <td>Graduate</td>\n <td>22</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.23</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>Yes</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>8</th>\n <td>2/9/2024 22:02:49</td>\n <td>Junior</td>\n <td>20</td>\n <td>Friends</td>\n <td>House</td>\n <td>6</td>\n <td>3.40</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>9</th>\n <td>2/9/2024 22:08:43</td>\n <td>Senior</td>\n <td>22</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>NaN</td>\n <td>Not Sure Yet</td>\n <td>Yes</td>\n <td>1 - 5</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>13</th>\n <td>2/9/2024 22:15:13</td>\n <td>Junior</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.50</td>\n <td>Attend Grad School</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>Extended family (Aunts, uncles, cousins)</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>246</th>\n <td>2/13/2024 19:37:02</td>\n <td>Graduate</td>\n <td>23+</td>\n <td>Family</td>\n <td>House</td>\n <td>2</td>\n <td>4.00</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>Yes</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>247</th>\n <td>2/13/2024 21:39:14</td>\n <td>Senior</td>\n <td>21</td>\n <td>Friends</td>\n <td>Apartment</td>\n <td>3</td>\n <td>3.60</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>20 - 40</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>252</th>\n <td>2/14/2024 9:48:12</td>\n <td>Junior</td>\n <td>20</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>3.50</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>20 - 40</td>\n <td>Off-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>255</th>\n <td>2/14/2024 19:46:28</td>\n <td>Junior</td>\n <td>21</td>\n <td>Friends</td>\n <td>House</td>\n <td>5</td>\n <td>4.00</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>10 - 20</td>\n <td>On-campus</td>\n <td>No</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>258</th>\n <td>2/15/2024 16:10:40</td>\n <td>Sophomore</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.00</td>\n <td>Get into the Job Industry</td>\n <td>Yes</td>\n <td>5 - 10</td>\n <td>On-campus</td>\n <td>No</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n </tbody>\n</table>\n<p>77 rows × 14 columns</p>\n</div>" }, "execution_count": 3, "metadata": {}, @@ -170,15 +170,15 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:10.466309Z", - "start_time": "2024-02-24T05:38:10.456960Z" + "end_time": "2024-02-24T06:19:10.712944Z", + "start_time": "2024-02-24T06:19:10.706544Z" } }, "outputs": [ { "data": { - "text/plain": " What is your current class standing? What is your age? \\\n1 Junior 20 \n2 Junior 23+ \n3 Senior 23+ \n5 Junior 21 \n6 Sophomore 19 \n.. ... ... \n253 Senior 21 \n254 Junior 19 \n256 NaN 21 \n257 Senior 21 \n259 Sophomore 18 \n\n Who do you live with? \\\n1 Both \n2 Friends \n3 Neither \n5 Both \n6 Friends \n.. ... \n253 Family \n254 Family \n256 Family \n257 Family \n259 Friends \n\n Do you currently live in a house, apartment, or dorm? \\\n1 Apartment \n2 House \n3 Apartment \n5 Apartment \n6 Apartment \n.. ... \n253 House \n254 House \n256 Apartment \n257 House \n259 Dorm \n\n How many people live in your household? \\\n1 4 \n2 4 \n3 1 \n5 4 \n6 4 \n.. ... \n253 6 \n254 5 \n256 4 \n257 9 \n259 3 \n\n What was your GPA your very first quarter at UCR? Do you currently work? \\\n1 3.70 No \n2 3.75 No \n3 3.81 No \n5 4.00 No \n6 4.00 No \n.. ... ... \n253 4.00 No \n254 3.80 No \n256 3.50 No \n257 3.70 No \n259 4.00 No \n\n How many hours do you work per week on average? \\\n1 0 \n2 0 \n3 0 \n5 0 \n6 0 \n.. ... \n253 0 \n254 0 \n256 0 \n257 0 \n259 0 \n\n Do you work on or off campus? \\\n1 NaN \n2 NaN \n3 NaN \n5 NaN \n6 NaN \n.. ... \n253 NaN \n254 NaN \n256 NaN \n257 Off-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n1 NaN \n2 NaN \n3 NaN \n5 NaN \n6 NaN \n.. ... \n253 NaN \n254 NaN \n256 NaN \n257 NaN \n259 NaN \n\n Do you have roommates that are part of your major? \n1 Yes \n2 No \n3 No \n5 No \n6 No \n.. ... \n253 No \n254 Yes \n256 No \n257 No \n259 Yes \n\n[183 rows x 11 columns]", - "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>What is your current class standing?</th>\n <th>What is your age?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>What was your GPA your very first quarter at UCR?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1</th>\n <td>Junior</td>\n <td>20</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.70</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>Junior</td>\n <td>23+</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>3.75</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.81</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>5</th>\n <td>Junior</td>\n <td>21</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>4.00</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>6</th>\n <td>Sophomore</td>\n <td>19</td>\n <td>Friends</td>\n <td>Apartment</td>\n <td>4</td>\n <td>4.00</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>253</th>\n <td>Senior</td>\n <td>21</td>\n <td>Family</td>\n <td>House</td>\n <td>6</td>\n <td>4.00</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>254</th>\n <td>Junior</td>\n <td>19</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>3.80</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>256</th>\n <td>NaN</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.50</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>Senior</td>\n <td>21</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>3.70</td>\n <td>No</td>\n <td>0</td>\n <td>Off-campus</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>Sophomore</td>\n <td>18</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3</td>\n <td>4.00</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>183 rows × 11 columns</p>\n</div>" + "text/plain": " Timestamp What is your current class standing? \\\n1 2/9/2024 20:16:34 Junior \n2 2/9/2024 20:18:55 Junior \n3 2/9/2024 20:24:00 Senior \n5 2/9/2024 20:45:09 Junior \n6 2/9/2024 21:55:59 Sophomore \n.. ... ... \n253 2/14/2024 13:45:45 Senior \n254 2/14/2024 16:26:06 Junior \n256 2/15/2024 0:28:38 NaN \n257 2/15/2024 8:33:45 Senior \n259 2/15/2024 16:14:11 Sophomore \n\n What is your age? Who do you live with? \\\n1 20 Both \n2 23+ Friends \n3 23+ Neither \n5 21 Both \n6 19 Friends \n.. ... ... \n253 21 Family \n254 19 Family \n256 21 Family \n257 21 Family \n259 18 Friends \n\n Do you currently live in a house, apartment, or dorm? \\\n1 Apartment \n2 House \n3 Apartment \n5 Apartment \n6 Apartment \n.. ... \n253 House \n254 House \n256 Apartment \n257 House \n259 Dorm \n\n How many people live in your household? \\\n1 4 \n2 4 \n3 1 \n5 4 \n6 4 \n.. ... \n253 6 \n254 5 \n256 4 \n257 9 \n259 3 \n\n What was your GPA your very first quarter at UCR? \\\n1 3.70 \n2 3.75 \n3 3.81 \n5 4.00 \n6 4.00 \n.. ... \n253 4.00 \n254 3.80 \n256 3.50 \n257 3.70 \n259 4.00 \n\n What are your career plans right after graduation? Do you currently work? \\\n1 Get into the Job Industry No \n2 If no job go to graduate school No \n3 Not Sure Yet No \n5 Get into the Job Industry No \n6 Get into the Job Industry No \n.. ... ... \n253 Get into the Job Industry No \n254 Get into the Job Industry No \n256 Get into the Job Industry No \n257 Attend Grad School No \n259 Attend Grad School No \n\n How many hours do you work per week on average? \\\n1 0 \n2 0 \n3 0 \n5 0 \n6 0 \n.. ... \n253 0 \n254 0 \n256 0 \n257 0 \n259 0 \n\n Do you work on or off campus? \\\n1 NaN \n2 NaN \n3 NaN \n5 NaN \n6 NaN \n.. ... \n253 NaN \n254 NaN \n256 NaN \n257 Off-campus \n259 NaN \n\n Do you work in a department related to your major? \\\n1 NaN \n2 NaN \n3 NaN \n5 NaN \n6 NaN \n.. ... \n253 NaN \n254 NaN \n256 NaN \n257 NaN \n259 NaN \n\n Do you have family members who have careers related to your career aspirations? \\\n1 No family in related fields/careers \n2 1 person in my immediate family (parent/legal ... \n3 No family in related fields/careers \n5 2 or more in my immediate family (parents/lega... \n6 NaN \n.. ... \n253 Extended family (Aunts, uncles, cousins) \n254 No family in related fields/careers \n256 1 person in my immediate family (parent/legal ... \n257 No family in related fields/careers \n259 1 person in my immediate family (parent/legal ... \n\n Do you have roommates that are part of your major? \n1 Yes \n2 No \n3 No \n5 No \n6 No \n.. ... \n253 No \n254 Yes \n256 No \n257 No \n259 Yes \n\n[183 rows x 14 columns]", + "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Timestamp</th>\n <th>What is your current class standing?</th>\n <th>What is your age?</th>\n <th>Who do you live with?</th>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th>How many people live in your household?</th>\n <th>What was your GPA your very first quarter at UCR?</th>\n <th>What are your career plans right after graduation?</th>\n <th>Do you currently work?</th>\n <th>How many hours do you work per week on average?</th>\n <th>Do you work on or off campus?</th>\n <th>Do you work in a department related to your major?</th>\n <th>Do you have family members who have careers related to your career aspirations?</th>\n <th>Do you have roommates that are part of your major?</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1</th>\n <td>2/9/2024 20:16:34</td>\n <td>Junior</td>\n <td>20</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.70</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No family in related fields/careers</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2/9/2024 20:18:55</td>\n <td>Junior</td>\n <td>23+</td>\n <td>Friends</td>\n <td>House</td>\n <td>4</td>\n <td>3.75</td>\n <td>If no job go to graduate school</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2/9/2024 20:24:00</td>\n <td>Senior</td>\n <td>23+</td>\n <td>Neither</td>\n <td>Apartment</td>\n <td>1</td>\n <td>3.81</td>\n <td>Not Sure Yet</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>5</th>\n <td>2/9/2024 20:45:09</td>\n <td>Junior</td>\n <td>21</td>\n <td>Both</td>\n <td>Apartment</td>\n <td>4</td>\n <td>4.00</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>2 or more in my immediate family (parents/lega...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>6</th>\n <td>2/9/2024 21:55:59</td>\n <td>Sophomore</td>\n <td>19</td>\n <td>Friends</td>\n <td>Apartment</td>\n <td>4</td>\n <td>4.00</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>253</th>\n <td>2/14/2024 13:45:45</td>\n <td>Senior</td>\n <td>21</td>\n <td>Family</td>\n <td>House</td>\n <td>6</td>\n <td>4.00</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>Extended family (Aunts, uncles, cousins)</td>\n <td>No</td>\n </tr>\n <tr>\n <th>254</th>\n <td>2/14/2024 16:26:06</td>\n <td>Junior</td>\n <td>19</td>\n <td>Family</td>\n <td>House</td>\n <td>5</td>\n <td>3.80</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>No family in related fields/careers</td>\n <td>Yes</td>\n </tr>\n <tr>\n <th>256</th>\n <td>2/15/2024 0:28:38</td>\n <td>NaN</td>\n <td>21</td>\n <td>Family</td>\n <td>Apartment</td>\n <td>4</td>\n <td>3.50</td>\n <td>Get into the Job Industry</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>No</td>\n </tr>\n <tr>\n <th>257</th>\n <td>2/15/2024 8:33:45</td>\n <td>Senior</td>\n <td>21</td>\n <td>Family</td>\n <td>House</td>\n <td>9</td>\n <td>3.70</td>\n <td>Attend Grad School</td>\n <td>No</td>\n <td>0</td>\n <td>Off-campus</td>\n <td>NaN</td>\n <td>No family in related fields/careers</td>\n <td>No</td>\n </tr>\n <tr>\n <th>259</th>\n <td>2/15/2024 16:14:11</td>\n <td>Sophomore</td>\n <td>18</td>\n <td>Friends</td>\n <td>Dorm</td>\n <td>3</td>\n <td>4.00</td>\n <td>Attend Grad School</td>\n <td>No</td>\n <td>0</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>1 person in my immediate family (parent/legal ...</td>\n <td>Yes</td>\n </tr>\n </tbody>\n</table>\n<p>183 rows × 14 columns</p>\n</div>" }, "execution_count": 4, "metadata": {}, @@ -206,8 +206,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:10.699027Z", - "start_time": "2024-02-24T05:38:10.468100Z" + "end_time": "2024-02-24T06:19:10.895599Z", + "start_time": "2024-02-24T06:19:10.713548Z" } }, "outputs": [ @@ -277,8 +277,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:11.115799Z", - "start_time": "2024-02-24T05:38:10.717858Z" + "end_time": "2024-02-24T06:19:11.134307Z", + "start_time": "2024-02-24T06:19:10.902740Z" } }, "id": "c533e52f7d64a4df", @@ -320,8 +320,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:11.239245Z", - "start_time": "2024-02-24T05:38:11.116471Z" + "end_time": "2024-02-24T06:19:11.314257Z", + "start_time": "2024-02-24T06:19:11.136170Z" } }, "id": "450665f2272bb3a2", @@ -365,8 +365,8 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:11.368629Z", - "start_time": "2024-02-24T05:38:11.241156Z" + "end_time": "2024-02-24T06:19:11.453484Z", + "start_time": "2024-02-24T06:19:11.316819Z" } }, "id": "1a704a4702ea3f9c", @@ -389,6 +389,155 @@ "id": "cb1fd8e56d403466" }, { + "cell_type": "code", + "outputs": [ + { + "data": { + "text/plain": "<Figure size 3000x1500 with 1 Axes>", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACUYAAATCCAYAAAB7Da7cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzda4xeBb3v8f88M7udXkDaqW2wCipoGHooljbxJHa/IvSAG2OFYFAjJN4wJ9KcgzuSQoR6QSxyso9IdgRME3ZCvBBBvCDba04EIybFllOEhqIbseBmKG2AXm3nOS+66XF2rfaZDrPG3/p83j1r1prnP8lkPf8X36ynr9vtdgsAAAAAAAAAACBIp+kBAAAAAAAAAAAAJpowCgAAAAAAAAAAiCOMAgAAAAAAAAAA4gijAAAAAAAAAACAOMIoAAAAAAAAAAAgjjAKAAAAAAAAAACII4wCAAAAAAAAAADiCKMAAAAAAAAAAIA4wigAAAAAAAAAACCOMAoAAAAAAAAAAIgz0PQAf822bS9Wt9v0FEBb9fVVDQ0d514EALSanQgAwE4EAFBlJwKmhpfvRUdjyodR3W65oQKNcy8CALATAQBU2YkAAKrsRMDfDl+lBwAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQJxxh1H79u2r888/vx588MEjnvPrX/+6LrroojrzzDPrwgsvrE2bNo337QAAAAAAAAAAAI7auMKovXv31hVXXFGPP/74Ec/ZtWtXfeQjH6lly5bVXXfdVUuWLKnLLrusdu3aNe5hAQAAAAAAAAAAjkbPYdSWLVvq3e9+d/3ud7/7i+fde++9NX369PrEJz5Rp5xySl199dU1a9asuu+++8Y9LAAAAAAAAAAAwNHoOYz65S9/WW9961vr61//+l88b+PGjbV06dLq6+urqqq+vr4666yzasOGDeMaFAAAAAAAAAAA4GgN9HrBe9/73qM6b2RkpE499dQxx4aGhv7i1+/9Of/RVcG4dDp9h+I8GI+X/30GBjrV7TY7C3+7ut1ujY76BwKaZS/iWNiJmAh2ImAqsBNxLOxETBR7EdA0OxHHwk7ERLETcSx6+RjrOYw6Wrt3765p06aNOTZt2rTat29fT79naOi4iRyLlumOdquvY7Hj2J1wwqymR+BvmHsRMBW4FzER7EQcC/chYCpwL2Ii2Ik4Vu5FQNMOdLvVL4ziGNmJOFbuRUyWVyyMmj59+mER1L59+2pwcLCn37Nt24tKU8alv79Tc+bMqm1fe6z2P7ur6XGAlhqYP7OGLj6ttm/fWQcOjDY9DtBS9iKgaXYiYCqwEwFTgb0IaNrLO9F///WT9fjOPU2PA7TUm2YN1j+ffrKdiHHr6zv6By29YmHUggUL6rnnnhtz7Lnnnqv58+f39Hu63RJGcUz2P7ur/vj0zqbHAPB5BjTOXgRMBXYioGl2ImCqsBcBTXp85576vy/tbnoMADsRr7jOK/WLzzzzzPrVr35V3f/4L+52u/XQQw/VmWee+Uq9JQAAAAAAAAAAQFVNcBg1MjJSe/YcfOTiueeeWy+88EJdd911tWXLlrruuutq9+7ddd55503kWwIAAAAAAAAAABxmQsOo5cuX17333ltVVbNnz65bbrml1q9fXxdccEFt3Lixbr311po5c+ZEviUAAAAAAAAAAMBhBo7l4s2bN//F14sXL6677777WN4CAAAAAAAAAACgZxP6xCgAAAAAAAAAAICpQBgFAAAAAAAAAADEEUYBAAAAAAAAAABxBpoeAAAAAAAAAIDJ86ZZg02PALSYexCTSRgFAAAAAAAA0BIHut3659NPbnoMoOUOdLtNj0BLCKMAAAAAAAAAWqK/r6+2PPG/as/up5oeBWipwRmvq1NP+XjTY9ASwigAAAAAAACAFnl+2/+pF196pOkxgJY6bvaiKmEUk6TT9AAAAAAAAAAAAAATTRgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHEGmh4AAAAAAAAAgMkzc9YpTY8AtJh7EJNJGAUAAAAAAADQEt3ugfovi/6p6TGAlut2DzQ9Ai0hjAIAAAAAAABoib6+/vrxj39cO3bsaHoUoKVOOOGEOvvss5seg5YQRgEAAAAAAAC0yJYtW+qZZ55pegygpU488URhFJOm0/QAAAAAAAAAAAAAE00YBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxBpoeAAAAAAAAAIDJM2/evKZHAFrMPYjJJIwCAAAAAAAAaInR0dG68MILmx4DaLnR0dGmR6AlhFEAAAAAAAAALdHpdGrHv/62Djy/p+lRgJbqnztYJ/y3NzQ9Bi0hjAIAAAAAAABokb2bt9cfn97Z9BhAS/3da2ZVCaOYJJ2mBwAAAAAAAAAAAJhowigAAAAAAAAAACCOMAoAAAAAAAAAAIgjjAIAAAAAAAAAAOIIowAAAAAAAAAAgDjCKAAAAAAAAAAAII4wCgAAAAAAAAAAiCOMAgAAAAAAAAAA4gijAAAAAAAAAACAOMIoAAAAAAAAAAAgjjAKAAAAAAAAAACII4wCAAAAAAAAAADiCKMAAAAAAAAAAIA4wigAAAAAAAAAACCOMAoAAAAAAAAAAIgjjAIAAAAAAAAAAOIIowAAAAAAAAAAgDjCKAAAAAAAAAAAII4wCgAAAAAAAAAAiCOMAgAAAAAAAAAA4gijAAAAAAAAAACAOMIoAAAAAAAAAAAgjjAKAAAAAAAAAACII4wCAAAAAAAAAADiCKMAAAAAAAAAAIA4wigAAAAAAAAAACCOMAoAAAAAAAAAAIgjjAIAAAAAAAAAAOIIowAAAAAAAAAAgDjCKAAAAAAAAAAAII4wCgAAAAAAAAAAiCOMAgAAAAAAAAAA4gijAAAAAAAAAACAOMIoAAAAAAAAAAAgzkDTA8ArbWD+zKZHAFrMPQgAAAAAAACgGcIoonVHuzV08WlNjwG0XHe02/QIAAAAAAAAAK0jjCJaX6evnv2n/11/3Pr7pkcBWurvFr625v/P/9H0GAAAAAAAAACtI4wi3s6f/az2/PrXTY8BtNTg6adXCaMAAAAAAAAAJl2n6QEAAAAAAAAAAAAmmjAKAAAAAAAAAACII4wCAAAAAAAAAADiCKMAAAAAAAAAAIA4A00PAAAATI6B+TObHgFoKfcfAAAAAKAJwigAAGiB7mi3hi4+rekxgBbrjnabHgEAAAAAaBlhFAAAtEBfp69ueuim2vrS1qZHAVpo4eyFteqsVU2PAQAAAAC0jDAKAABa4v6t99ejzz/a9BhACw3PHRZGAQAAAACTrtP0AAAAAAAAAAAAABNNGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQJyBpgeAV9q0N76x6RGAFnMPAgAAAAAAAGiGMIpo3QMHauGNX2h6DKDlugcOND0CAAAAAAAAQOsIo4jW199fNz10U219aWvTowAttXD2wlp11qqmxwAAAAAAAABoHWEU8e7fen89+vyjTY8BtNTw3GFhFAAAAAAAAEADOk0PAAAAAAAAAAAAMNGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQZ6DpAQAAAAAAAACYPAPzZzY9AtBi7kFMJmEUAAAAAAAAQEt0R7s1dPFpTY8BtFx3tNv0CLSEMAoAAAAAAACgJfo6ffWzr/1LvfDsvzc9CtBSx89fUH9/8SVNj0FLCKMAAAAAAAAAWuTfNqyvZ3/7RNNjAC01/w2nCKOYNJ2mBwAAAAAAAAAAAJhowigAAAAAAAAAACCOMAoAAAAAAAAAAIgjjAIAAAAAAAAAAOIIowAAAAAAAAAAgDjCKAAAAAAAAAAAIE7PYdTevXvrqquuqmXLltXy5ctr3bp1Rzz3hz/8YZ133nm1ZMmSes973lOPPPLIMQ0LAAAAAAAAAABwNHoOo2644YbatGlT3X777XXttdfWzTffXPfdd99h5z3++OP18Y9/vC677LK65557anh4uC677LLavXv3hAwOAAAAAAAAAABwJD2FUbt27ao777yzrr766lq0aFGdc8459aEPfajuuOOOw8594IEH6tRTT62VK1fWSSedVFdccUWNjIzUli1bJmx4AAAAAAAAAACAP6enMOqxxx6r/fv315IlSw4dW7p0aW3cuLFGR0fHnHvCCSfUli1bav369TU6Olp33XVXzZ49u0466aSJmRwAAAAAAAAAAOAIBno5eWRkpObMmVPTpk07dGzevHm1d+/e2rFjR82dO/fQ8be//e31k5/8pN773vdWf39/dTqduuWWW+pVr3pVTwP29fV0OgBMWT7TAADsRAAAL7MXAQDYiRifXv5vegqjdu/ePSaKqqpDr/ft2zfm+Pbt22tkZKSuueaaOvPMM+urX/1qrV69uu6+++4aGho66vccGjqulxEBYEqaM2dW0yMAADTOTgQAcJC9CADATsTk6CmMmj59+mEB1MuvBwcHxxy/8cYb681vfnO9733vq6qqz3zmM3XeeefVN7/5zfrIRz5y1O+5bduL1e32MiUc1N/fcSMFpozt23fWgQOjf/1EgFeAvQiYKuxEQJPsRMBUYi8CmmInAqYSOxHj1dd39A9a6imMWrBgQW3fvr32799fAwMHLx0ZGanBwcE6/vjjx5z7yCOP1Pvf//5DrzudTp122mn19NNP9/KW1e2WMAqACD7PAADsRAAAL7MXAQDYiXjldXo5eXh4uAYGBmrDhg2Hjq1fv77OOOOM6nTG/qr58+fXE088MebYb3/723rta187/mkBAAAAAAAAAACOQk9h1IwZM2rlypW1Zs2aevjhh+tHP/pRrVu3ri655JKqOvj0qD179lRV1bvf/e76xje+Ud/61rfqySefrBtvvLGefvrpete73jXxfwUAAAAAAAAAAMCf6Omr9KqqVq9eXWvWrKlLL720Zs+eXZdffnmtWLGiqqqWL19e119/fV1wwQX19re/vXbu3Fm33HJL/eEPf6jh4eG6/fbba2hoaML/CAAAAAAAAAAAgD/Vcxg1Y8aMWrt2ba1du/awn23evHnM64suuqguuuii8U8HAAAAAAAAAAAwDj19lR4AAAAAAAAAAMDfgp6fGAUAAAAAAADA3665C1/X9AhAi7kHMZmEUQAAAAAAAAAtMTp6oP7h8n9segyg5UZHDzQ9Ai0hjAIAAAAAAABoiU6nv35xzxP1wnO7mx4FaKnj582o//rOU5oeg5YQRgEAAAAAAAC0yJObttVzT73U9BhAS8173WxhFJOm0/QAAAAAAAAAAAAAE00YBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEGWh6AAAAAACAyTIwf2bTIwAt5h4EAACTSxgFAAAAALRCd7RbQxef1vQYQMt1R7tNjwBQc0+c1fQIQIu5BzGZhFEAAAAAQCv0dfrqZ1/7l3rh2X9vehSgpY6fv6D+/uJLmh4DaLnR0W6d84FFTY8BtNyoWJxJIowCAAAAAFrj3zasr2d/+0TTYwAtNf8NpwijgMZ1On1100M31daXtjY9CtBSC2cvrFVnrWp6DFpCGAUAAAAAAADQIvdvvb8eff7RpscAWmp47rAwiknTaXoAAAAAAAAAAACAiSaMAgAAAAAAAAAA4gijAAAAAAAAAACAOMIoAAAAAAAAAAAgjjAKAAAAAAAAAACII4wCAAAAAAAAAADiCKMAAAAAAAAAAIA4wigAAAAAAAAAACCOMAoAAAAAAAAAAIgjjAIAAAAAAAAAAOIIowAAAAAAAAAAgDjCKAAAAAAAAAAAII4wCgAAAAAAAAAAiCOMAgAAAAAAAAAA4gijAAAAAAAAAACAOMIoAAAAAAAAAAAgjjAKAAAAAAAAAACII4wCAAAAAAAAAADiCKMAAAAAAAAAAIA4A00PAAAAAAAwWeYufF3TIwAt5h4EAACTSxgFAAAAALTC6OiB+ofL/7HpMYCWGx090PQIAADQGsIoAAAAAKAVOp3+uumhm2rrS1ubHgVoqYWzF9aqs1Y1PQYAALSGMAoAAAAAaI37t95fjz7/aNNjAC01PHdYGAUAAJOo0/QAAAAAAAAAAAAAE00YBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEKfnMGrv3r111VVX1bJly2r58uW1bt26I567efPmes973lOLFy+ud7zjHfWLX/zimIYFAAAAAAAAAAA4Gj2HUTfccENt2rSpbr/99rr22mvr5ptvrvvuu++w81588cX6wAc+UKeeemp95zvfqXPOOac+9rGP1bZt2yZkcAAAAAAAAAAAgCPpKYzatWtX3XnnnXX11VfXokWL6pxzzqkPfehDdccddxx27t13310zZ86sNWvW1Mknn1yrVq2qk08+uTZt2jRhwwMAAAAAAAAAAPw5A72c/Nhjj9X+/ftryZIlh44tXbq0vvzlL9fo6Gh1Ov+/s/rlL39ZZ599dvX39x869s1vfnMCRgYAAAAAAAAAAPjLegqjRkZGas6cOTVt2rRDx+bNm1d79+6tHTt21Ny5cw8df+qpp2rx4sX1yU9+sn7yk5/UwoUL68orr6ylS5f2NGBfX0+nA8CU5TMNAMBOBADwMnsRAICdiPHp5f+mpzBq9+7dY6Koqjr0et++fWOO79q1q2699da65JJL6rbbbqvvfe979cEPfrC+//3v14knnnjU7zk0dFwvIwLAlDRnzqymRwAAaJydCADgIHsRAICdiMnRUxg1ffr0wwKol18PDg6OOd7f31/Dw8O1atWqqqo6/fTT64EHHqh77rmnPvrRjx71e27b9mJ1u71MCQf193fcSIEpY/v2nXXgwGjTYwAtZS8Cpgo7EdAkOxEwldiLgKbYiYCpxE7EePX1Hf2DlnoKoxYsWFDbt2+v/fv318DAwUtHRkZqcHCwjj/++DHnvvrVr643vvGNY469/vWvr2eeeaaXt6xut4RRAETweQYAYCcCAHiZvQgAwE7EK6/Ty8nDw8M1MDBQGzZsOHRs/fr1dcYZZ1SnM/ZXveUtb6nNmzePOfab3/ymFi5cOP5pAQAAAAAAAAAAjkJPYdSMGTNq5cqVtWbNmnr44YfrRz/6Ua1bt64uueSSqjr49Kg9e/ZUVdXFF19cmzdvri996Uv15JNP1he/+MV66qmn6p3vfOfE/xUAAAAAAAAAAAB/oqcwqqpq9erVtWjRorr00kvrU5/6VF1++eW1YsWKqqpavnx53XvvvVVVtXDhwvrKV75SP/3pT+v888+vn/70p3XrrbfWggULJvYvAAAAAAAAAAAA+E8Ger1gxowZtXbt2lq7du1hP/vPX523dOnSuuuuu8Y/HQAAAAAAAAAAwDj0/MQoAAAAAAAAAACAqU4YBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAnJ7DqL1799ZVV11Vy5Ytq+XLl9e6dev+6jW///3va8mSJfXggw+Oa0gAAAAAAAAAAIBeDPR6wQ033FCbNm2q22+/vZ5++um68sor6zWveU2de+65R7xmzZo1tWvXrmMaFAAAAAAAAAAA4Gj1FEbt2rWr7rzzzrrttttq0aJFtWjRonr88cfrjjvuOGIY9e1vf7t27tw5IcMCAAAAAAAAAAAcjZ6+Su+xxx6r/fv315IlSw4dW7p0aW3cuLFGR0cPO3/79u31hS98oT796U8f+6QAAAAAAAAAAABHqacnRo2MjNScOXNq2rRph47Nmzev9u7dWzt27Ki5c+eOOf/zn/98vetd76o3velN4x6wr2/clwLAlOIzDQDATgQA8DJ7EQCAnYjx6eX/pqcwavfu3WOiqKo69Hrfvn1jjv/85z+v9evX13e/+91e3uIwQ0PHHdP1ADAVzJkzq+kRAAAaZycCADjIXgQAYCdicvQURk2fPv2wAOrl14ODg4eO7dmzp6655pq69tprxxwfj23bXqxu95h+BS3V399xIwWmjO3bd9aBA4d/7SzAZLAXAVOFnQhokp0ImErsRUBT7ETAVGInYrz6+o7+QUs9hVELFiyo7du31/79+2tg4OClIyMjNTg4WMcff/yh8x5++OF66qmnatWqVWOu//CHP1wrV66sT3/600f9nt1uCaMAiODzDADATgQA8DJ7EQCAnYhXXk9h1PDwcA0MDNSGDRtq2bJlVVW1fv36OuOMM6rT6Rw6b/HixfWDH/xgzLUrVqyoz372s/W2t71tAsYGAAAAAAAAAAA4sp7CqBkzZtTKlStrzZo19bnPfa6effbZWrduXV1//fVVdfDpUccdd1wNDg7WySeffNj1CxYsqKGhoYmZHAAAAAAAAAAA4Ag6f/2UsVavXl2LFi2qSy+9tD71qU/V5ZdfXitWrKiqquXLl9e999474UMCAAAAAAAAAAD0oqcnRlUdfGrU2rVra+3atYf9bPPmzUe87i/9DAAAAAAAAAAAYCL1/MQoAAAAAAAAAACAqU4YBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAAAAAAADEEUYBAAAAAAAAAABxhFEAAAAAAAAAAEAcYRQAAAAAAAAAABBHGAUAAAAAAAAAAMQRRgEAAAAAAAAAAHGEUQAAAAAAAAAAQBxhFAAAAAAAAAAAEEcYBQAAAAAAAAAAxBFGAQAAAAAAAAAAcYRRAAAAAAAAAABAHGEUAAAAAAAAAAAQRxgFAAAAwP9j776joyr6MI4/2fROIEAqvfdeJPTeRUCKdBFF6UhTUATpUgSkShGQKkg3FKWDIr339IQSCCUkkLJ5/0BXYhKKLxJcvp9z9pC9d+7M784u5Hp8zgwAAAAAAABgdghGAQAAAAAAAAAAAAAAADA7BKMAAAAAAAAAAAAAAAAAmB2CUQAAAAAAAAAAAAAAAADMDsEoAAAAAAAAAAAAAAAAAGaHYBQAAAAAAAAAAAAAAAAAs0MwCgAAAAAAAAAAAAAAAIDZIRgFAAAAAAAAAAAAAAAAwOwQjAIAAAAAAAAAAAAAAABgdghGAQAAAAAAAAAAAAAAADA7BKMAAAAAAAAAAAAAAAAAmB2r9C4AAAAAwMuRyzVXepcA4DXFvz8AAAAAAAAA0gPBKAAAAOA1kGhM1NgqY9O7DACvsURjYnqXAAAAAAAAAOA1QzAKAAAAeA1YGiw1Ycs5hdyKSe9SALyGfDM6aEDdAuldBgAAAAAAAIDXDMEoAAAA4DWx8/wNnQ6/m95lAHgNFfZyIRgFAAAAAAAA4KUzpHcBAAAAAAAAAAAAAAAAAPCiEYwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzI5VehcAAAAAAAAAAC9LLtdc6V0CgNcY/wYBAAAALxfBKAAAAAAAAACvhURjosZWGZveZQB4zSUaE9O7BAAAAOC1QTAKAAAAAAAAwGvB0mCpCVvOKeRWTHqXAuA15ZvRQQPqFkjvMgAAAIDXBsEoAAAAAAAAAK+Nnedv6HT43fQuA8BrqrCXC8EoAAAA4CUypHcBAAAAAAAAAAAAAAAAAPCiEYwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzA7BKAAAAAAAAAAAAAAAAABmh2AUAAAAAAAAAAAAAAAAALNDMAoAAAAAAAAAAAAAAACA2SEYBQAAAAAAAAAAAAAAAMDsEIwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzA7BKAAAAAAAAAAAAAAAAABmh2AUAAAAAAAAAAAAAAAAALNDMAoAAAAAAAAAAAAAAACA2SEYBQAAAAAAAAAAAAAAAMDsEIwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzA7BKAAAAAAAAAAAAAAAAABmh2AUAAAAAAAAAAAAAAAAALNDMAoAAAAAAAAAAAAAAACA2SEYBQAAAAAAAAAAAAAAAMDsEIwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzA7BKAAAAAAAAAAAAAAAAABmh2AUAAAAAAAAAAAAAAAAALNDMAoAAAAAAAAAAAAAAACA2SEYBQAAAAAAAAAAAAAAAMDsEIwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzA7BKAAAAAAAAAAAAAAAAABmh2AUAAAAAAAAAAAAAAAAALNDMAoAAAAAAAAAAAAAAACA2SEYBQAAAAAAAAAAAAAAAMDsEIwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzA7BKAAAAAAAAAAAAAAAAABmh2AUAAAAAAAAAAAAAAAAALNDMAoAAAAAAAAAAAAAAACA2SEYBQAAAAAAAAAAAAAAAMDsEIwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzA7BKAAAAAAAAAAAAAAAAABmh2AUAAAAAAAAAAAAAAAAALNDMAoAAAAAAAAAAAAAAACA2SEYBQAAAAAAAAAAAAAAAMDsEIwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdq/QuAPi35XLNld4lAHiN8W8QAAAAAAAAAAAAAKQPglEwa4nGRI2tMja9ywDwmks0JqZ3CQAAAAAAAAAAAADw2iEYBbNmabDUhC3nFHIrJr1LAfCa8s3ooAF1C6R3GQAAAAAAAAAAAADw2iEYBbO38/wNnQ6/m95lAHhNFfZyIRgFAAAAAAAAAAAAAOnAkN4FAAAAAAAAAAAAAAAAAMCLRjAKAAAAAAAAAAAAAAAAgNkhGAUAAAAAAAAAAAAAAADA7BCMAgAAAAAAAAAAAAAAAGB2CEYBAAAAAAAAAAAAAAAAMDsEowAAAAAAAAAAAAAAAACYHYJRAAAAAAAAAAAAAAAAAMwOwSgAAAAAAAAAAAAAAAAAZodgFAAAAAAAAAAAAAAAAACzQzAKAAAAAAAAAAAAAAAAgNkhGAUAAAAAAAAAAAAAAADA7BCMAgAAAAAAAAAAAAAAAGB2CEYBAAAAAAAAAAAAAAAAMDsEowAAAAAAAAAAAAAAAACYHYJRAAAAAAAAAAAAAAAAAMyOVXoXAAAAAAAAAAAAAAB4eXK55krvEgC8xvg3CC8TwSgAAAAAAAAAAAAAeE0kGhM1tsrY9C4DwGsu0ZiY3iXgNUEwCgAAAAAAAAAAAABeE5YGS+nnEdLt4PQuBcDrKkM2Wdb8LL2rwGuCYBQAAAAAAAAAAAAAvE4ubZcijqd3FQBeV57FJYJReEkM6V0AAAAAAAAAAAAAAAAAALxoBKMAAAAAAAAAAAAAAAAAmB2CUQAAAAAAAAAAAAAAAADMDsEoAAAAAAAAAAAAAAAAAGaHYBQAAAAAAAAAAAAAAAAAs0MwCgAAAAAAAAAAAAAAAIDZsUrvAv5fRqNRiYkJ6V0GXkFGo4UePLCUu72FvJ0t07scAK8pd3sLPXjwQHFxD5WYmJTivKWllQwGcsoAAAAAAAAAAAAA8KL9Z4NRSUlJunv3lmJjo9O7FLzCIiMN6lTUQfEJ9uldCoDXlLWVhS5fviKj0ZhmG3t7J7m4ZJSFhcVLrAwAAAAAAAAA8Npyz5feFQB4nfFvEF6i/2ww6s9QlJOTm2xsbPmfyUiVpaWF7lvE6EFC2oEEAPg32VkZ5J7JIdXVopKSkhQX91DR0VGSJFfXTC+7PAAAAAAAAADAaybJmCiL5t+mdxkAXnNJxsT0LgGvif9kMMpoTDSFopycXNK7HLzCrKwMkiFeSRb8owognRgsZWNjq4Q0Apo2NraSpOjoKDk7u7GtHgAAAAAAAADgX2VhsNSELecUcismvUsB8JryzeigAXULpHcZeE38J4NRiYmPQi5//s9kAAD+y/78fZaYmCCDwSadqwEAAAAAAAAAmLud52/odPjd9C4DwGuqsJcLwSi8NP/pZSnYPg8AYA74fQYAAAAAAAAAAAAAL95/OhgFAAAAAAAAAAAAAAAAAKkhGPUfNmBAb40e/UWyY9u2+cvPr4zmzZud7PjChd+qU6e2kiQ/vzI6cuTQPxozKSlJa9as+mcF45UxpHtr7d/hn95lPFcd3VpU1/lTx9I8f+7kEUWEBv2jOu7dvaMJn/XWh23qaMG0MXoQG6MDO7f8o77Sy4v8TB+fy/07/DWke+sX0q/RaNTGVYs0+IPW6t2hkaaOGqzrEWEvpG8AAAAAAAAAAAAAAP6OYNR/WLFiJXX27Olkx44cOSx398w6evRwsuOnT59UyZKl/+8xjx07okmTxv3f/QCS9MnYWSrzRvUX0tekL/rr7u2of3Ttb7u36XpEmIZ99a1adOiubRtWad8vP72Quv6LHp/LMm9U1ydjZ72Qfn/etFrbN65Sm669NGjUdBksLfX1qIGKe/jwhfQPAAAAAAAAAAAAAMDjCEb9hxUvXkJBQYGKiYkxHTt69JDatGmn06dP6uHDB6bjp0+fUokSpf7vMZOSkv7vPoA/ObtmkI2tbXqXodiY+8ri6S1P72xyds3A9/wxNra2cnbN8EL62rN9o2o3aaXiZd6Ql28Ode39qaJu3tCl86deSP8AAAAAAAAAAAAAADzOKr0LwD9XsGBhWVlZ6/z5sypZsrSuX7+mq1cj1LhxMy1evFAnThxX2bLlFRwcpHv37qpEiZKma0+cOKYpUyYoNDREhQoV0dChX8jDw1OStHfvLs2bN1tBQYGysbFR+fJvaNCgobpz57Z69fpA0qPt+KZOnaVSpcokq+n+/Wh9/fVE7d+/V9HR9+Tl5a0PPuipKlWqma7r1KmrfvxxlYoUKaZx4ybr+PGjmjp1kgICrsjHx0ddunRTtWo1U9zviRPH1LPn+1q71l9ubm6SpHPnzuqjj7pqw4atsrOz1/LlS/Tjj6t182akChcuov79B0rOj+6rW4vq6j98svIXKSHp0RZhG1Yu1JiZy3X+1DEt/GasipQsr9/2/qwGzd5RvWZtko2fmJio9cvna98Of8XFPVShYmXU7v2+cnJ2VdTNG1qxYLrOnTyiuIcP5embQ23e7ak8BYoq8vpVffJhGzVp1VnbN65Sucq11LZrbx39bY/WLpunyOtX5Z0tp5q3f1/5Cz+qLSkpSZt+WKxdW9cr7uED5S1YTG269lamzFlN99KwRXvt3LJOufMXUY/Bo5LVun7FQl0NC5aNra1+37dDGd2zqHn791WibKUU8xobc18rFkzXycO/KiYmWu5ZPPVWu24qWc7PNFaXXp/I/8eluh4Rphx5CqhLzyFyz/poXn/8fq727fBXbEy0cuYpqLbv9ZaXb84U46xfsVAhgZcUE31PYSEB6j5ghBZOH6vGb3fSG9XryWg0au3Sb7Xn501SklSrUQvt3+mvDh8MMH1mF8+e0LL5U3U9IlQ58xZUl55DlCmzh2mrt4nD+6pRy45q0qpTsrGTkpL005rvtefnTbp9K1JOzq6qUruxGr/dUetXLNTGVd+Z7rXTR4OSvZ/zww7Fx8dp9eLZ+m3PdklSkRLl1LpLTzk6u6T5+f7dtg2rtG3DSj2IjdEb1eoqNDhAb1Srqzeq19OQ7q1V5o3qOrBrq1wzZNTQCXN0/NB+bVixUBFhQbK2tlGRkuXV/oOPZWdvL0natXW9Nq/5XrH3o1W3afKt7r76rI/yFS5hmoc/axw9Y5ncs3goPCRQKxd+o8vnTysxMUE5chdQ+w/6y9Mne4q5dM/iYfp7IkkRoUGma+3sHVSldiM1aN5eBoNB61cs1PWIUNk7OOq3PdtlbW2j2k3eVr03H/1datnxQ/lkz2Wq08bGVpaWlnoQcz/FfAEAAAAAAAAAAAAA8P9ixaj/MGtraxUqVNi0nd6RI4dUoEAhOTg4qESJkjpy5JCkR9vo5cqVW66Prfqyfv2P6tNngObOXaR79+5q5sypkqSwsFANHTpIzZq11Pff/6ARI8bq8OGDWr9+jbJkyapRo8ZLktat81fRosVT1PT11xMVEhKkyZOna/HilSpevKTGjRup+Ph4U5t9+3Zr5sx5+uCDnrp5M1IDB/ZRgwaNtGjRcr3zTkeNGvWFjh8/mqLvokWLy909s3bv3mE69ssv21Sxop8cHBy1YMFcLVu2RL1799P8+Uvk4eGpvn176MGD2Geaz5s3rik+Pk5Dx81WWb8aKc6vWz5fB3ZtVaePBmnwqOm6dydKS2ZPkiTNmzpaRqNRg0Z/o6ET5sgtU2Z9P2dKsusvnz+lT8bNUs2GzRUSeEkLpo9Vg+bt9PnEeSpfuZamjhqs6xFhkqQdP/2o3/ZsV9feQzV4zAy5ZHDTlJEDlJCQYOrvxKEDGvTlNL31znup3s/Rg3uUlJSkoeNnq1L1+pr11ecKDwlM0W7Fgum6Fh6iPsMmaPjkBcpbsJgWzZyghMc+s/UrFqp1l576dPxsRd+7o7XL5j0a47c92r19o97vP1yfT5ovlwwZtfCb8WnO8fHf96mcX031/3yScuYpmOzcTz8u1YFdW9W191D1/ewrnTh8QJHXIpK12fPzJrXp0kufjJ2lmOhorV48R5JMW7198PEXqtOkVYpxD+zaop83rVaHDz7WyKmL1ahFB21YuVBBVy6oTpNWqt34beXKV1gT5q5WiXJ+yd5L0tql3yrw0nn1+mSs+g+frNiY+5o9cXiyMR7/fP/ut93btGHlQr3d6SMNHj1dkTeu6eKZ48nb7NmuPsMmqFOPQbpxLVyzJw5XtbpNNeLrRerW73OdPXlYe7ZvkCSdPnZQKxZM15tt3tXg0dMVeOmcbt64lua8P85oNGr62E/lnsVTw76aq0GjpstoTNTqJU+fy3t372j8sF5ydcukIWNmqG3X3vrlpx/186bVpjaHf90lK2sbDR0/R3WattKaJXN0LTxEklS0VHm5ZcpsavvT2mWytLRS/iIlBQAAAAAAAAAAAADAi0Yw6j+uRIlSOnPmr2BUyZKlJUklS5bW0aOHJT0KRv19G72OHd9VqVJllDt3HjVs2FSXLl2U9Cg00afPADVp0kyenl4qV66CSpcup4CAK7K0tJSzs4skKVMmd1lbW6daz4ABnyhv3vzy9c2mNm3a6c6dO7p166apTdOmbylbthzKmTOX1qxZpTJlyql581by8fFV3boN1KRJM61cuTRF3xYWFqpZs4527NhuOrZjx8+qVauOkpKStHr1SnXt+oH8/KoqR46cGjRoqAwGS+3fufWZ57Pum22UxdPbtDLTn5KSkrRn+0a92eZdFSlZTl6+OfROt77y8s2ppKQklSxXSW3e7SVP72zy8s2h6vWaKjw0MFkfNRu2UBYPb2X19NHW9StVuVZDla9cS1k8vVWzYXMVKVlOu7aukyRtWbdcLTp8oPxFSsjTO5vadeunmOh7On3soKm/KrUby+OP8VLj6OSsdu/3k6dPdtVr1ka58xfWvl9+StEuX6Hiavd+f/nmzKOsnj6q0+Rt3b93V3fvRJna1G7UQgWKlpJ3tpyqWqeJAi+fl/RoJSIrK2tldM+iLB7eavNuL7Xs+GGa8+uSwU1V6zaRb848KbbQ27VlnZq27qLCJcoqW6686txjcIot7Ro2b6f8RUrIJ3su+dWsr9Cgy5Jk2urN0cnFtKLS4zK6Z1XHjwaqYLHScs/ioap1m8glQ0aFhwTKzt5etnb2srKykqtbRjk4OiV7//DhA+34aa3avd9POfMWlE/2XOrS6xOdP3NcoUFXTGM8/vn+3Q7/darZsLnKvFFNXr451bnHYFnbJL//ClVqyyd7LvnmyKOkpCS17tJTlWs3knsWDxUuUVYFi5Y2Bdv2bN+s8pVrqWLVOvLyzamOHw2UtY1NmvP+uPi4h6pap7FaduyuLB7eyp4rnypWq2vq+0lzeXDPdtnY2qn9Bx/L0ye7SpTzU9NWXbRl3XJTG0cnF7Xs8IGyeHqrbtPWcnRyMX1fHrdn20ZtWLlQnXoMlqOT8zPVDgAAAAAAAAAAAADA82Arvf+44sVL6KefNkqSjh49rIEDP5H0KBg1ffoUxcXF6dSpk+rYsUuy67y9/wpvODk5KS4uTpLk65tN1tY2+u67ebpy5bICA68oIOCK6tZt8Ez11KvXUHv27NT69T8qKChQ58+fk/QocPUnDw8v089BQQHat2+PateubDqWkJAgX99sqfZfu3ZdrVjxve7cua3w8DDduXNbFSv6KSrqlu7evaNChYqY2lpZWalAgYIKDw16ptolyT2zR6rHo+/e0f17d5UtVz7TMS/fHKatyqrWaarf9/2iy+dP62pYsIKuXFDSY/csSZmy/NX31dAgHd6/U7u3bUh234WLl9WD2FhF3byhOZNGyGCwMJ2Pi4vTtfDQVPtLTfZc+WVt/VdYJkfu/IoISzkXFarW0bGDe7Vn2wZFhIUo+MoFSck/syyPhX3sHRyVmPho5apyfjW1w3+tPvmorXLlK6SSZf1UqWba35VMaczvvbt3dPtWpHLkKWA65uGdTQ5/C8xkzvrXd8fewUnx8XFpjvW4AkVK6sqFM1rz/VxFhAYpJOCS7t6+leIzSk3ktQglJMRr3KcfJTueZDTqWkSIsufK/+jenvB5hAVfVv232preOzo5K6uXb7I2j89NVk8fWVlZa9PqJQoPDlB4SKDCQwNVoUptSVJEaKCq1mliau/k7Cr3LJ5PvRdJsrWzV9U6TXVg11YFXT6vq2HBCg64KBdXt6deezUsWNlz5ZOlpaXpWO78hXX39i3F3I+WJLln8ZThsfN29vam78ufbt64qmXzp6pNl16pbu8IAAAAAAAAAAAAAMCLQDDqP65IkeKKjLyhc+fO6MaN6ypatIQkKWfO3HJ0dNLx40cUEHBZJUqUTnadwZB8sbA/V+a5ePGCPvywq/z8qqhEiVJq3fodrVy57Jnr+fLLz3Xy5AnVq9dAb77ZQpkyueuDDzona2Pz2Mo2iYmJqlOnvjp0SB7csrJK/auZN29++fj4as+enQoODlblylVka2ubbKu+xxmNxmQBn8clJiamOJbWqjuWadTz5xiTR36s2PvRKvNGdRUrU1GJCQmaOeGz5H0/FlJKNCaq7putVbFq3RTjG42P6nq//+fy8EoeEHt8ZZ3H+3uWmo1GowwWKReJWzBtjC6fP60KVWurWt0mcnXLpLGfJA8BWVn9bXWwP74vrm4ZNeLr73Tm+O86efhXbVm/Qnt+3qShE+bI1tYuxVhp1WwK2vxthai/vzcYLJ94Pi17tm/SyoXfyK9mQ5WqUEUtO3TXxOF9n+la4x/fk4Ejp8nWLvkKSi4Z3BR9766kJ38eBoNlitWv/l7749+9kMBLGj+0l4qXeUN5CxVT7cYttX3jD3+7PPn1yT4jC4tk54yPfdcfxMZq9OAP5OTsquJl31BZv5q6GhasbetXpFm/aYxU7vHPv19/fm9T/bv7t1s/c/ywMri5q2rdJinbAgAAAAAAAAAAAADwghCM+o+zt7dXvnz5tW7dGhUsWFh2do/CKBYWFipRoqQ2bdogX9/scnN7+mowkrRly2aVKFFSn3/+pelYaGiwsmfPaeo3LffvR2vbNn/NmbNQBQsWliQdOLBXUsoQx598fbPr1KkT8vH5a/WcZcuWKD4+LkVY6k+1a9fTvn17FBoaou7de0l6tOpVxoyZdPr0SeXN+2hVp4SEBJ07d1b1m7WR9Cg48uBBjKmfyGvhT56Mxzg4OsnJxVWhQZflkz2XJCkk4JKmjRmiXp+O08UzJzRx3o+mbch2+q994n17ePkq8vpVZfH0Nh37YfEsZfX0VeVaDeXs6qa7t2+pWOmKj+4lPl5zJ49UnaatlDt/4WeqOTToyqMw1B8huMDL55WvUPFkbWJj7uvg3p81ZMwM02pNJ4/8qj+Kf+oYJw4f0K3I66pWt6mKla6oRi07asB7zRUWdEW58hV6pjqlR/ObIaO7gq5ckE+O3JKkG9fCTasQ/b92b12vRi07qG7T1pKkmPvRunsnKs3P5/HveWYPLxkMBkXfuyPfnHkkSXfvRGnRjAl6u9NHyVZHSouXbw4FX7lgWh0pNua+rl8NS7P9r7u2KW+hYuraZ6jp2PWrYfL0fhSU886WM9n2dA9iY5L1Z2VlpYePfddvPPZdv3D6mG5H3dTnk+abAmlnjv/+TBkzDy9fHflttxISEkwBqCsXTsvZJYMcnVye3sEfbO3sVeaNas/cHgAAAAAAAAAAAACAfyLl8jH4zylevJS2b9+ikiWTrwpVsmRp7d27SyVKlHrmvlxdXXX58iWdOXNKwcFBmjZtss6ePWPassze/tGKOefOndXDhw+TXWtjYys7O3vt3PmLIiLC9dtvBzRp0gRJSnNFp7feaqlz585qzpwZCgkJ1tat/poz5xt5eKS9LVitWnX122+/6ubNmypXroLpeKtWbTVv3mzt3btbgYEBGjfuS8XFxam8X01JUvY8+fXL5h91LSJUx37fp307/J95XiSpRv23tG75fJ07dVThIQFavmCacuUrLEcnZ1kYDPp93y+6eeOqDh/YpfUrF0p6FGhK9R4atdTv+37Rz5tW6/rVMG3f+IO2b1ilrF6Ptqyr3ail1i6bp+OH9utaRKgWzZygS+dPycM79S0GUxN5LVyrF8/W1bBgbVq9RMFXLsjvb9vcWVvbyMbWTkd+3a3I61d1+thBLft2qiQpPiH12h+XlJSkHxbN0tHf9ijy+lXt3/GTbGztUmwT9yyq12+m9SsW6OyJwwoJvKSF34x7dCLtLF4ytnZ2CgsJSDVM5ejsorMnDutaeIiCLp/XnElfKDEhIc3Px9bWTrejbiry+lXZ2Tuocq1G+n7uFJ0/dUzhIYFaMG2Mrl8Nk/tTtjP8697e0s+bVuvIr7sVERqk72ZM0MMHsWnem5Ozi8KCrijg4lldCw/Rqu9mKPDSOdPfo+r1munw/p3as22jIsKCtXjWRMXF/fX3MUeeAjq0f6cCL51T4KVzWr9iQbK5ePggVscO7lXk9avas32Tdvy0VgkJf21LmNZclq9SSwnx8Voye6IiQoN07OBerV+5UFXrNnliaPLvipWuqNqN337m9gAAAAAAAAAAAAAA/BOsGGUGihcvoeXLl6QajHrw4IFKlnz2YFSLFq114cJ59enzkWxsbFSiREl17vyetm/fIknKlSuPypYtr+7du2j48FGqWrWG6Vpra2t99tkITZ8+RT/8sFyent7q2LGL5s6dqQsXzil79hwpxvPw8NS4cZM0c+Y0LVu2WO7uWdSjRx/VqVM/zRp9fHyVI0dO5c9fINm2Xa1bt9P9+/c1fvwo3b8frSJFimvGjDkyOmVQbHyi2nTppUWzJuiLvl2UPU9+NW3VWZvXLHnmuanXrK1iY6JNoZpipSuq9bu95OjkrHfe66ONqxbpx6VzldXLV6279NT8aWMUHHBRrm6ZUvSVK18hden5iTasXKjVi2crs4eXuvYZZlrRqU6Tt/XgQYwWz5qoB7Exyp47n/oMHZ9sK72nyZm3oKLv3tbIAe8pq6ePen4yVpmzeiVrY2VtrXd7faJVi2bq581r5J7FQw2at9O65fMVEnDRtEJRWoqXeUNNWnXWyoXf6M7tW/LwzqYPB335XHX+qU6TVroTdVOzvvpcBoOl6jdrq0tnT6bcxi8NNeq/pdWLZ+nG1XC16px8K8BWXXrqu2/GacTHXeXs4qYylarJ1tZewYEXU+2rRHk/7dq2Xp/36aQxM5epRcfu+mHRTM366nMlJiYob8Fi6vXJ2GdaLUqSyvnV0I2rYfp+zmTFx8epcq1GypQ5a5r3VqPBWwoOuKjJIz6WtbWN8hYqpkYtO+j3fTskSXkLFVPHjwZq3bL5uvfdN6pUo4F8/1hpS3oUrAsLuqIJn/VWhozuatW5h6aP+USSlDt/YTVq0UFL505RfHycvLPnUtuuvbVo5gRF3bwht0yZk83l4/3a2Tuo96fjtGLBdI0c8J6cXTKoZsMWqt+s7TPNw5+2rl+hAzv9NWbm8ue6DgAAAAAAAAAAAACA52GRlNZeUml4+PChvvjiC23dulV2dnbq0qWLunRJfcuznTt3avLkyQoODpaPj4/69OmjmjVrPleBkZH3UmzxFB8fp5s3I5Qpk6esrW2eqz/89xmNRrVo0VhDh36hUqXKPLGtlZVBF69FKzY+8SVV92pYv2KhLpw+po9HTEnvUp7ZqaMHlT1XPtN2hPfu3Fb/d5tp9Ixlz7wy06vq/OljypzVSxnds0iSEhMT1a9zU3048EvlL1IifYvDv87e2lJ5szopIcGYZht+rwH4t1lZGeTm5qiGU/fodPjd9C4HwGuosJeLNvWqrKio+098LgKAfxPPRABeBTwXAUhvPBMBeBXwTIT/l4WF5O7+bAu2PPeKUePHj9epU6f03XffKTw8XIMGDZKXl5fq1auXrN25c+fUo0cPDRw4UFWrVtXevXvVu3dv/fDDDypQoMDzDgtIkvbv36uDBw/Ixsb2ubYIxKtv97YNMiYm6q123WRhYaF1yxcoR54C//lQlCQdO7hPl8+fUrtu/WRn76CfN6+WnYOjcuUrlN6lAQAAAAAAAAAAAABgtp4rGBUTE6NVq1Zp7ty5Kly4sAoXLqyLFy/q+++/TxGM2rhxoypUqKAOHTpIkrJnz65ffvlFP/30E8Eo/GPLli1WcHCQRowYI4PBkN7l4AVq824vLf32a437tIeSJBUsUkrdB4xI77JeiKatO2vp3CmaPPJjxcfFKXf+wur96ThZ27AyEAAAAAAAAAAAAAAA/5bnCkadO3dOCQkJKlmypOlY6dKlNWvWLBmNxmRBlWbNmik+Pj5FH/fu3fs/ysXrbtq02eldwn9Ck1ad0ruE5+aWKbM+GvRlepfxr7Czd1CXXp+kdxkAAAAAAAAAAAAAALxWnisYdePGDbm5ucnmsVVO3N3d9fDhQ92+fVsZM2Y0Hc+dO3eyay9evKgDBw6odevWz1WghcWzHQMA4L/OwoLfcQAAwPzxvAMAAPAIz0UAAAA8E+GfeZ7vzXMFo2JjY5OFoiSZ3sfFxaV53a1bt9SzZ0+VKlVKNWvWfJ4hlSmTc4pjDx480K1bBllaWsjKiu3UAACvvif9vjIaLWQwGOTm5ig7O7uXWBUAAMDL5ebmmN4lAAAAvBJ4LgIAAOCZCC/HcwWjbG1tUwSg/nyf1v/IjYyMVOfOnZWUlKSpU6cm227vWdy8eU9JScmPxcfHyWg0KjExSQkJxufqD68XgnMAXhVP+n2VmJgko9GoqKj7srZOuQ0tAPy/LC0N/AcmgFdCVNR9JSby3/EA0gfPRABeJTwXAUgvPBMBeJXwTIR/ysIi9YWWUvNcwaisWbMqKipKCQkJsrJ6dOmNGzdkZ2cnFxeXFO2vXbumDh06SJIWLVqUbKu9Z5WUpBTBqL+/BwDAHKT2Ow8AAMDc8LwDAADwCM9FAAAAPBPh3/dcy+kULFhQVlZWOnbsmOnY4cOHVbRo0RQrQcXExKhr164yGAxasmSJsmbN+kIKBgAAAAAAAAAAAAAAAICnea5glL29vd58800NHz5cJ06c0Pbt2zV//nzTqlA3btzQgwcPJEmzZ89WcHCwxo0bZzp348YN3bt37wXfAgAAAAAAAAAAAAAAAAAk91zBKEkaMmSIChcurI4dO+qLL75Qz549VadOHUmSn5+fNm/eLEnasmWLHjx4oJYtW8rPz8/0GjVq1Iu9g78xGCxkZWV4KS+DweIf17l58wb5+ZXRxo1rkx2PirqlX37ZbnofFhaqAwf2/eNxnsbPr4yOHDmU5vmEhAQtXbpYHTu2Ua1afqpXr5r69++lEyeOvdA6jhw5JD+/Mmmej4m5r6+/nqhmzRqoevWKat26mRYsmKv4+Pin9n3jWoS6taiuyOtXX2TJJkO6t9b+Hf7/St8AAAAAAAAAAAAAAAD4Z6ye9wJ7e3uNGzfOtBLU486fP2/62d//5QdFDAYLuWZwkJXlc+e9/pGERKPu3I6R0fj8m15u375F3t4+8vffrEaN3jQdnzlzmpKSklSjRi1J0tixI1WiRClVrFjpRZX9zIxGowYO7KOLFy+oR48+Klq0uGJjY7Vlyyb16fOhpk6dpSJFir2UWr78crju3r2jESPGyN09sy5duqBJk8br9u0o9e078KXUAAAAAAAAAAAAAAAAgP+O5w5GvcoMBgtZWRrUe/lRXboe/a+OlSeLk75uXVIGg8VzB6Oiom7p8OHfNWTIZxo1arjCw8Pk5eUtSUpKSt7X39+/TGvXrtaJE8e0aNEKU32S9OGHvXX37l0tWrRA48dP/tfriI6O1p49OzV//hLlzZtfkuTp6aWYmBiNHz9KvXt/LIPh5YThAAAAAAAAAAAAAAAA8N9gVsGoP126Hq3T4XfTu4w0/fLLdjk5OalOnfqaPfsb+ftvUpcu3TRv3mz99NNGSdLRo4dVsmRpHTt2RMeOHdHRo4c1ffocXbt2VZMmjdOhQwfl5pZRDRo0VseO78rS0lKbN2/Q5s0bVLJkaa1Zs1KJiYlq2LCJevToKwuLR9v+LVgwV6tXr1RSklHdu/d8Yp0bN65TgwaNk4Wi/vTBBz1lbf3o63PkyCGNHv2FKlR4Q9u2+at9+85q1eodzZo1TT//vE1RUbeUOXMWtW/fWU2bviVJun8/WuPHj9b+/XuVKZO7mjR5M806LCwkCwsL/f77QVMwSpKqVq2hggULme4tKuqWJk+eoF9/3S87Ozs1bNhEH37Yw9T+6G97tMN/re5E3VTBYqXVucdgOTo5S5Iunz+tHxbPUkjAJTm7ZlC9pm1UtW4T07X7d/jLf+0y3bxxVV4+OdSy04fKV6j4E+cPAAAAAAAAAAAAAAAA6ccsg1Gvup9/3qqKFf1kMBhUqVIV+ftvUufO76lNm/YKCgqUJPXtO1DW1tYKCQlWkSLF1KFDZyUlJenTTwcqT568WrDge0VGRmrChNEyGAzq1KmrJOnUqRPKlCmTZs6cp7Nnz2jUqOGqUOENlS1bQevWrdHKlcs0dOgXypIliyZOTLkd4p/i4+N18eJ5vfNOh1TPZ8iQIdn7q1cjFBcXp3nzlsjKylqLFy/Q/v179eWX4+Xm5iZ//02aPHm8KleuqowZM2nChDEKDg7U9OlzdPt2lEaNGp5mLY6OTqpfv5FmzPhaGzeuVcWKlVSmTDmVLl1O2bLlMLUbMuRjWVpaavr02YqJidHnnw9RliyZ5Z2/tCTpwK4t6tZ3mIxGo2Z99bm2rF2mt9p1U0RokCZ90U+1GrZQx+4DdOXiGS2d+7VcMripZPnK2r/DX8vmfa22XfsoZ96C2r/DX9NGD9aIrxfJLVPmp3/gAAAAAAAAAAAAAAAAeOnYf+wlu3btqk6ePK7KlatJkqpWra7w8DCdOHFMDg4OsrW1la2trdzc3OTk5CQrKyvZ29vLxcVVhw//rqtXIzRw4KfKli2HSpUqo48+6qOVK5eZ+jcajabzdes2UJ48eXX27BlJ0oYNa9WqVVtVqlRZefPm16BBQ9Os886dO0pKSpKLi4vpWHBwkGrXrpzs9bh33ukoHx9feXh4KE+efBo8+DMVKVJU3t4+at++sxISEhQSEqzo6Gjt2LFdffoMUP78BVS+fEVTsCstgwYNVZ8+H8vW1lYrVizVgAF91KJFY+3fv1eSdOnSRZ06dUKffjpc+fIVUIkSpfTxx0Pk7PxX/c3bva8ceQooV75CKl2xmkICL0uS9mzfKN8cedXsnffk4Z1Nb1Srpxr1m2nLuuWSpJ83r1GN+m+pYrW68vDOprfadZN3tlza4b/2KZ82AAAAAAAAAAAAAAAA0gsrRr1kP/+8VTY2NipfvqIkqWTJ0nJ2dtFPP21U8eIln3htUFCA7t69o7p1q5qOGY1GPXz4UHfu3JYkublllKOjk+m8g4OjEhISJEmBgVeSBZBy5swle3v7VMdydn60xdy9e9GmY15e3lqwYKkk6cyZUxoxYliyazw8PE0/V6lSTb///qumTZus4OBAXbhwTpKUmJiokJAgJSYmKm/efKb2BQsWeuK9GwwGtWjRWi1atFZk5A0dOLBPK1Z8r6FDB2nlyrUKDg6Si4trsm3/KleuJisrg/afuChJyuzhZTpn7+Co+Pg4SVJEaLBy5i2YbLxc+Qtr19b1kqSrYUFq3DL5ylm58hVSRGjQE2sGAAAAAAAAAAAAAABA+iEY9ZJt375FDx8+TBZuSkxM1I4d29W374AnXpuYmKhs2XJo7NiJKc79GYaytrZOcS4pKenxd8nOWVqm/hWwtbVV7tx5derUcdWoUUuSZGVlJR8fX0nS9evXUr3mT3PmzNCGDWvVoEFj1avXUP37D1aLFo3TrMvKKmXdfzpy5JBOnjyujh3flSS5u2dW48ZvqmrV6mrWrIFOnDguK6unf5UNBsvkB/4Y39rGJkXbJKNRRqPx0XnrlOeNRqOS/jgPAAAAAAAAAAAAAACAVw9b6b1EwcFBunDhvPr0+VgLFnxven3xxWjdv39fu3btlIWFRbJrHn/v65td165dVYYMbvLx8ZWPj68iIsI0b97sFNelJmfO3KZt9SQpIiJc0dH30mzftOlb2rx5g65du5riXGTkjSeOtW7davXtO1Ddu/dUzZp1FBsbazqXLVt2WVlZJavl4sXzafZ1795dfffdPN28GZnsuL29gywtrZQhQwb5+Pjq7t07yWpdtWq5Bg7s98Q6JcnDy1cBF88kO3b5wml5eD0KgWX18tWVi2eTnb9y4Yyy/nEeAAAAAAAAAAAAAAAArx6CUS/R9u1b5OLiqiZN3lKuXHlMr5o16yhHjlzy998oOzs7RUSE68aN65Ike3t7hYaGKCrqlsqVqyAPDw+NGDFMly9f0vHjRzV+/GjZ2dnJ0tLyKaNLLVq00qpVy7Vz58+6cuWSxo4dKYMh7a/Am282V8mSZdS9+7v66aeNCg0N0cWLFzRjxlSNGTNCxYqVSPNaFxdX7du3W2FhoTp+/JhGjvxMkhQXFydHRyfVq9dQU6ZM0OnTp3TkyCHNnz8nzb4qVaqi7NlzqE+fD7V3725FRITr+PGjGj78E2XLll0lSpRSrly5Vbp0WY0dO1KXL1/SkSOHtGTJQpUrV/6p81K1blOFBF7Sj9/P1bXwEO3f6a+d/utUrd6bkqTajVtqx09rdGDXVl0LD9GaJXMUGnRZfrUaPrVvAAAAAAAAAAAAAAAApA+z3EovTxanV3KMn3/eqjp16ssmla3bmjVrrq+/nqj27Ttr165f1KlTG23cuF2NGr2pMWNGKCgoQPPnf6+xYydpypQJ6tato+ztHVS9ei316NH7mcavW7eBbt+O0uTJE/Tw4QO1a9dJly5dSLO9wWDQ6NETtH79j1qzZpUmTRovCwsL5c2bTwMHfqo6deqnee2QIZ9p4sSxat++lTJnfrT1naWlpS5ePK8KFd5Q374DNHnyBPXt+5GcnZ3VokVrffPNlFT7srKy0tdfz9S3387S5MnjdfNmpFxcXFWlSjUNGjTUFO4aNmykJk4cq/ff7yRHRyc1adJMzZu/rQMnLz1xXjJlzqoeg0frh8WztW3DKmV0z6KWHburUo1H91fmjeq6E3VL65fP153bt+SbI4/6DJsgT+9sT5lxAAAAAAAAAAAAAAAApBeLpKSkpPQu4kkiI+/p7xXGx8fp5s0IZcrkKWvrv0JGBoOFXDM4yMry5SyElZBo1J3bMTIaX+kpfK1ZWRl08Vq0YuMT07sUAK8pe2tL5c3qpIQEY5pt0vq9BgAvipWVQW5ujmo4dY9Oh99N73IAvIYKe7loU6/Kioq6/8TnIgD4N/FMBOBVwHMRgPTGMxGAVwHPRPh/WVhI7u7Oz9TWrFaMMhqTdOd2jAwGi5c2HqEoAAAAAAAAAAAAAAAA4NVjVsEoibASAAAAAAAAAAAAAAAAAOnl7DkHAAAAAAAAAAAAAAAAAC8RwSgAAAAAAAAAAAAAAAAAZodgFAAAAAAAAAAAAAAAAACzQzAKAAAAAAAAAAAAAAAAgNkhGAUAAAAAAAAAAAAAAADA7BCMAgAAAAAAAAAAAAAAAGB2CEYBAAAAAAAAAAAAAAAAMDtmF4wyGCxkZWV4KS+DweK564uNjdXcuTPVtm1z1ahRSQ0b1tTQoQN15crlZ+4jPj5e69f/mOb5Fi0aa/PmDc/UV1hYqA4c2PfMY6dm3rzZ8vMro0OHDv5f/TxNjx7dNG/e7Bfe7/4d/hrSvfX/1ceEz3rr8rlTKY4vmD5W3VpUT/bq2a6+Rg/urgtnjv9fY75skdevqluL6oq8fjW9SwEAAAAAAAAAAAAAAHgqq/Qu4EUyGCyUMYOdLCxfzm0lJSbo1u0HMhqTnql9TEyMPvywq2JjY9SzZ1/lyZNPt2/f1po1K9W9exctWLBUXl7eT+1n+/YtWrRovpo0aZbq+blzF8nBwf6Zaho7dqRKlCilihUrPVP7tOrx9vaRv/8mlSlT7h/3k17KvFFdRUtV+MfXP3z4QOEhgcqRt2Aa/VdTq849Te9vR0Xqx+/nasa4oRozc7nsHRz/8dgAAAAAAAAAAAAAAABIndkFoywsraTVXaXIC//uYO75ZNH8WxkMFs8cjFq4cK6iom5pyZJVcnZ2liR5eHjqk08+17Vr17Rixffq23fgU/tJSnryeG5ubs9Uz7P09TTnz59TWFioBg8epsmTx6tfv0FycHD4v/p82WxsbWVja/uPr7909oRy5S0kS0vLVM9b29jK1S2j6b2rW0Z1/HCgBr3/ts6fOqoS5fz+8dgAAAAAAAAAAAAAAABInVkFo0wiL0gRr9Y2ZUajUZs3b1Tbth1MoajHDRs2Qs7OTqb3x48f1dSpkxQQcEU+Pj7q0qWbqlWrqSNHDmn06C8kSX5+ZbRq1Xp5enol66tFi8bq0qWbGjRorB49uqls2fI6fvyojh07qixZsqpv3wEqX76iRo0armPHjujYsSM6evSwpk+fo+vXr2natMk6dOigDAYL1a5dTx9+2Fs2Njap3tf27VuUJ09eVatWUxMmjNauXb+ofv1GpvNRUbc0efIE/frrftnZ2alhwybq1u1DWVhY6MSJY5o5c5ouXDgnCwsLlShRSoMHfyZ3d3dJ0q5dOzRz5jRFRl5XgwaNZTQak429du1qff/9d7p9O0r58xdU374DlTt3HtMcdOrUVevWrdaly5eUp0AxdejeXysXztCpoweV1ctHXXt/Ki/fnNq/w18bVi7UmJnLJUnHft+nDSsWKiIsSNbWNipSsrzaf/Cx7OxTX4Xr7MkjKlC01BM//7+zsn40n4Y/wlRJSUna9MNi7dq6XnEPHyhvwWJq07W3MmXOKkn6fd8vWr9ioW7euKrMWb30ZtuuKvlHoOpW5HUt/fZrnT1xWC6uGfRG9fpq2Lydqe892zdp6/oVirweITt7B5V9o7pad+kpg6WlFkwfK0kKCbioO1G3NHDUNNk7OGr5vKk6dfSgbGxtVal6fb3Ztqup9qO/7dEO/7W6E3VTBYuVVuceg+XolPI7DQAAAAAAAAAAAAAAkJ4M6V3A6yIsLFS3b0epePGSqZ53d3eXra2dJOnmzUgNHNhHDRo00qJFy/XOOx01atQXOn78qIoWLa5evforS5asWrfOX1myZH3q2IsWzVetWnW1ePEK5c2bT+PGfSmj0ajevT9WkSLF1Lp1O40ePUHx8fHq1au7HjyI1fTpczRixFjt379XM2ZMTbXfpKQk/fzzVlWqVEUODg4qXbqsfvppY7I2Q4Z8rJs3IzV9+myNGDFGmzev15o1KxUdHa2BA/uoXLkKWrx4pSZNmq7Q0FAtWbJAkhQQcEWffTZYzZo117x5S5SQkKATJ46Z+t27d7cWLJijPn0GaP7871W8eEn16vW+7t69a2ozd+5Mde/eU8PGfKOQwIsaOaCbChUro0/HzZSNjZ1+/P7bFPd0/WqYZk8crmp1m2rE14vUrd/nOnvysPZs35Dm/J47eUQFnyMYdT/6nn5YNFPOrm7KW7CYJGnHTz/qtz3b1bX3UA0eM0MuGdw0ZeQAJSQk6O6dKM2fNkb1m7XVyKmLVKl6fX07ZaTu37urpKQkzZzwmVxcM2jYhDnq9NFgHdz7szav+V6SdP70MS2fP03N2nbVyKmL1a5bP+39ZbOO/b7PVM+vu7epaZt31fOTMcrq6aMZ44bpTtQtffzFFHXr97n27fDXDv+1pvYHdm1Rt77D1H/4JAVfuaAta5c9870DAAAAAAAAAAAAAAC8LOa5YtQr6M6d25IkFxcX07Hff/9Nn3zysel91qyeWrJkpdasWaUyZcqpefNWkiQfH19duHBeK1cu1ahRE+Tk5CSDwaBMmdyfaeyKFf3UoEFjSVLHju+qU6c2unXrptzdM8vKykr29vZycXHV3r27FBl5XXPmLDTV2a/fIA0a1Ffdun2YYou8EyeO6/r1a6pcuaokqWrVGho/fpSuXo2Qh4enLl26qFOnTmjlynXy8vKWJH388RDFxsbq4cMH6tixq1q3fkcWFhby8vJWtWo1dPbsaUnS5s0bVKJEKbVq9Y6pjv3795rGXrp0kdq376xKlSpLkt57r7sOHNinrVs3q0WL1pKkBg0aq1y58rp4LVoFipTUnahbqlq3iSSpQtXa+nnT6hRzlZSUpNZdeqpy7UerXrln8VDBoqUVHhKY6tzev3dXt29Fyjt7rjTn/7c923Xk111/9C8lJMQrT4Gi6jtsguwdHCVJW9YtV9v3+ih/kRKSpHbd+mnAey10+thBuWXMrMSEBGXIlFmZMnuodpO35Z09l6xsbHTu5BHdunFNQ8bMkMFgkId3NrXo8IEWTh+nRi07yM7OXh0/HKBSFaqY7mfbhpUKDwk0HcuRO7+Kl3lDkhQaeFlXLpzW6G+Wyj2r5x+19NXDB7Gm+2ne7n3lyFNAklS6YjWFBF5O894BAAAAAAAAAAAAAADSC8Gol8TZ+VHQKDr6nulY0aLFtWDBUknSrl2/6Mcff5AkBQUFaN++Papdu7KpbUJCgnx9s/2jsR+/ztHR0dTf3wUGBsjXN1uy8FbRosWUmJiosLAQ5c2bP1n77du3yMPDU/nyPQrJ+PlV1YQJo+Xvv0mdOnVVcHCQXFxcTaEoSapcuZrp5/r1G2nFiu918eIFBQYG6NKlCypatPgftVxRnjz5TG2trKyUN+9f74OCAjRjxjTNnv2N6VhcXJxCQoJN7x8f19rG1rQtnSTZ2NgqIT4uxRxk9fSRlZW1Nq1eovDgAIWHBCo8NFAVqtRO0VaSzp0+qnyFSsjCwiLV85JUvMwbat7ufSUaE3Vw93bt2rZejVq0l0+O3JKkB7Gxirp5Q3MmjZDB8Fc/cXFxuhYeqmKlK6poqQqaMuJjZfXyVYmyleRXq6Fsbe0UERas6Oi76t2hoek6ozFJ8XEPFX3vjrLnzi9rG1utX7FA4SGBCgsO0PWIUBUqXtbUPlNmD9PPV8ND5OjkYgpFSVKJP7bsi7x+VZKU2eOvrRvtHRwVn8o8AgAAAAAAAAAAAAAApDeCUS+Jt7ePXF1ddfLkCRUsWFiSZGdnJx8fX0mSm1tGU9vExETVqVNfHTp0SdaHldU/+7hSuy4pKSnFMRsb2xTHEhONyf58vMYdO7brzp3bqlq1vOm40WiUv/9mderU9Yn13rhxXV27tlf+/AVVpkx5NWnSTPv379Xp0ycfr/Jv92GdbPxevfqpTJlyydr8GfySJEtLy2TnLAxP3zkyJPCSxg/tpeJl3lDeQsVUu3FLbd/4Q5rtn2UbPTt7B2XxfBTSatqmi+7dva0ZEz7TZ199K/csHjIaEyVJ7/f/XB5eycNvjk7OsrCwUM9Pxijg4lkdP7RfR3/bo51b1mngyKkyJibKw8tXHw0alWJcewcnnT52UDPGD1OFqnVUpGQ5NWrZUUvnTknWztrGxvSz5TN8xwyG5POqVL5LAAAAAAAAAAAAAAAA6e3pSRG8EFZWVmrYsIlWrVqmmJj7Kc7fuHHd9LOvb3aFhobIx8fX9NqzZ5e2bv1Jkp64OtHzeryvbNmyKyQkWHfv3jEdO336hCwtLeXt7ZPsusOHf9ft21H68stxWrDge9OrR48+Cg0N1smTx+Xj46u7d+/o2rWrputWrVquIUP6a/fuHXJ2dtX48VP09tttVLx4SYWHh5na5cyZW2fPnjG9NxqNunTpYrI5unHjerI5WrRo/t+CVc/v113blLdQMXXtM1TV6jZVjjwFdP1qWJrhn3Mnj6pAsScHo/6uefv3ZWdnbwooOTg6ydnVTXdv31IWT29l8fRWRvcsWr14tq6GhygiLFirvpupnHkL6s0272r45AXK6J5Fp4/9rqxevroVeV1OLq6mayOvR2j9igWykLRn+yZVql5f7d/vL7+aDeXpk103roXr76GzP2X19Nb96Lu6FfnX9/HnTav1zbihz3WPAAAAAAAAAAAAAAAA6Y1g1EvUpcv7ypgxk95/v7N27Niu8PAwnTlzSuPGjdK8ebNVvHgJSdJbb7XUuXNnNWfODIWEBGvrVn/NmfONPDwebW9mZ2ene/fuKiQkONUt8Z6Hvb29QkNDFBV1S2XLlpeXl7dGjvxMly9f0pEjhzR58gTVrl1Pzs7Oya7bvn2LcubMpapVayhXrjymV7NmLeXi4qqfftqoXLlyq3Tpsho7dqSpvyVLFqpMmfJycXHVtWtXdejQQYWFhWrJkoXatesXxcU92patSZNmOnfurL77bp6CgwP1zTdTdO1ahGn81q3f0cqVy+Tvv0lhYaGaMWOqfvllm7Jnz/l/zYeTs4vCgq4o4OJZXQsP0arvZijw0jnFx8enaBt184YSEuKVOatXKj2lzd7BUc3bv69TR3/T8UP7JUm1G7XU2mXzdPzQfl2LCNWimRN06fwpeXhnk4ODk3ZtXa9NPyxW5LUInTz8qyKvX5VvzjwqXLyMMmXOqvlTRys06IounjmhxbMnysbWTgZLSzk6u+jy+dMKDbqi8JAALZw+VneibiohlfuRJC/fnCpQpKS+mzFBoUFXdP7UMfmvXaZCxUo//2QCAAAAAAAAAAAAAACkI/PcSs893ys5hp2dnaZPn6OVK5dq4cJ5Cg0NlrW1jQoVKqIvvxyvKlWqSZI8PDw1btwkzZw5TcuWLZa7exb16NFHderUlySVLl1W3t6+6tixtWbM+FYFChT6x7fRqNGbGjNmhIKCAjR//vcaO3aSJk8er27dOsrBwVF16tRTt24fJbsmLi5Ou3fvUOfO76Xoz9bWVg0aNNbGjevUu/fHGjZspCZOHKv33+8kR0cnNWnSTG+91VJGo1HHjx/V0KGDZGFhoYIFC6lHjz6aN2+24uLi5OPjq3HjJmrq1En67rv5qly5qipUqGQap2bNOrp165a+/XaWbt26pZw5c2ncuMny9c2WoqbnUaPBWwoOuKjJIz6WtbWN8hYqpkYtO+j3fTtStD178rAKFCn5j8YpX7mWdm/doJULv1Gh4mVUp8nbevAgRotnTdSD2Bhlz51PfYaOl6PTo0Ba9wFfaPWSOdq8ZomcXdz01jtdVbhEWUnSR4NHadm8qRoz5EPZ2dmrdMWqatGhuySp8dudtHD6WI395CPZOziqaKnyqlq3iYIDLqZZW5fen2rp3CmmayrXaqRq9d7UzRvX/tG9AgAAAAAAAAAAAAAApAeLpKQ09gh7RURG3kuxi1l8fJxu3oxQpkyesra2MR03GCyUMYOdLCxfTt4rKTFBt24/kNH4Sk/ha83KyqCL16IVG5+Y3qUAeE3ZW1sqb1YnJSQY02yT1u81AHhRrKwMcnNzVMOpe3Q6/G56lwPgNVTYy0WbelVWVNT9Jz4XAcC/iWciAK8CnosApDeeiQC8Cngmwv/LwkJyd3d+ekOZ2YpRRmOSbt1+IIPB4qWNRygKAAAAAAAAAAAAAAAAePWYVTBKIqwEAAAAAAAAAAAAAAAAQDKkdwEAAAAAAAAAAAAAAAAA8KIRjAIAAAAAAAAAAAAAAABgdghGAQAAAAAAAAAAAAAAADA7BKMAAAAAAAAAAAAAAAAAmB2CUQAAAAAAAAAAAAAAAADMDsEoAAAAAAAAAAAAAAAAAGaHYBQAAAAAAAAAAAAAAAAAs2N2wSiDwUJWVoaX8jIYLJ67vtjYWM2dO1Nt2zZXjRqV1LBhTQ0dOlBXrlx+5j7i4+O1fv2PaZ5v0aKxNm/e8Ex9hYWF6sCBfc889uOSkpK0Zs0q0/tRo4Zr1Kjh/6ivp5k3b7Z69Oj2wttK0voVC/XVZ33+YWXSV5/10foVC//x9X+6cS1cJ4/89n/3AwAAAAAAAAAAAAAAAMkqvQt4kQwGC2Vws5elwfKljJdoTNTtqFgZjUnP1D4mJkYffthVsbEx6tmzr/Lkyafbt29rzZqV6t69ixYsWCovL++n9rN9+xYtWjRfTZo0S/X83LmL5OBg/0w1jR07UiVKlFLFipWeqf3jjh07okmTxumtt1o+97VI6bsZE5SvUHEVLVU+vUsBAAAAAAAAAAAAAAD4zzO7YJSlwVKDdw/WlTtX/tWxcrnm0tgqY2UwWDxzMGrhwrmKirqlJUtWydnZWZLk4eGpTz75XNeuXdOKFd+rb9+BT+0nKenJ47m5uT1TPc/S1791LVLBfAIAAAAAAAAAAAAAALwwZhWM+tOVO1d09tbZ9C4jGaPRqM2bN6pt2w6mUNTjhg0bIWdnJ9P748ePaurUSQoIuCIfHx916dJN1arV1JEjhzR69BeSJD+/Mlq1ar08Pb2S9dWiRWN16dJNDRo0Vo8e3VS2bHkdP35Ux44dVZYsWdW37wCVL19Ro0YN17FjR3Ts2BEdPXpY06fP0fXr1zRt2mQdOnRQBoOFateupw8/7C0bG5tkY0REhKtXrw9MdUydOkuSdP/+fX3++RDt3btbrq4Z9MEHPVWnTj1JUlxcnGbMmKpt236SJJUv/4b69PlYLi6uzz2fgYEBmjp1kk6dOiEHBwc1bfqWOnZ8VwbDo90hExMTNHbsSG3btkWubhn1ZtuuKvNG9af2G3n9qj75sI0++PgL/bB4tm7fuqGCRUurS88hcnR2kSQd/W2PVi+Zo9u3IvVG9XoyGo2m6xdMHytJ6txjsOlYtxbV1X/4ZOUvUkLnTh7Ryu9m6GpYsDK4uavum61VtU4TLZg+VhfOHH/0On1MnXoM1icftlGTVp21feMqlSxfWYcP7FKnjwapVIUqkqSEhAQN6Npc3fp9poLFSj/3HAIAAAAAAAAAAAAAAJgzQ3oX8LoICwvV7dtRKl68ZKrn3d3dZWtrJ0m6eTNSAwf2UYMGjbRo0XK9805HjRr1hY4fP6qiRYurV6/+ypIlq9at81eWLFmfOvaiRfNVq1ZdLV68Qnnz5tO4cV/KaDSqd++PVaRIMbVu3U6jR09QfHy8evXqrgcPYjV9+hyNGDFW+/fv1YwZU1P0mSVLVo0aNV6StG6dv4oWLS5J2r17h/LnL6hFi1aoZs06Gjt2hKKjoyVJs2d/o3PnzmjChK81depsRUdHa9iwwSn6fprbt2/ro4+6yt3dXXPmLFT//oO0evUKrVq1zNTm5MkTkqTvvvteNeo11bdTvtT1iLBnHuOnNd/rvT5D9fEXUxR4+by2blgpSQoPCdTsSV+oap0m+nT8bCUmJujSuZPP1KcxMVGzJ36h0hWracTXi9S0dWct/fZrhYcEqlXnHsqVr7BqN35b3QeMMF1z+fwpfTJuluo1a6sSZSvpyK+7TOfOnjgsSytL5S9c4pnvCwAAAAAAAAAAAAAA4HVBMOoluXPntiTJxcXFdOz3339T7dqVTa927d6WJK1Zs0plypRT8+at5OPjq7p1G6hJk2ZauXKprK2t5eTkJIPBoEyZ3GVpafnUsStW9FODBo3l7e2jjh3f1fXr13Tr1k05OTnJyspK9vb2cnFx1W+/7Vdk5HUNGzZSuXPnUenSZdWv3yD9+OMqxcTEJOvT0tJSzn+soJQpk7usra0lSUWKFFPbth1MY8XFxSkoKFAPHjzQmjUrNWDAJypUqIhy586jYcNG6OjRw7p8+dJzzeW2bf6ytbXTwIGfKkeOnKpcuZq6dv1AS5cuMrVxd8+sjz8eohw5cqphszbKU7CY9v686ZnHaNyqk3LmLahc+QqpfOWaCrx0XpK0f4e/8hUsptqNW8rTO5vavNtbGTK6P1OfsTH3dT/6rlxc3eSexUPlq9RW38++kqtbJjk4PvosbO3sTStTSVLNhi2UxcNbWT19VNavpk4c/lXxcXGSpMMHdqp0xWoyPMN3AAAAAAAAAAAAAAAA4HVjllvpvYr+DBFFR98zHStatLgWLFgqSdq16xf9+OMPkqSgoADt27dHtWtXNrVNSEiQr2+2fzT249c5Ojqa+vu7wMAA+fpmSxbeKlq0mBITExUWFqK8efM/dSxvb2/Tz05Oj7YGjIt7qPDwUMXHx+uDDzona280GhUSEqTcufM88/0EBQUof/6CsrL66+tbpEhx3bx5U/fuPZrfvHnzJTufPVdeRYQGPfMYWT19TD/b2TsqMfHRfIWHBso351+1WllZySdH7mfq09HZRVXrNtHiWV9p0w+LVaxMRVWqUV+OTim3VvxTpiwepp8LFS8jK2trnTp2UEVLVdCxg3vVY8joZ74nAAAAAAAAAAAAAACA1wnBqJfE29tHrq6uOnnyhAoWLCxJsrOzk4+PryTJzS2jqW1iYqLq1KmvDh26JOvj8aDP80jtuqSkpBTHbGxsUxxLTDQm+/NpDIaUqxclJSUpMTFRkjRjxreyt3dIdj5jxowprrl69aqSkozy9PQyHbO0tPqjTpsU7Y3GxGR/GgyGv51PkqWV9TPdg6SUbR+br7/PndVjbS0sLJKd//O+//TOe31Vvd6bOnpwn44d3Kvd2zboo0GjVLRU+VTrsLb+614tLS1VukJVHfl1t6ysrGVn76jc+Ys88z0BAAAAAAAAAAAAAAC8TthK7yWxsrJSw4ZNtGrVMsXE3E9x/saN66affX2zKzQ0RD4+vqbXnj27tHXrT5IehW9elMf7ypYtu0JCgnX37h3TsdOnT8jS0lLe3j5PvPZpvL19ZGlpqTt37pjuydHRUVOnTtKtW7dStJ8+fZKWLVtseh8dHa0MGVxNdZ4/fzbZqlenTp1UhgxucnF51ObKlSvJ+gu8dFae3v9sxa1k9+Gb07StnvRoxavQwMum95ZWVnoQ+9e2g5HXwk0/34m6paVzpyizh7caNm+nT8fNUsGipXTi0P5HDZ5hPsv51dSpI7/pxKH9KvNGtRf6XQAAAAAAAAAAAAAAADAnBKNeoi5d3lfGjJn0/vudtWPHdoWHh+nMmVMaN26U5s2breLFS0iS3nqrpc6dO6s5c2YoJCRYW7f6a86cb+Th4Snp0UpT9+7dVUhIcKpb4j0Pe3t7hYaGKCrqlsqWLS8vL2+NHPmZLl++pCNHDmny5AmqXbuenJ1Tbvdmb28vSTp37qwePnz4xHEcHBzVuPGb+uqrsTpy5JACAq5o5MjPFRYWkmxVqD8VL15Ku3bt0Jkzp3Tq1Alt3bpZZcs+WlWpTp36io+P1/jxoxQYGKA9e3Zq/vzZatashSkodO1ahCZPHq+AgCtau+I7BQdcVJU6jf+vuZKkyrUaKejKeW1avURXw4L1w6KZuhl5zXQ+R+4COnvisM6eOKyw4AAt/fZr04pSjk7OOvLbHq1c+I2uXw3ThTPHFRJ4ybQ1n62tna5HhOrunag0x89TsKhs7Oy0f6e/ylaq/n/fDwAAAAAAAAAAAAAAgLkyy630crnmeiXHsLOz0/Tpc7Ry5VItXDhPoaHBsra2UaFCRfTll+NVpUo1SZKHh6fGjZukmTOnadmyxXJ3z6IePfqoTp36kqTSpcvK29tXHTu21owZ36pAgUL/+D4aNXpTY8aMUFBQgObP/15jx07S5Mnj1a1bRzk4OKpOnXrq1u2j1OcgVx6VLVte3bt30fDho546Vo8efTV9+hQNHTpICQkJKlGipCZM+FqWlim332va9C0FBQVowIDeSkqSGjZsovr1HwWbHBwcNXHiVH399UR16fKOMmRwU8uWbdS+fWfT9RUqVNKdO3fUqdM7ypQ5qz4aNEpumTL/w1n6SxZPb300aJRWLvxGm1cvVomyfipa8q9t8CpUra3L509pxvihsndwUtPWXXQ9IlSSZGVtrR6DR2n5/Oka0b+r7OztValGA/nVbChJ8qvVUN/NGK+IL4PVfcCIVMe3sLBQmYpVdfz3/cqeO///fT8AAAAAAAAAAAAAAADmyiIpKSkpvYt4ksjIe/p7hfHxcbp5M0KZMnnK2trGdNxgsFAGN3tZGlIGbf4NicZE3Y6KldH4Sk/ha83KyqCL16IVG5+Y3qW8MN9O+VJZPL3VpFXnpzcGkO7srS2VN6uTEhKMabZJ6/caALwoVlYGubk5quHUPTodfje9ywHwGirs5aJNvSorKur+E5+LAODfxDMRgFcBz0UA0hvPRABeBTwT4f9lYSG5u6fc+Sw1ZrVilNGYpNtRsTIYLF7aeISi8LJcuXBGQZfP69jv+zR88oL0LgcAAAAAAAAAAAAAAOCVZlbBKImwEszXqaMHtW3DSjVr+67cs3ikdzkAAAAAAAAAAAAAAACvNLMLRgHmqkmrTmrSqlN6lwEAAAAAAAAAAAAAAPCfYEjvAgAAAAAAAAAAAAAAAADgRSMYBQAAAAAAAAAAAAAAAMDsEIwCAAAAAAAAAAAAAAAAYHYIRgEAAAAAAAAAAAAAAAAwOwSjAAAAAAAAAAAAAAAAAJgdglEAAAAAAAAAAAAAAAAAzI7ZBaMMBgtZWRleystgsHiu2nr06KZ582ab3s+bN1t161ZVvXrVdP9+9IueCpOIiHD5+ZVRRET4U9seOXJIfn5l/rVanubw4d8VGBiQbuM/TbcW1XX+1LEX0teh/Tt1907UC+nrWURev6puLaor8vrVf6X/Id1ba/8O/3+lbwAAAAAAAAAAAAAAgOdlld4FvEgGg4XcMtjLYGn5UsYzJiYq6nasjMak57727t27WrBgrgYO/FTlylWQo6PTv1DhI1myZNW6df7KkMHtXxvjRendu7umTp2lHDlypncp/6qbN65qzqQvNHrGsvQuBQAAAAAAAAAAAAAAwCyZXTDKYGmpsI8HKO7KlX91LJtcueT91QQZDBb/KBgVE3NfklSmTDl5eHi+6PKSsbS0VKZM7v/qGHg+Sc//lQEAAAAAAAAAAAAAAMBzMKtg1J/irlzRgzNn0ruMNEVEhKtlyyaSpLffbqr69Rvp00+HJ2szb95shYaGyNHRUVu3+svGxkZt2rTTO+90lCQZjUYtX75EP/64WjdvRqpw4SLq02eAcufOk+Z4q1atl6enl+7evauZM6dp795diot7KD+/Kurde4BcXFxM1/zww3ItWDBXktS0aXO99153WVikvnXgihXfa9myJYqJiVGDBo10+fIl1a/fSA0aNNbDhw81b95sbd++RXfv3lHp0mXVr98gZc3qkaKfFi0aS5J69fpAnTu/p3fffV+nTp3QN998rYsXz8vNLaPeeaeD3nyzRap1GI1GzZ79jTZuXKukJOntt9vI33+jOnwwQDkKFFO3FtXVsEV77dyyTrnzF1GPwaO0Z/smbV2/QpHXI2Rn76Cyb1RX6y49TauObVz1nXb8tFbGJKOat+uWbLwh3Vur8dud9Eb1epKk86eOaeLwvprzww5J0qVzJ7V6yRwFX7koCwsL5StUXB0+HKAMbpn0yYdtJEmffNhGnT4apDeq19PR3/Zo7bJ5irx+Vd7Zcqp5+/eVv3CJVO/13MkjWvndDF0NC1YGN3fVfbO1qtZ59J26eydKy+dN1amjB2Vja6tK1evrzbZdTdce/W2Pdviv1Z2omypYrLQ69xgsRydnSdLl86f1w+JZCgm4JGfXDKrXtI2q1m1iunb/Dn/5r12mmzeuyssnh1p2+lD5ChVPtUYAAAAAAAAAAAAAAID0ZEjvAl5HWbJk1dy530mS5s79Tr17f5xqux07tsvGxkbz5y9R27btNXPmNAUHB0mSFiyYq2XLlqh3736aP3+JPDw81b9/T8XGxj51/E8++ViXLp3X+PGTNXnyNwoMDNTo0cOTtdmy5SdNnvyNhgz5TGvWrNJPP21Mta+tW3/SvHlz1KtXf82aNV8REeE6duyI6fxXX43R7t07NHToF5o1a4ESEhI1ZEh/GY3GFH3NnbtIkjRq1Hi1adNegYEB6tWru0qUKKX585eoS5dumj59inbt2pFqLYsXL5C//yZ9/vkoTZnyjfbv36uwsLBkbU4cOqBBX07TW++8p/Onj2n5/Glq1rarRk5drHbd+mnvL5t17Pd9kqTd2zZo+6bV6vjhQPX7bKL2/vzTU+f2TzH3ozVt9BAVLl5GX0xeoD7Dxuv61TD5r/lekvTJ2JmmP8u8UV0hgZe0YPpYNWjeTp9PnKfylWtp6qjBuh4RlqJvY2KiZk/8QqUrVtOIrxepaevOWvrt1woPCZQkzRg3THeibunjL6aoW7/PtW+Hv3b4rzVdf2DXFnXrO0z9h09S8JUL2rL20XZ+EaFBmvRFP+UrWExDx89W47c7atWimTr62x5Jj0JRy+Z9rfrN2mrYhLkqWKy0po0erKibN555XgAAAAAAAAAAAAAAAF4WglHpwNLSUhkyuEmSMmRwk5OTU6rtXF1d9dFHfeTj46u2bTvIxcVV586dVVJSklavXqmuXT+Qn19V5ciRU4MGDZXBYNCWLZufOPalSxd17NgRDRs2UgULFlahQkX02WcjtXfvbgUHB5raDRnymfLlKyA/v6p6++02Wrt2dar9rVmzSm+/3UY1atRSrly59emnX8jW1laSdPfuXW3Zsln9+g1SqVJllCdPXn3++UgFBwfp999/S9GXm9ujOXF2dpGDg4M2bPhR+fLl1/vvf6Rs2XKofv1Gat68lZYuXZRqLT/++IPee6+7ypWroHz5Cmjo0OFK+tuedVVqN5aHdzZ5+eaQnZ29On44QKUqVJF7Fg+VrlhV2XLmNQWM9mzfpFoNW6hYmYryzZlHHbqnHmBLTXxcnBq26KCGLTrIPaun8hQoqlIVqpj6dnLJYPrTxtZWW9evVOVaDVW+ci1l8fRWzYbNVaRkOe3aui5F37Ex93U/+q5cXN3knsVD5avUVt/PvpKrWyaFBl7WlQun1bnHYGXLlVf5ChVXu2595ej413esebv3lSNPAeXKV0ilK1ZTSODlP+53o3xz5FWzd96Th3c2vVGtnmrUb6Yt65ZLkn7evEY16r+litXqysM7m95q103e2XIlC10BAAAAAAAAAAAAAAC8KsxyKz1z4enpLcs/tnSTJAcHByUmJigq6pbu3r2jQoWKmM5ZWVmpQIFCCgoKfGKfQUEBcnJyVrZs2U3HsmfPIWdnFwUGBsrJyUn29vbKlSu36Xy+fAW0YsX3qfZ3+fJFtWvXyfTexcXF1HdISLCMRmOyOl1cXJUtW3YFBQWofPmKT6w1MDBQhQoVTnasaNFiWrcuZUjr9u3bioy8oYIF/2qfLVuOZNsDSlKmLH9t4Zc9d35Z29hq/YoFCg8JVFhwgK5HhKpQ8bKSHq2g1KhlB1N7L98csrWze2LNf3J1y6iK1epq+8ZVCgm4pIjQIIUEXVae/EVSbX81NEiH9+/U7m0bTMcSEhJU+I9aHufo7KKqdZto8ayvtOmHxSpWpqIq1agvRydnnT1xWI5OLnLP6mlqX6KcnyQp8vpVSVJmDy/TOXsHR8XHx/1xv8HKmbdgsrFy5S+sXVvXP6oxLEiNH5sPScqVr5AiQoOeaU4AAAAAAAAAAAAAAABeJoJRrzArq5QfT1JSkmxsbFNtbzQmymhMfGKfNjY2T73WwiL5QmJJSUZZW1unet2j4FbS39onPXGsxESjEhNTbqX3LLWmde2fAbK/rxD19/fW1n/1efrYQc0YP0wVqtZRkZLl1KhlRy2dO+WJ11taPvaZWFgkr+2xuY+6eUOjBn2g7LnyqVDx0qpcq5FOHvlVVy6cSeVOH11b983Wqli1bvJ605jDd97rq+r13tTRg/t07OBe7d62QR8NGiXLVL4zf2cwWCY/8Mc9pjZWktFo2vbw8bn7k9FoVFIq2yICAAAAAAAAAAAAAACkN7bS+w9ycnJSxoyZdPr0SdOxhIQEnT9/LtlKUKnJli2HoqPvJds2LyDgiu7fv2+6Nibmvq5ejTCdP3PmtLJly5Fqfzlz5tL58+dM7+/fj1ZoaKgkydvbR5aWlsnqvHPntkJDg59a56Nas+v06VPJjp0+fSLVa52dneXunlnnz581HQsLC9W9e/fS7H/P9k2qVL2+2r/fX341G8rTJ7tuXAvXn0EvL98cCrp03tQ+8vpVxdyPNr23srLWg9iYv85fCzf9fPTgXjk6OavnJ2NUs2EL5S1UTDeuhSvpj77/lqmSh5evIq9fVRZPb9Nr9/YNOnX0YIq670Td0tK5U5TZw1sNm7fTp+NmqWDRUjpxaL+yenrrfvRd3Yq8bmr/86bV+mbc0DTn4fEaAi4mD25dvnBaHl6+kqSsXr66cvFssvNXLpxR1j/OAwAAAAAAAAAAAAAAvEoIRv1HtWrVVvPmzdbevbsVGBigceO+VFzcQ9WoUeeJ12XPnkMVKryhkSM/19mzp3XmzCmNGjVcJUqUUq5ceSRJBoNBX375uS5ePK9fftmuH35YoVat2qbaX/PmrbRq1TLt2vWLAgMDNGbMSMXGxsjCwkIODg5q3LiZJk8eryNHDunSpYsaMeIzZcmSVWXLlk+1P3t7ewUEXFZ0dLSaNWupixcvaPbsbxQcHKSfftqoNWtW6a23WqZZy7x5s3Xo0EFdvHhBY8aMeHTi7ymkPzg6u+jy+dMKDbqi8JAALZw+VneibiohPl6SVKPBW/p582od/nWXwoIDtGjGeFkY/vorkyN3fu39ZbPCggN0/tQxbduwynTOydlFtyKv6+yJw7pxLVz+Py7Tkd/2mPq2sbWXJIUGXtKD2FjVatRSv+/7RT9vWq3rV8O0feMP2r5hlbJ6+aSs28lZR37bo5ULv9H1q2G6cOa4QgIvyTdnHnn55lSBIiX13YwJCg26ovOnjsl/7TIVKlY61Tl4XNW6TRUSeEk/fj9X18JDtH+nv3b6r1O1em9Kkmo3bqkdP63RgV1bdS08RGuWzFFo0GX51Wr41L4BAAAAAAAAAAAAAABeNrPcSs8mVy6zGONJWrdup/v372v8+FG6fz9aRYoU17Rps+Xm5vbUa4cOHaHJk8erd+8PZTAYVLlyVfXs2c903tnZWRUrVlLPnu/LxsZWXbp0U9WqNVLtq1atugoNDdGECWMUFxenJk2aycPD07QNYI8efTR9+hQNHTpI8fHxKlOmnKZMmZHmNnstWrTWN99MVVhYqHr16q/x4ydrxoyvtXz5EmXN6qEePfqqYcMmqV7bpk073bwZqaFDB8pgsFS7dp10/PjRVLcklKTGb3fSwuljNfaTj2Tv4Kiipcqrat0mCg64KEmqUKW27t25reXzpinu4QPVb/aOQoIum65v2uZdLZw+VqMGvi8Pb181bd1ZcyY9CmOVqVhNF8+c0OyJwyULC+XInV8tO3TX+pULFR8fJ2cXV5WvUltzJo3QW+26qVajFurS8xNtWLlQqxfPVmYPL3XtM0z5ChVPUbeVtbV6DB6l5fOna0T/rrKzt1elGg3kV/NRQKlL70+1dO4U031VrtVI1eq9qZs3rqU6D3/KlDmregwerR8Wz9a2DauU0T2LWnbsrko16j+6pzeq607ULa1fPl93bt+Sb4486jNsgjy9sz2xXwAAAAAAAAAAAAAAgPRgkZSUlJTeRTxJZOQ9/b3C+Pg43bwZoUyZPGVt/VfAxmCwkFsGexksLV9KbcbEREXdjpXR+EpPoUJDQ9S6dTOtXfuT3N0zv9C+jx49LC8vb2XN6iHp0ZZ+jRrV0ujRX6lUqTIvdKyn+fXX/cqfv6ApHBYVFaXGjWtr0pwVcsqY5aXWAgB/sre2VN6sTkpIMKbZJq3fawDwolhZGeTm5qiGU/fodPjd9C4HwGuosJeLNvWqrKio+098LgKAfxPPRABeBTwXAUhvPBMBeBXwTIT/l4WF5O7u/ExtzWrFKKMxSVG3Y2UwpL512r8x3qseioqMvKHffjsga2trubi4vvD+9+zZqZMnT2jAgCFycHDUqlXL5ODgqMKFi77wsZ5m3bo1SkxMVPfuPWVhYaFvv52lQoUKK3NWT8XGJ770egAAAAAAAAAAAAAAAJB+zCoYJf03wkov06pVy7V27Q/q2PHdNLev+3907fqBJk4cp759P9LDhw9VpEgxTZw4Tba2ti98rKfp12+gJk0ap+7duygpKUmlS5fT2LETdYevAwAAAAAAAAAAAAAAwGvH7IJRSK57957q3r3nv9a/g4Ojhg0b8a/1/zwyZ86iMWMmJjtmZWXQnWvR6VQRAAAAAAAAAAAAAAAA0oshvQsAAAAAAAAAAAAAAAAAgBeNYBQAAAAAAAAAAAAAAAAAs0MwCgAAAAAAAAAAAAAAAIDZIRgFAAAAAAAAAAAAAAAAwOwQjAIAAAAAAAAAAAAAAABgdghGAQAAAAAAAAAAAAAAADA7ZheMMhgsZGVleCkvg8HiuWrz8ysjP78yunr1aopza9f+ID+/Mpo3b/aLmopXWkDAFX3++RA1blxHtWtX0QcfdNGBA3vTuywAAAAAAAAAAAAAAACYCav0LuBFMhgs5JbBQQbLl5P3MiYaFXU7RkZj0jNfY2VlpX37dql581bJju/evVMWFs8XtPqvOnnyuPr166natevqq6+mysHBQTt3/qLBg/vr889HqUaNWuldIgAAAAAAAAAAAAAAAP7jzC4YZbA0aNv807oVcf9fHSujp6Nqdyksg8HiuYJRxYuX0t69u5MFo+7fj9apUyeVN2/+f6PUV0pSUpJGj/5CNWvW1sCBn5qOt2/fSbdvR+mbb6aoatXqsrS0TMcqAQAAAAAAAAAAAAAA8F9nVsGoP92KuK/IkOj0LiNVlStX0TfffK3796Pl6OgkSdq/f6+KFy+h2NhYU7v4+HjNmjVNP/+8TVFRt5Q5cxa1b99ZTZu+JUlq0aKx2rbtIH//Tbp06YKyZcuhwYOHqUCBgpKkEyeOaebMabpw4ZwsLCxUokQpDR78mdzd3SVJBw/+qunTJys0NFQlS5aWj4+PYmJi9OmnwyVJa9eu1vfff6fbt6OUP39B9e07ULlz50n1ngICrmjatEk6efKEEhMTVKBAIQ0c+Kly5MiZou3Jk8cVEhKssWMnpTjXrl0n1a5dTwbDoxW/AgMDNHXqJJ06dUIODg5q2vQtdez4rgwGg+bNm63w8DA5OTlp8+YNcnXNoIEDP1VISJAWLpynpCSjOnbsqjZt2kqSurWorg7dP9bmNUt1706Uipd5Q+3e7y87e3tJ0p7tm7R1/QpFXo+Qnb2Dyr5RXa279JTB0lILpo+Vo5Ozbt+K1PFDB+Tk7KI323ZVxap19NvubVo+f7q+mrfGFOY6/OsurVw4Q2NnLn9tVgEDAAAAAAAAAAAAAAB41bycPedgkitXHrm7Z9Gvvx4wHdu9e6cqV66WrN3ixQu0f/9effnleC1dulr16zfS5MnjdevWTVOb+fNnq127Tlq4cJmcnJz09dcTJEnR0dEaOLCPypWroMWLV2rSpOkKDQ3VkiULJElhYaEaPLifatSorYULv1fBgoW0Zs0qU7979+7WggVz1KfPAM2f/72KFy+pXr3e1927d1Pcj9Fo1KBBfeXp6aWFC5dq5sz5SkxM1MyZU1O9/0uXLsrBwVHZs+dIcc7NzU0FChSUhYWFbt++rY8+6ip3d3fNmbNQ/fsP0urVK7Rq1TJT+19+2SYnJ2ctXLhMhQoV0WefDdZvv/2qadNmq0WL1po+fbKioqJM7dcum6/WXXqo//DJCg2+oiWzJ0qSzp8+puXzp6lZ264aOXWx2nXrp72/bNax3/eZrt3hv1bZcuXT8MnzVapCFS2ZPUkx96NVvKyf4uIe6tzJI6a2h/fvVNk3qhOKAgAAAAAAAAAAAAAASEcEo9JB5cpVtG/fbklSXFycfv/9V1WuXDVZmzx58mnw4M9UpEhReXv7qH37zkpISFBISLCpTf36jVWlSjVly5ZdrVu/o7Nnz0iSHj58oI4du6pTp67y8vJWsWIlVK1aDQUEXJEkbdy4TgULFlanTl2VLVsOde36gQoVKmLqd+nSRWrfvrMqVaosX99seu+97sqa1VNbt25OcS8PHz7Um282V48efeXt7aP8+Quofv1GprH+Ljr6nhwdHZ86R9u2+cvW1s608lTlytXUtesHWrp0kamNq2sGde36gby9fVS/fiNFR0erd+/+ypEjp9q0aafExESFhj42X83aqFjpisqRJ79ad+mpQ/t3KOZ+tOzs7NXxwwEqVaGK3LN4qHTFqsqWM6/CQwJN1/pkz616b7ZR5qxeatKqs+LjHioiJFB29vYqXqaiDh/YZZr7k0d+VdlK1Z96jwAAAAAAAAAAAAAAAPj3mOVWeq86P7+qGjp0kBISEnT48EHlypVHbm4Zk7WpUqWafv/9V02bNlnBwYG6cOGcJCkxMdHUxsfH1/Szg4OjEhISJEmZMrmrfv1GWrHie128eEGBgQG6dOmCihYtLkm6fPmiChQolGy8IkWKmlaECgoK0IwZ0zR79jem83FxcclCWX+yt7fXm2+2kL//Jp07d0bBwYE6f/68MmbMmKKtJLm4uCo6+t5T5ygoKED58xeUldVfX9EiRYrr5s2bunfv0fWenl6mVZlsbW1Nxx69t/uj7njZ/XF97vxFTX3lyJ1fRqNR1yNClSNPAVnb2Gr9igUKDwlUWHCArkeEqlDxsqb2WT29/7pnh0fBroTER/Nd1q+mFs/6Su9066uTh3+Vq5u7sufO/9R7BAAAAAAAAAAAAAAAwL+HYFQ6KFashCTpxIlj2r17l6pUqZaizZw5M7Rhw1o1aNBY9eo1VP/+g9WiReNkbaytrVPt/8aN6+ratb3y5y+oMmXKq0mTZtq/f69Onz4pSbK0tJSUlOyapKS/3icmJqpXr34qU6ZcsjaprfQUExOj997rIFfXDPLzq6JateoqODhQy5YtSbW2AgUKKjY2VkFBgSm20wsLC9WkSeM1aNCnsrGxSXGt0ZiY7M9H95GcwZD2ImiWVn+1NxqNkiQLCwudPnZQM8YPU4WqdVSkZDk1atlRS+dO+du1qcz1H1NWpGQ5GRMTdeH0MR35dZfKvsFqUQAAAAAAAAAAAAAAAOmNrfTSgZWVlSpWrKR9+3Zr//7dqlIlZZBm3brV6tt3oLp376maNesoNjb2mfvfvXuHnJ1dNX78FL39dhsVL15S4eFhpvM5cuTS+fPnkl3z+Htf3+y6ceO6fHx8Ta9Fi+abglWPO3r0sCIjb2jq1Flq27aDypYtr2vXriYLWj0uf/6CypEjp5Yv/z7FuTVrVunSpQvKlMld2bJl1/nzZ02rYEnSqVMnlSGDm1xcXJ95Lh4XEnjJ9HPg5fOysrJWVq9s2rN9kypVr6/27/eXX82G8vTJrhvXwvX38FharK1tVLJ8ZR09uFdnjh9SWT+CUQAAAAAAAAAAAAAAAOmNYFQ6qVy5qjZsWCc3t0zy8vJOcd7FxVX79u1WWFiojh8/ppEjP5P0aEu7p3FxcdW1a1d16NBBhYWFasmShdq16xfTtU2bvqXTp09qyZKFCg4O0qJF83X8+FHTtnStW7+jlSuXyd9/k8LCQjVjxlT98ss2Zc+eM8VYrq6uio2N1Z49OxUREa4NG9Zq9eqVio+PT7U2CwsL9es3SFu2bNJXX43RxYsXFBBwRXPmzNAPPyxXv34DZWlpqTp16is+Pl7jx49SYGCA9uzZqfnzZ6tZsxamOp/X+uULdf70MV25cEYr5k9TxWp1ZGdvL0dnF10+f1qhQVcUHhKghdPH6k7UTSWkcQ+pKetXU/t+2awMmTLLyzflPAEAAAAAAAAAAAAAAODlMsut9DJ6ptzy7VUbo1y5ikpISFDlylVTPT9kyGeaOHGs2rdvpcyZM6tx4zdlaWmpixfPq0KFN57Yd40atXX8+FENHTpIFhYWKliwkHr06KN582YrLi5OHh6eGjlynKZPn6J582arbNnyqly5qqysHn0dataso1u3bunbb2fp1q1bypkzl8aNmyxf32wpxipSpJg6deqqiRPHKS4uTrlz51G/foM0duxI3bhxXZkzZ0lxTalSZfT11zO1cOE89e37oeLi4pU7dx6NHz9F5ctXlCQ5ODhq4sSp+vrrierS5R1lyOCmli3bqH37zs871SYVq9XRwuljFXM/WuX8aurtzh9Jkhq/3UkLp4/V2E8+kr2Do4qWKq+qdZsoOODiM/ddoHAJ2dk5qGylGv+4PgAAAAAAAAAAAAAAALw4Fklp7Xn2ioiMvKe/VxgfH6ebNyOUKZOnrK1tTMcNBgu5ZXCQwfLlLIRlTDQq6naMjMZXegpTuHLlkhISEpQvXwHTsQEDeqtAgUJ6993307GyF8/KyqCL16LVvmkV9R8+WfmLlPhXxomNua+PuzbX8MnzlTmr178yBoD/JntrS+XN6qSEBGOabdL6vQYAL4qVlUFubo5qOHWPToffTe9yALyGCnu5aFOvyoqKuv/E5yIA+DfxTATgVcBzEYD0xjMRgFcBz0T4f1lYSO7uzs/U1qxWjDIakxR1O0YGwz/bau2fjPdfC0VJUlhYqMaMGakvvhglX9/s+v3333T48O96//0e6V3af05SUpKO/LpbR37drdz5CxOKAgAAAAAAAAAAAAAAeEWYVTBK+u+GlV6mypWr6cqVyxozZqRu346Sr292ffHFaOXJkze9S/vPsbCw0OrFs2UwGPTRkNHpXQ4AAAAAAAAAAAAAAAD+YHbBKDybjh3fVceO76Z3GS/NnB92/Gt9j56x9F/rGwAAAAAAAAAAAAD+x95dh0Wx9XEA/7IgLYJiIGKLqKRiY2FjoWJgXcXAxLh2x1VRVBQsVOwO7O7uuCZICAK2YiBI7M77By9zWdiFRVG83O/neXxkZ86c85vZ2ZmzZ86eQ0RE30eS2wEQERERERERERERERERERERERHlNHaMIiIiIiIiIiIiIiIiIiIiIiKiPIcdo4iIiIiIiIiIiIiIiIiIiIiIKM9hxygiIiIiIiIiIiIiIiIiIiIiIspz2DGKiIiIiIiIiIiIiIiIiIiIiIjyHHaMIiIiIiIiIiIiIiIiIiIiIiKiPCfPdYySSNSgoSH5Jf8kErVsxebgYA8HB3u8evUqw7p9+3bDwcEe/v5+AIDZs6dj9uzpAAB/fz8MHToAAHDkyEG4uLQRt7t9+ybCw59959EiIiIiIiIiIiIiIiIiIiIiIsqbNHI7gJwkkajByFAHEnX1X1KeTCpFzMd4yGSCyttoaGjg8uXz6Nixi9zyCxfOQU3tn45Ww4ePVrh948ZNUbu2Q5p0g+DjsxKlS5fJZvRERERERERERERERERERERERHlXnusYJVFXx2HfBfgQHflTyypoaoZWw0ZDIlHLVscoG5uquHTpglzHqK9fY/Hw4QNUqFBRXKavr69wey0tbWhpaX9/4ERERERERERERERERERERERE/wF5qmNUqg/RkXjzLDS3w1CoXr36WLZsCb5+jYWeXkrnpytXLsHGxhbx8fFiutRp9CZNmi63/ZEjB7F27Srs3v3PlHoeHgPRp09/9O3rjoMH92Hbtk148SIaenp6cHRshhEjRkNdXV3M8+nTILx//w4dOnTC+fNnsGHDdjH/bds24+LFc1i+fM3POgRERERERERERERERERERERERD+dJLcD+K8pW7Y8jI2L4Nq1q+KyCxfOoV69htnOa/XqjQCA2bPnw9W1J+7evY3Fi73g7j4E27YFYPToCTh8eD8uXTovbnP8+BH07z8IXl6L0by5E0JDQ/D8eYS4/syZk2jcuNn37yARERERERERERERERERERER0W+AHaNyQb169XH58gUAQGJiIm7evIZ69RpkOx8jIyMAQP78BtDV1YWOji7Gj5+CBg0cYWJSHI0aNUGFChXx7FmYuI2FRWU4ONRHpUpVYGpaApUqVcHZs6cAAK9evcTTp4FwdGySA3tJRERERERERERERERERERERJR72DEqFzg4NMC1a1eQnJyM27dvoGzZ8jAyKvjD+VpYVEL58ubw9/fD5Mlj4eraAY8fP4RUKhXTmJiYyG3TtGlznD17GkDKaFF2dtVyJBYiIiIiIiIiIiIiIiIiIiIiotzEjlG5wNraFgBw//49XLhwHvXrN8yRfK9fv4q+fXvi/ft3qFWrDv76az6srGzk0mhqasm9dnRshrCwEERFReLs2dNo0oTT6BERERERERERERERERERERHRv59GbgfwX6ShoYHatevi8uULuHLlAnr2XJsj+R48uBetWrXFn3+OAwAkJycjOjoK1apVV7qNsbEx7Oyq4fDhAwgNDUb9+o45EgsRERERERERERERERERERERUW7Kkx2jCpqa/fZl1KvXAHPmzETx4qYoXtz0u/PR0dHBs2ehMDe3gIFBATx8+DdCQ0OgpqaGzZvX4/37d0hMTMw0jyZNmsPb2wv29jVhYGDw3bEQEREREREREREREREREREREf0u8lTHKJlMgEwqRatho39NeVIpZDLhu7atUaM2kpOTUa9egx+KwcWlK5Yt80F0dBTc3NwxZ850uLv3hp6ePmrXrgtnZxcEBwdlmkeDBo5YsGAup9EjIiIiIiIiIiIiIiIiIiIiojwjz3WMivkYD4lE7ZeVl52OUZcu3RL/1tXVxZkzl+XWL126Svx70qTp4t99+7qLfzs5tYGTUxvxtbv7ELi7DxFfL1q0VGn5afNM69Onj8iXLx8cHH6skxYRERERERERERERERERERER0e8iT3WMArLfWem/LC7uK65fv4r9+wPQpElz6Orq5nZIREREREREREREREREREREREQ5QpLbAVDumjfvL3z+/BkDBgzO7VCIiIiIiIiIiIiIiIiIiIiIiHJMnhsxilSnq6uHY8fO5XYYREREREREREREREREREREREQ5jiNGERERERERERERERERERERERFRnsOOUURERERERERERERERERERERElOewYxQREREREREREREREREREREREeU57BhFRERERERERERERERERERERER5DjtGERERERERERERERERERERERFRnsOOUURERERERERERERERERERERElOfkuY5REokaNDQkv+SfRKKWrdgcHOwxffqkDMuPHDkIF5c2Kudz5swpxMR8ULo+MPAJRo0aiqZN66Np03oYMqQ/bt68lq1Yv1dYWCgaNKiJXbu2Z1j399/3UK9edVy/fjXTPGJiPuDMmVM/K0QiIiIiIiIiIiIiIiIiIiIi+g/QyO0AcpJEooaChrpQU/81/b0EqQwfPsZBJhNU3ubUqeNo08YZ1apV/64yX716ialTx2PXrgMK17958xrDhw9E1649MHz4aKipASdPHsfo0cOxfLk/qlSx/K5yVVW2bDm4uHSFv78fmjZtAUNDQwCATCbD4sXz4ejYFDVr1s40jxUrfCEIAhwdm/zUWImIiIiIiIiIiIiIiIiIiIgo78pzHaPU1CV4vz0QyW/ifmpZGkV0UairBSQStWx1jDIxKY5Fi+Zh/fptyJcvX7bLFYTMyzp//ixMTEzRp09/cVnfvu64f/9vHDly4Kd3jEopbwBOnz4BP79lGDcuZYSs/fsD8PLlSyxc6Jvl9lntIxERERERERERERERERERERFRVvJUx6hUyW/ikPTia26HoVD//oOwYIEntm7diD/+6KswzZs3r+Hr641bt25AIlFD06YtMHjwcGhqaqJTp7YAgE6d2mLixGlwcpKfgk8iUcOrVy8QFRWJEiXMxOWTJ0+Huro6gJSp+9auXYXduw+K64cOHQA7u2ro29cds2dPBwA8fRqE9+/fYcUKfxgaGmHx4vm4ePECdHR00LChIwYP9oCWlnaG+HV19TB06AjMnDkFHTp0QrFiJlizZgUGDhyKggULAQD27duDLVs24OPHGFSsWAkjR45FuXLl4e/vh6NHDwEA7t69LRcjEREREREREREREREREREREZGqfs2ccyQyNi6Mvn0HYOPGtXjxIjrD+qSkJHh4DMK3b/FYunQVZs70xJUrl7B8uQ8AYPXqDeL/jRs3zbC9o2NTaGlpoXt3F4wcOQRbt25EWFgIChcuInZKUsXx40fQv/8geHkthplZSXh6zkRsbCxWrPDH3LkL8OTJYyxaNF/p9k2aNIedXTWsXLkU69evQcmSpdCuXQcAwKVLF7Bu3SqMGDEGa9dugY2NHTw83PH582e4uvaEo2NTODo2xerVG1WOl4iIiIiIiIiIiIiIiIiIiIgoLXaMygUuLl1RokRJLF68IMO669ev4N27N5gyZRbKlSuPatWqY9Socdi7dxfi4uJgaGgEADA0NFI4WpORUUGsXr0RrVu3Q3DwUyxf7oNevbpi+PBBiIn5oHKMFhaV4eBQH5UqVUF0dBQuXjwvxlS5siXGjZuMo0cPITY2Vmkeo0aNw+3bN7Bv326MGTMRampqAICtWzeiZ88+qFu3HszMSqJ//0EoWtQEJ04cga6uLrS0tKClpQUjIyOV4yUiIiIiIiIiIiIiIiIiIiIiSitPTqX3u1NXV8fo0eMxeHA/XLhwTm5dePgzmJmVhIGBgbjMysoaUqkU0dGR0NfPn2X+RYoUxZgxE/Hnn+Px9Gkgzp49jd27t2PevL/g6blIpRhNTEzkYpLJZGjfvqVcGplMhqioSFhYVFKYR6lSpVG/fiMAQNmy5cXlERHPsHy5L/z8lonLEhMTERn5XKXYiIiIiIiIiIiIiIiIiIiIiIiywo5RucTKygatWrXFkiUL0K1bL3G5pqZWhrRSqUzu/8xs2rQelSpVhr19DUgkElhYVIaFRWWYmJhg6dLFACCO3CRfhlTuddo4pFIp9PX1sWbNpgzbFS5cONN4tLQU7Y8UHh6jYG9fQ265np5epnkREREREREREREREREREREREamKU+nlokGDhuHbt3hs375ZXFayZClERj7H58+fxGWPHt2Huro6TE1LKOzUlNbDh39jz54dGZbr6+cXp+HT0NBAXFycuE4QBLx8+UJpniVLlkJsbCzU1NRQooQZSpQwQ0JCApYtW4LExCSV9zeVmVkpvH37RsyrRAkzbNy4Fo8ePQCguOMWEREREREREREREREREREREVF25MkRozSK6P4ryihQwBCDBg2Dp+dfKFYsZeq66tVronhxU8yaNRUDBw7Dp08f4e3thaZNWyB//vziyE4hIU9RoIAhdHXl4+jRozeGDXOHp+csODu7QF9fH0FBgVi+3AfduvUEAFhYVMbnz5+we/d21K7tgD17duDz589K4yxdugxq1qyDGTMmY+TIMZBI1DFv3l8wMDBA/vxZT+2XXteu3eHp+RfMzErCysoG+/cH4MyZk+jZsw8AQFtbG2FhoXj79g0KFy6S7fyJiIiIiIiIiIiIiIiIiIiIiPJUxyiZTIAglaFQV4tfUp4glUEmE34oj1at2uHw4QN4+/YtAEBdXR2enovg7T0fAwb8AV1dPTRr1gIDBgwBABgaGqJ585aYOnUCBg0ahs6du8nlZ2VlgyVLVmLDhjUYOXIIEhK+wcysJPr06Y82bZwBAGZmJTFkyAhs2LAWq1evgJNTWzRq5JhpnFOmzIS393wMHz4Y6urqqFmzNkaOHPNd+9y4cTN8+PABa9asxIcPH1CmTFnMm+cNM7OSAIDmzVth4sQ/0bu3Kw4dOsURpIiIiIiIiIiIiIiIiIiIiIgo29QEQfixnj0/2bt3X5A+wqSkRLx//xKFCpkgXz5NuXUSiRokkl/TkUYmE364YxT9XBoaEgS/jkV8kjS3QyGi/yidfOqoUFQfyckypWkyu68REeUEDQ0JjIz00MrnIh69UD5SKBHRz1KluAEOe9RDTMzXTOtFREQ/E+tERPQ7YL2IiHIb60RE9DtgnYh+lJoaYGys2gxneWrEKICdlYiIiIiIiIiIiIiIiIiIiIiICJDkdgBEREREREREREREREREREREREQ5jR2jiIiIiIiIiIiIiIiIiIiIiIgoz2HHKCIiIiIiIiIiIiIiIiIiIiIiynPYMYqIiIiIiIiIiIiIiIiIiIiIiPIcdowiIiIiIiIiIiIiIiIiIiIiIqI8hx2jiIiIiIiIiIiIiIiIiIiIiIgoz2HHKCIiIiIiIiIiIiIiIiIiIiIiynPYMYqIiIiIiIiIiIiIiIiIiIiIiPKcPNcxSiJRg4aG5Jf8k0jUshVbcnIy/P390KlTOzRqVBsdOrSCr+8ixMV9/UlHI3MvX76Ag4M9Xr58oXB9cHAQHjz4GwBw584tODjY/5K4Hj58gK5d28PRsQ4OHtwHBwd73LlzK8vtstqfVO/evMIAl0Z49+aVwvVXzh7DhEFdvyt2+nc5sGM9FkwdkdthqCTo4T0McGmUa+ULgoBzx/aJr9ct9cS6pZ7fnV/ksxCEBj5Uuv7WlXP4/ClGpbwWTB2BAzvWf3csRERERERERERERERERESUN2nkdgA5SSJRg6GhLtTVf01/L6lUho8f4yCTCSqlX7HCBzdvXse4cZNgaloC0dFRWLJkASIjIzF/vvdPjjb7Jk4cgz59+sPKygZWVjbYv//YLyl3y5b1MDU1g7f3MhQoUAB16jjAwKBAltsVKVIU+/cfg6Gh0Q+Vb1+nEayq1vqhPIjymqeP/8bWNUvQsIVzjuS33GsK2nT6A+UsLDOse//2FVYtmoE5y7flSFlERERERERERERERERERPTflOc6RqmrS7Bnzx68e/fup5ZlbGyMjh07QiJRU7lj1JEjhzBhwlTY29cAAJiYFMfo0RMxZEg/vHv3DsbGxj8z5GwThH/2K1++fChU6NfEFxsbC1vbqjAxKQ4A0NXVU2k7dXX1HIlRU0sLmlpaP5wPUZ6i2mUuG/kpzzCTVURERERERERERERERERERCrLUx2jUr179w4vX77M7TAykEjUcOfOTTg41IdEkjKqlaWlFTZt2glDQ0MAgItLG3Tu7IrDhw8gOjoKdnbVMH78FLHDT1hYCLy9vfDo0UMULVoUnTq5okOHTgAAf38/REVFQk9PDydOHIOmpiZcXXuge/c/AKRM5efruwjHjx+Bjo4uevTorTTWoUMH4NWrl5gzZwbu3r2Nli1bw8NjIC5duoWXL1+gU6e2mD9/MRYtmodPnz6iVat2aNvWGbNnz0BExDNUrWqP6dNni52a9u3bgy1bNuDjxxhUrFgJI0eORbly5RWWe+/eHdy9exvr1q3GpUspU/j5+KxE1ar2cHFpg27deuHYscMICXmKkiVLY/z4KbCwqCTGtWvXAZiYFMfp0yfg7++Hly9fwrioCZy79YNdDQexrLvXL+LssX34FPMelayroc/Q8dDTz48rZ4/h4M71mLtiO4Ie3sP6ZZ5o7uyKI3s2I+5rLOxq1kOvQaORL58mAOD6hZPYv2M9PsW8h12NuhAEoGhxM7TtkvH4ThjUFW0690adRi0ApEyPtnD6SKzafRbv3rzCxMGu6Dt8EvZs8kPCt3jUbtgcnf4YDHV19Qx5rVvqCYMCRnj/9hX+vnUVxkWKoa/HJNy5fgFnj+6FlrYOOvceAvs6DbFxxQJ8/hSDoeNni9tv8/dB3NdY9PWYmCHviNAgbF2zBFERoTArXQGVrKsi+PF9jJ65GIIg4GjAFlw8fRgfP7yDfv4CqN+0Ddp0TjnPFkwdAetqtfHo75sICXwA05Jl0W/4ZBzfvw03Lp1GAcNC6DloNCpWsQUARD9/hm3+PngW/BgFjYuisVMHpaMSJSclIWDLKnGaNaOCxmjZoTvqN20jHt/m7bri6vkTiAwPQTHTkvhj0BiUKlcRAPAiMhyb/BbieVgwyppXhkmJUgrLAYC4r7HYsHw+Ah/cgZqaGqyq1kK3/iOg8/9z+vyJAzi2bxtiP39EqbIV0bWvB0qUKgsASEpKxJ5Nfrh+8RQAwNK2Brq6DYNefgO5MmQyGUa5OcNt6ARY29cGAEwe2gPlKlZBn2ETAAB7t6zGh3dv4NC4VUq5xw/g8J5NiI+LRbXaDdF9wEjxXLx7/SL2bfPHuzevYFqyDDr2dBeP84KpI2Baqiwe3L4GqUyKGd7rEPc1FlvXLMGT+7dhUMAQdRq1RKuOPSBJd769e/MKC6ePBAAMcGmEP6enjHD3LS4OqxbNxN+3rkDfoAA6dO+PmvWaAABi3r/FjnVLEfjgDhITEmBiVhqufYehvIUVFkwdgfdvX2P9snkIenQPfYaOlytv4mBX8f/eQ8ahdsPmmZ5zab15FY15k4ahQbM2aNulT5bvxenDe3Dy4C58/vQBpmZl0LnPUFSoZJUh3ytnj+HK2WOoZGOPkwd2QCNfPnTsORCamlrYtWEF4uNiUb9pG3Ts6Z7hHFCDGurWqYPhw0erNPodERERERERERERERERERHljF8z5xwBADp1csXu3Tvg4tIGCxbMxblzp5GQkIAyZcpCQ+OfPmr+/n7o1q0X/PzW49u3b5g8eSwAICHhG0aPHg5ra1ts2LANQ4aMwPr1a3Ds2GFx27NnT0FTUxNr125Gt249sWKFL54/jxDzvXz5Ijw9F2HWLE/s3r1daaxz5nihSJGi8PD4E8OHj1aYZvPm9fD0XISxYydh9+7tmDhxDAYOHIJFi5bi4cMHOHhwHwDg0qULWLduFUaMGIO1a7fAxsYOHh7u+Pz5s8JyLS2t0bVrD6VT961d64cePXpj/fpt0NfXx5IlXhnSxMR8wKxZU9GrVx/MX74ZdRu1xJrFs/D1yz9lXj1/HANGTsGf0xfhedhTHN+neNqujzHvcefqeXhMmodBY2bgzrULuHbuBAAg+MkDbFjuhebtumCy1ypoaung1pWzSo+rKg7t2oj+I6di0NhZuHPtAg7sWKc07enDe2BexRbTFvpDT98Ai2aMwuePMRg/dzlsqtfB5lWLIJPJUMPBEY//von4uK8AUjrk3Ll2AdXrNsqQZ9zXWCyZPQ6lyppjitdq1KjXGEf3bhXXXz1/HKcP70GvgaMxy2cTWrv0wsGd6xER9vSffdi9EfWatMakeX6Ij/uKOeMHwsCwICbO80PxkmWwY60vACAxIQE+s8ehgoUVpi70h0uvgTi0eyOunj+hcH+P7t2KB3euY+DoGZjlsxG1GzbHNn8ffP74QUxzYOd6tGjfDdMW+kNHVw/b/19WUlIifOdOQOEiJpjstQrVatXHhZMHlR7bAzvW4fPHDxg32xd/TvdGZHgIDu/ZBAD4+9YVHNy5Aa5uHpjstRoVKllj4fSR+Br7BQCwb+sahIcEwWOiJ/6c7o34uK/wWzg9QxkSiQSVrKoi6NE9AMDHD+/w9vULhAQ9FNM8vn8bVexqiK9vXzuP4ZPnY9CYWbh99RyunEn5nESGh2DdUk84deyBaQv9UbNeE/jMHo83L6PFba+cPYq+HhMxeMxMaGnrYIXXVBgUMMQUr1XoPWQ8blw6jSMBWzLEWbBQYQwcPQMA4LV6D8pVrAIAuHvjIkqVM8d077WoXqcRNiyfj7ivsQAAf585kMlkGDdnGSZ7rYJRocLYsmoxAGDQmJkwKlQYXfoMQZc+QzOUN9Fzhfi/fZ1GKp1zAPDl00cs+Wss7Os0RNsufbJ8L56HBWPPJj906z8cM5dsRPlK1vBbOB0ymSxDTAAQ9vQx3r1+gYmeK1G9bmNsWeWN04f3YOj42ej0x2Ac378dz8OCM5Q78a/FiI2NxZQp4xXmS0REREREREREREREREREPwc7Rv1CvXv3w9Sps1C0aFEcOLAXkyePg7NzSxw+fEAuXatWbdG8uRPKlSuPCROm4sGD+wgLC8HJk8dgaGiE/v0HwcysJBwc6qNXrz7YufOfDj0FChTAkCEjUKKEGbp16wUDgwIIDHwCQRBw8OA+9Os3ELa2VWFpaQ0Pj1FKYzUwKACJRAJ9fX3o6+sr3Z/y5SugadMWMDIqiCZNmqN69VqwtraFvX0NRESEAwC2bt2Inj37oG7dejAzK4n+/QehaFETnDhxRGG5Ghoa0NHRUTotXsuWbVC/fkOULFkKXbt2x5MnjzOkefv2DZKTk1GkSFEYFymGpm07Y/DYv6ChqSmm6djDHaXLW6CseWVUq90QkeGhCsuTJieja99hKFGqLKrY1oClbQ2EhwYCAM4f3wf7Og3RoFlbmJiWRPcBI2FYqLDS46qKjj0GoEIlK1hY2qFdVzdcOnVYblrDtEqWNUfD5u1QxMQUNeo1RmJCArq6DYOJaUk4tuyAuNgv+PwpBuZVbKGnb4D7t64AAIKf3EdyUhIq21TPkOetK2ehpa2Drm7DUMy0JBxbtke1Wg3E9QWNi+KPIWNRyboajIsUQ4PmbWFgWBAvIsPFNNbVasG+TkMUNysN2+p1oa2jh7Zd+sDEtCTqNWmNV9GRAIAbl04hfwFDtHN1Q1GTErCxrwOnDj1w+vBuhftbonQ59Bo0BmXNK6Nw0eJo2aE7pMnJeP0iSkxTp2EL2NVwQNHiZmjapjPCQ4MAAE/u38bXL5/RfcBImJiWRMMWznIjiKX3/s0raGnroFARE5iVKQ/30TNQt1FLAMDxfdvh1KE7rO1ro6hJCbRzdUOhwkVx/cJJJCR8w9mj+9DDfRTKVKiEEqXKws1jIoIe/42oiLAM5VS2qY6n/+8Y9fTxfVSyrob3b1/j88cP+Br7BZHhIaiS5n3q3n8ETEuWQWUbe1SytkdURMp5e+LATtRr0go16zVBERNTNG7VEZZ2NXD+xH5xW6uqtVHOwhKlylVE4IM7+PD2NXq4/4lipiVR0dIWLr0G4vThPRlilKirQ08/ZYSlAkYFoZEvHwCgrHkVNG/XFYWLFodTxx5ITkrCq+jnEAQBdjXqwrWvB0xMS6K4WWk0atEOL6JSzhG9/AaQSCTQ0dWHrl7G64u+gaH4v6aWlkrnXGLCN/jOnYAy5Suhq9swAMjyvXj/9hWgBhQqXAzGRYrB2dUNfT0mKv28yQQZuroNQxETU9Rv2hqJCd/QtktvlChdDg6NnZC/gBFevXieoVyz0uUwffpfuHv3NkJDQxTmTUREREREREREREREREREOS9PTqX3O2vWrCWaNWuJT58+4vr1a9izZwc8PWehXLkKsLCoBACwsrIR0xcvbgoDgwIIDw9HeHg4QkOD0bRpPXG9VCqTm2bNxMRU7rWuri6k0mR8/PgRHz/GoEKFiuI6C4sqP7QvxYubin9raWmhWDETuddJSUkAgIiIZ1i+3Bd+fsvE9YmJiYiMfP5d5ZYoYSb+raurh+Tk5AxpKlSoiDp1HODhMQgmpiVhbV8HDk1aQUtLG1/+n6ZwseJieh1dPSQlJSots0ixEuLf2rq6kEqlAICoiDBxGjcAUFdXR+myFTNsnx3lLP6ZxqtUuYr48vkjYj9/Qv4ChhnSFi76zzHX1NRCfkMjaGppAQDyaab8n5yUBIlEAvs6DXHr6nnUrN8Ut6+cg13NenIjlaWKighDyTIV5KZTK2teGXevXwQAWFjaIezpYwRsWY2XURGIfBaCzx8/QEgzyo5x0X+ObT5NLRQqXBRqampinMnJKefGy6jniAoPxbAeLcX0MpkMEknGqQMBwK6GAx7/fQu7NizHy+jn4ug8aUf4KWLyz3mpo6MH6f/Pj5dREShiYgotbR1xfenyFnhw+5rCshq36ohl8ybjT7f2qGRVFVVrN0BNh8YpeUVHYM9mP+zdulpMn5SYiNcvo/Du9UskJydh3qQhcvkJMhlev4wUp9tLVcW2OrasWoS4r7EIfvI3KttUR+yXTwgOfAAAMCtVLuW9T+lLhsJFFZ+3r6IicPvKOblRsJKTk+U6VRkXKSb+/TL6OWJjP2N4r1biMplMQFJiAmK/fIJ+/qynfEv7GUrt4JSUlAg1NTU0aNYONy+fQWjQI7yKfo6IsKdy50h2qHLOnTkSAKk0GRWr2IrnWlbvhaVdTZiWLIsZo9xgVqYCbKvXRb0mrRROXQkABgWMxPMn9fNVKM0x1dTURHJSkoJy1SBRSzlPIyMjFE4jSkREREREREREREREREREOY8do36RkJBgHD16CMOGjQQAFChgiGbNWqBRo8bo0sUZd+7cFDtGpe+sIpNJIZGoQSqVolq16hg1apzSchR1dEk7+knav/P9f9SX75W+84BEongAMqlUCg+PUbC3ryG3XE9P77vKVSVuNTU1zJ+/GEFBj7H/2EncvHoB547vx9hZPtD5fweODJ1vlIwSA0AcIeefpClpJerqGUaXEaA8H/y/w0YqqUyaIUna45ra8UNNopYhXWr5cq/VFKcDgOp1HbFw+kjEx33FnesX0ddjosJ06urqyLgL/yy4eOowdq5fBofGrVC1Vn106jUIC6ePlI8j3bFVUxKXTCaFhVVVdOs3Qmncae3b5o+Lpw6jbqMWqN2gGbr3H4EJg1zl0mhoKD8/0r/Fij4vqSysqmKe307cu3kJD25fw2a/hXh87yb6Dp8EmVSKzr2HoJJVNblttHV18enDewDA2Fm+cp2wAMDA0ChDOQWNi6CISQmEPHmA4Mf3UbtBc3x49xqhgQ+RlJQoN40ekPE9Tz3/pDIpmjt3Re0GzeXW50szSppGvn/+lkmlKFbcDEPGzc4Qk46u4lHi0lP4mRdSOgB5zxqN+K+xsK/TCNb2tSFNTsYKr6kq5ZueKudcybIV0KR1J/j7zEadRi1gUqIUZP/vwKjsvdDS0saEucvx9PHfuH/rCq6cPYrzJ/Zj0jw/GCkY+U1Rhyk1tYzHIH252vkkKFVIF1KpgIIFC37XMSAiIiIiIiIiIiIiIiIiouzjVHq/iFQqxY4dW/D0aaDc8nz58kFbWxuGaTpMBAc/Ff+OiopEbGwsypWrgJIlSyEy8jlMTIqjRAkzlChhhkePHmD37h1Zlm9oaIiCBQshMPCRuCx9LOkp68ySXWZmpfD27Rsx5hIlzLBx41o8evQgR/JXJCIiHEuXLkaVKpbo1KM/pnuvQ0HjInh072aOllO8RGk8D/vn/ZJJpYgMVz5VloZGPnyLjxNfv3v9IkOatNuHhwbBsKCxSqP3ZKWseWUYFjTG8f3bAQioWMVWYbriJUojMjxEbhSmiNB/9vHCiQNo3akXuvQZgtoNmkHfoAA+f4pROv1YZooWN8Prl1EwLlIMRUxMUcTEFGHBj3HmaIDC9OdPHIBrXw906DEA1es6IuHbNwBZdEZL3S+zMnjzMhJxX2PFZc+fKX+vTh7chYjQINRp2ALuf07HH4PH4c71C2LcH9+/E2MuYmKKIwGbEfb0MQoXKw6JRILYL5/Eddq6uti5fhk+f4xRWFYV2+q4d/MS3r99jZJlzVGhkjVCAh/i0b1bqGJbQ+E26RUrboZ3b17JxXTh1EE8vHtDYfqixc3w4d0b6BsUENO/e/MSB3asg8JPfjYuBy+jIhD8+D5GTl0Ip449YF2tNj7FpHQYE8+TTK4v6Vepcs5VtqkO+zoNUcmqGratWQIAWb4XoUGPcHTvVlhY2qFz7yGY6bMRSYmJCAn8sWtT+nKLmpSAnp4+fHwW4cOHDz+UNxERERERERERERERERERqS5PdowyNjaGiYnJT/1nbGycrZgqVrRAnToOGD/+T5w4cQwvX77Aw4cPsGDBXCQmJqJhQ0cx7a5d23Hp0nmEhARj7tyZqF69JszMSqJ585b49u0bvLzmICIiHFevXsLixQtgZJRxFJr01NTU0KFDJ6xZ44ebN68jMPAxfH0XZbqNtrY2IiLC8fnzp2zta3pdu3bHzp3bcOzYYURHR2H5ch+cOXMSpUqV+aF8M6Ovr499+3Zj7do1ePP6BR7cvoZ3b17BrEzOTmHVqGV73Lx8FpdOH8ar6OfYsX4Z3r95pbRTWelyFXHpzBFEP3+GoIf3cPLgrgxpdqxbivCQIDy+fxsHdqxDw+btcize6nUdcfLgTlSr3TDDyENiGofGiI//il0bluP1i0hcPHkIN6+cFXur6OU3wJP7t/H6RSQiQoOwatEMSJOTkfz/qROzo1b9pkhMSMDmVYvwMvo5Hty5hu1rfZG/gOJzWj9/Ady/dQVvX79A8JMHWOs7BwBUKruSdTUUNC6KjSu88DIqAlfOHsOtK2eVpv/44S22+fsg7OljvH4ZhTvXzsOsdAUAQNM2nXDq8G5cPX8Cb15FY88mP9y6cg4mJUpBW0cX9Zq0xpbVixH08B5eRIZjne9cvHkVLTeVXVqVbexx7fxJlC5vAQ0NDVSoZIWIsKf4+uUTyppXznLfAKBJ6064efkMTh/egzevonHq0G6cOrgLRYuXUJi+io09ChUuirU+cxAVEYbgx/exyW8hNLW0FZ4bWlopIy5FhAYhKVH5tJNAyrR6ahIJbl4+g/dvX+H21fM4sHM9gH/eKy0tbbyKfo6vXz5n2F7z/2VFhYfgW3x8ts65Ln2GIDjwAW5cOpPle6GpqYVDuzbg4qnDePfmFW5ePoOEb/EoUapcpvuXlfTlRj8Px8yZUxAdHQkTk+JZZ0BERERERERERERERERERDkiT02lJ5MJkEpl6Nix4y8pTyqVQSZTfZScmTM9sWGDP9auXYU3b15BW1sHNWrUwtKlq6Gr+8+0ck5OrbFy5TK8fv0StWs7YPToCQAAXV09LFjgAx+fhejTpxsMDAqgY8fO6Nmzj0rl9+rlhm/fvmHatIlQV1dHnz79sWjRPKXp27fvhBUrfBAZ+RwuLl1U3s/0Gjduhg8fPmDNmpX48OEDypQpi3nzvGFmVvK788xKoULGmD3bCytX+mLd+jXIb2CEDt37oYptdbx78yrHyilXsQpc+w3HwV0bEfv5E+xrN0BZ8ypKp2hr59oX65d6YvZYdxQzNUO7rn2watFMuTTV6zSC79wJEAQZGjRrixbtu+VYvPZ1GuHIns2oXreR0jTaOjoYOn4Otq5ejPPHD6BU+YqoWa8JPn54BwDo4jYMG5bNw8zR/ZDfwAj2dRtCS0sHz8ODsx2Pto4uPCZ5Yue6ZZg1uh/08xdAoxbOaKlkn/8YPAZbVi3G9JF9YFjQGPUat4ZEoo7IZ8GwtMt8ZCUNDQ0MmzAXG1d44a+xA2BasiwaNndGRGiQwvRtu7ohPu4rlnlOwrdv8TCvbIN+wycBSOlg9vljDA5sX4vPn2JQvERpDB0/G0VNUjohufwxCLs3rsDKBdMglSajQiVreEz0VNoZzbyKLaAGlLewBAAYGBZE4aLFUaJUWYXTtylS1rwy3IZNxMGd67Fnkx8KFyuOfiOmwLyyjcL0EnV1DBk/G9v8fTB3wmBoa+ugWu0GcOk1SGF601JlUMnaHvMmDUO/EZMzjcWoUGF07z8Ch3ZtxN6tq1G0uBm6ug3DWt+5eP4sGOUqVkHD5u2wZ7MfXr+IwqCx8p+B/AYFULN+U6xaNBMdegzI1jlXtLgZGjt1xO6NK2BdrVam74VZmfL4Y/BYHN69Cdv8l6BQ4WJw85gEkxKlVDrmmUlfbrWqVeHltUTl95OIiIiIiIiIiIiIiIiIiH6cmvA981/9Qu/efUH6CJOSEvH+/UsUKmSCfPk05dZJJGqQSHJmCrisyGRCtjpGqcLFpQ3c3AbAyalNjub7X6WhIUHw61jEJ0l/Sv7Pgp9AR1cPxUz/6eQ1bURvNG/XFXUatchWXu/evMLEwa6Ys3yb0pGFftTjv29h08oFmLN8m9JRrd69fomYD+9QoZKVuGzr6sVISPiGPkPH/5S4iPIynXzqqFBUH8nJMqVpMruvERHlBA0NCYyM9NDK5yIevcg4Wh8R0c9WpbgBDnvUQ0zM10zrRUREPxPrRET0O2C9iIhyG+tERPQ7YJ2IfpSaGmBsnF+ltHlqxCjg53RWIlIm7OkjnDm6F25DJ6CAUSHcuHQaMe/foopt5qMX/WofY94j5MkDHA3YAofGrZR2igKA+Liv8J75J/p6TELp8hUREfoU1y6czHKUICIiIiIiIiIiIiIiIiIiIqLfSZ7rGEX0KzVs0R7v3rzCigVTER/3FWaly8NjkicKGBXM7dDkxH+NxYbl81HWvDKatOmUaVqzMuXh2nc49m5ZjQ/v36CgcVF0+mMwrKvV/kXREhEREREREREREREREREREf04doz6zezefTC3Q6BsUFdXR5c+Q9Glz9Afzsu4SDGs2n02B6LKyKREKfhuPqJy+npNWqFek1Y/JRYiIiIiIiIiIiIiIiIiIiKiX0GS2wEQERERERERERERERERERERERHlNHaMIiIiIiIiIiIiIiIiIiIiIiKiPIcdo4iIiIiIiIiIiIiIiIiIiIiIKM9hxygiIiIiIiIiIiIiIiIiIiIiIspz2DGKiIiIiIiIiIiIiIiIiIiIiIjyHHaMIiIiIiIiIiIiIiIiIiIiIiKiPEcjtwPIaRKJGiQStV9SlkwmQCYTVE6fnJyMDRv8cezYEbx79wZGRgXRqFFj9O3rDl1dPQBATMwH3L17B46OTb4rpqSkJBw9eght27b/ru0Vef36FdavX4Nr167gy5fPMDMriS5duqNFi1Y5VgYRERERERERERERERERERERUU7KUx2jJBI1GBnpQCJR/yXlyWRSxMTEq9w5asUKH9y8eR3jxk2CqWkJREdHYcmSBYiMjMT8+d7/T+MLQRC+u2PUqVPHsXHj2hzrGBUZ+RyDB/eDlZUNZs3yhJFRQdy6dQNeXnMQExMDV9ceOVIOEREREREREREREREREREREVFOynMdoyQSdTx8NBJxX0N/alm6euVgWcUbEomayh2jjhw5hAkTpsLevgYAwMSkOEaPnoghQ/rh3bt3MDY2hiCoPgKVIj+6fXoLF3qifPkKmD17PtTUUkbiMjUtgaSkRPj5LUPr1u2QP3/+HC2TiIiIiIiIiIiIiIiIiIiIiOhH5amOUanivobiS+yj3A4jA4lEDXfu3ISDQ31IJBIAgKWlFTZt2glDQ0P4+/vh6NFDAIC7d29j9+6DePYsDL6+i/DgwX1IpcmwsKiMsWMnoXTpMrhz5xbmzJmBWrXq4OTJY+jZsw9WrlwKAHBwsMeuXQdgYlJcLoa3b99gyZIFuHXrJhISvqFMmbIYMWIMrK1tM8T75s1r3L59E15eS8ROUalat3ZGhQoW0NHREdP6+nrj1q0bkEjU0LRpCwwePByampo4cuQgjhw5iOrVa2Lbts3Q1NTE4MEe0NLSwtKli/H1ayzatu2AwYM9AAAuLm3QubMrDh8+gOjoKNjZVcP48VNQqJAxAODSpfPw9/dDREQ4NDU1UbNmHYwbNxm6urrw9/dDVFQk9PT0cOLEMWhpaaJZ2y5o3KYLQgIfYMHUEfBavQf5CxgCACJCgzB/ynAs9A+Ato5uzrzRRERERERERERERERERERERJTrJLkdwH9Jp06u2L17B1xc2mDBgrk4d+40EhISUKZMWWhoaMDVtSccHZvC0bEpVq/eCJlMhnHjRsLEpDjWr9+KFSvWQiqVYsUKHzHPV69eIjExEf7+m9GkSQt4ePyJIkWKYv/+YyhSpGiGGGbOnAKpVAY/v3VYu3YLChcugoULPRXGGxoaDEEQUKlS5QzrtLW1YWNjCw0NDSQlJcHDYxC+fYvH0qWrMHOmJ65cuYTly/+J89GjB3jxIhpr1mxEkybNsGDBXOzatR3z5nlj6NCR2Lp1I54+DRTT+/v7oVu3XvDzW49v375h8uSxAIDo6ChMnjwO7dt3wpYtuzFzpidu376BAwcCxG3Pnj0FTU1NrF27Gd2798KODSvx+kUkylW0hGHBwrh746KY9taVc7CqWoudooiIiIiIiIiIiIiIiIiIiIjyGHaM+oV69+6HqVNnoWjRojhwYC8mTx4HZ+eWOHz4AABAV1cXWlpa0NLSgpGRERISEuDs3BFDh46EqWkJVKxogZYtW+PZszC5fLt3/wMlSpihWLFi0NfXh0QiQaFCxlBXV5dLJwgC6tVriJEjx6BUqdIoU6YsOnTonCG/VF++xAIA9PT0M92v69ev4N27N5gyZRbKlSuPatWqY9Socdi7dxfi4uIAADKZDCNGjEGJEmZo27YDvn37hr593VG+fAW0bt0ORkYFERERLubZqlVbNG/uhHLlymPChKl48OA+wsJCxHzatm0PE5PiqFGjFqpVqyG3DwUKFMCQISNQooQZevT4A/r5DRAeGgQ1NTVUr9sIt6+eF9Pevnoe1R0aZfHOEREREREREREREREREREREdG/TZ6cSu931qxZSzRr1hKfPn3E9evXsGfPDnh6zkK5chVgYVFJLq2Ojg6cnV1w7NhhBAY+xvPn4QgKCkLBggXl0hUrZqJS2Wpqamjf3gWnTh3Hw4f3ERERjqCgQMhkMoXpCxQoAAD48uULjIyMlOYbHv4MZmYlYWBgIC6zsrKGVCpFdHQkAKBgwULitHtaWloZ4tbS0kJSUlKa7W3Ev4sXN4WBQQGEh4fD0bEJ8uXTxIYN/ggLC0V4eBiePQtD8+ZOYnoTE1O5TmHaOrqQSpMBADUcGuPkoV2I/fIJ716/ROyXT7CuWjuLI0dERERERERERERERERERERE/zYcMeoXCQkJhq+vt/i6QAFDNGvWAkuXrkLhwkVw587NDNvExcWhf/9eOHnyGEqVKg03N3cMGeKRIV1qR6OsyGQyjBw5BNu3b0HRosXQrVsvTJ48Q2l6c3MLqKmpISjoSYZ18fHxGDFiMIKDn0JTM2P5UqlM7v/0o1cBgESi/PTT0JDvsyeTSSGRqCE4+Cl69uyM8PBnsLWtivHjp6Bx42aZbgsAEFL+MytTHkWKmeLejUu4ffU8bKrXRT5NTaVxEBEREREREREREREREREREdG/E0eM+kWkUil27NiC5s1bwtzcQlyeL18+aGtrw9AwZUQmNTU1CEJKL567d2/j3bu32LBhu9jZ5+bNa+J6RdTU1JSuCw8Pw717d3Dw4ElxBKiAgF0AUqbZS7+tkZERqlevhZ07t6Jmzdpy6w8f3o/79++haNFiKFmyFCIjn+Pz508wMEgZZerRo/tQV1eHqWkJhIWFqHycUgUHP0W9eg0BAFFRkYiNjUW5chWwf38AbG3tMG3aX2LaqKjnKFWqjMp513BojL9vXcXbV9Ho0GNAtmMjIiIiIiIiIiIiIiIiIiIiot9fnuwYpatX7rcro2JFC9Sp44Dx4//EwIHDYGVljffv3+PYsUNITExEw4aOAABtbW2EhYXi7ds3KFCgAOLj43Hx4jlYWFTGrVs3sGfPTujp6SstR1tbG1++fEZk5HOYmBSXGz1JXz8/JBIJTp8+DgeHBnjy5BHWrvUDACQmJioceWrYsJEYNKgvpkwZh27dekFfPz8uX76I1atXYODAoTAwMED16jVRvLgpZs2aioEDh+HTp4/w9vZC06YtkD9//mwdp1S7dm2HuXlFFCtWHN7e81G9ek2YmZVEgQIFEBoagsePH0JfPz/27w/AkyePUby4qcp513BojKN7t0BTUxuVbap/V3xERERERERERERERERERERE9HvLUx2jZDIBMpkUllW8s06cI+VJIZMpH70pvZkzPbFhgz/Wrl2FN29eQVtbBzVq1MLSpauhq6sHAGjevBUmTvwTvXu74tChU+jdux8WLpyHxMRElCtXHqNGjYOn5yy8fftGYRnVqlWHqakZ/vijK5YvXwMLi8riuiJFiuLPP8dj/fo18PNbBjOzUhg+fDT++msagoODYGlpnSG/MmXKYvnyNVi7dhXGj/8TcXFfUbJkaYwfPwXNmrUAkDJNnqfnInh7z8eAAX9AV1cPzZq1wIABQ7JzOOU4ObXGypXL8Pr1S9Su7YDRoycAAFxcuuLp0yCMGDEEmpqasLW1Q58+/XHq1HGV8y5iYgqTEqVQsoy54mn3iIiIiIiIiIiIiIiIiIiIiOhfT03IbF6238C7d1+QPsKkpES8f/8ShQqZIF8+Tbl1EokaJBLl08nlpJSOWL/14ftXcnFpAze3AXByavPDeWloSBD8OhbxSVJxmUwmw4RBXdFn2ARYWNr9cBlERJnRyaeOCkX1kZwsU5oms/saEVFO0NCQwMhID618LuLRi8+5HQ4R/QdVKW6Awx71EBPzNdN6ERHRz8Q6ERH9DlgvIqLcxjoREf0OWCeiH6WmBhgbqzaDWZ4bLoedlSgz929fxeN7N5FPUwvmlW1yOxwiIiIiIiIiIiIiIiIiIiIi+knyXMcoosycOLATr19EYsDIqZBIJLkdDhERERERERERERERERERERH9JOwYRb+d3bsP/rS8R8/w/ml5ExEREREREREREREREREREdHvg0PmEBERERERERERERERERERERFRnsOOUURERERERERERERERERERERElOewYxQREREREREREREREREREREREeU57BhFRERERERERERERERERERERER5DjtGERERERERERERERERERERERFRnsOOUURERERERERERERERERERERElOfkuY5REokaNDQkv+SfRKKmclwvX76Ag4M9Xr58AQBwcLDHnTu3ftZhUMjf3w9Dhw74pWWmlxv7TURERERERERERERERERERET/PRq5HUBOkkjUUMBIDxrZ6LD0I5JlAj7FfIVMJmR72/37j8HAoMBPiIqIiIiIiIiIiIiIiIiIiIiIiPJcxygNiRoGP45A8NdvP7WsCnraWF65FCQSte/qGFWokPFPiIqIiIiIiIiIiIiIiIiIiIiIiIA81jEqVfDXb3gQG5/bYWTKwcEePj4r8fx5ODZv3oDduw+K6/bvD8C2bZuwffteJCYmYvlyH5w8eRQAULNmHYwYMVrpaFOXLp2Hv78fIiLCoampiZo162DcuMnQ1dUFAEilyfD0nIWTJ4+hUCFjuLsPRePGTQEAQ4cOQLly5XHlymVIpcnYvHknYmNj4evrjVu3bkAiUUPTpi0wePBwaGpqAgAOHtyHbds24cWLaOjp6cHRsRlGjBgNdXV1AMC6dauxZ89OCIIMgwYN+2nHk4iIiIiIiIiIiIiIiIiIiIgoLUluB/Bf17BhE7x9+waBgU/EZefPn4GjY0pnJT+/ZQgMfAwvryXw8fFDbGwspkwZrzCv6OgoTJ48Du3bd8KWLbsxc6Ynbt++gQMHAsQ0Dx7cBwCsXbsFzs4umDlzMqKiIsX1R44cxNSpMzFnzgLky6cJD49B+PYtHkuXrsLMmZ64cuUSli/3AQDcvXsbixd7wd19CLZtC8Do0RNw+PB+XLp0HkBKB6+dO7dhwoSpWLx4OQ4dOpCzB4+IiIiIiIiIiIiIiIiIiIiISAl2jMplhoaGqFatBs6fPwMA+Pz5M+7cuYXGjZvh27dvCAjYiTFjJqJyZUuUK1ceU6bMxN27txEaGpIhL5lMhhEjxqBt2/YwMSmOGjVqoVq1Gnj2LExMY2xcGKNHT0CpUqXRrVtPWFvb4uDBfeL6OnUcYGVlAwuLSrh+/QrevXuDKVNmoVy58qhWrTpGjRqHvXt3IS4uDjo6uhg/fgoaNHCEiUlxNGrUBBUqVBTLO3hwH7p06Ya6deuhQoWKGDdu8s89mERERERERERERERERERERERE/5cnp9L7t2nSpBk2b14Pd/chuHTpPEqUKIly5cojLCwESUlJGDiwj1x6mUyGyMgIlCtXXm65mVlJ5MuniQ0b/BEWForw8DA8exaG5s2dxDQVKphDQ+Oft93c3AIREc/E18WKFRf/Dg9/BjOzkjAwMBCXWVlZQyqVIjo6EhYWlaClpQV/fz88exaK0NAQREVFokaNWv/fPgy9e/cTty1Tpix0dHR+8GgREREREREREREREREREREREWWNHaN+A/XrN8KCBXMRFhaKc+fOoHHjlGn0pFIpAGD58jXQ0dGV26ZgwYIZ8gkOforBg/vBwaE+bG2romvX7ti5c5tcGolEfpAwQZBBQyOf+FpTUzPN31oZypBKZeL/169fxYQJo9GihRNq1aqDPn0GYOFCz3RbCHKv1NV5yhERERERERERERERERERERHRz8ep9H4D+vr6qFmzNs6ePYVbt26gceNmAABT0xJQV1fHp0+fUKKEGUqUMIOenh58fBbhw4cPGfI5fvwIbG3tMG3aX2jf3gWVKlVBVNRzCMI/nZPCwsLktnny5BFKlSqtMK6SJUshMvI5Pn/+JC579Og+1NXVYWpaAgcP7kWrVm0xduwktG7tjFKlSiM6OkpMW6ZMOTx58lh8/fLlC8TGfvmuY0RERERERERERERERERERERElB15cvieCnra/7oyGjduhnnzZqNUqVIoWbIUAEBXVw9t2jhjwQJPjB07EUZGBeHr643Xr1/CxKR4hjwKFCiA0NAQPH78EPr6+bF/fwCePHmM4sVNxTSvX7+Et/d8tG/fCefOnUZQUBBmzkw/ylOK6tVronhxU8yaNRUDBw7Dp08f4e3thaZNWyB//vwwMCiAhw//RmhoCNTU1LB583q8f/8OiYmJAAAXly5YuHAeKlQwR8mSpbBkycIMI1YREREREREREREREREREREREf0MeapjlEwmIFkmYHnlUr+kvGSZAJlMyDqhCurWrQ9BmCWOFpVq6NCRWLp0MSZPHofk5GTY2trBy2sJ1NXVM+Th4tIVT58GYcSIIdDU1IStrR369OmPU6eOi2lq1aqLT58+wc2tB0xMTDBv3kIULlxEYUzq6urw9FwEb+/5GDDgD+jq6qFZsxYYMGAIAMDNzR1z5kyHu3tv6Onpo3btunB2dkFwcBAAoHlzJ3z8GANvby8kJHxDjx69ERLyNEeOFxERERERERERERERERERERFRZtSEtPOs/YbevfuC9BEmJSXi/fuXKFTIBPnyacqtk0jUIJGo/ZLYZDnYMYp+Dg0NCYJfxyI+SZrboRDRf5ROPnVUKKqP5GSZ0jSZ3deIiHKChoYERkZ6aOVzEY9efM7tcIjoP6hKcQMc9qiHmJivmdaLiIh+JtaJiOh3wHoREeU21omI6HfAOhH9KDU1wNg4v0pp89SIUQA7KxERERERERERERERERERERERESDJ7QCIiIiIiIiIiIiIiIiIiIiIiIhyGjtGERERERERERERERERERERERFRnsOOUURERERERERERERERERERERElOf8qztGCYKQ2yEQERH9MN7PiIiIiIiIiIiIiIiIiIhy3r+yY5S6ujoAIDExIZcjISIi+nGp9zN1dY1cjoSIiIiIiIiIiIiIiIiIKO/4Vz6BlUjUoaOjj9jYGACApqYW1NTUcjkq+h3JZGqALAlqgiy3QyGi/yqZDImJCZBKM44KJQgCEhMTEBsbAx0dfUgk/8r+ykREREREREREREREREREv6V/ZccoADAwKAgAYucoIkUkEgm+fvmGpGROU0VEuUOqoYZ3gjZkMuUdNHV09MX7GhERERERERERERERERER5Yx/bccoNTU1FChQCPnzG0EqTc7tcOg3pK6uhgIFdDF/0y2EvInN7XCI6D+qfBF9+PWsjE+f4hSOGqWursGRooiIiIiIiIiIiIiIiIiIfoJsd4xKSEjAjBkzcOLECWhra8PNzQ1ubm4K0z5+/BjTpk3D06dPUb58ecyYMQOWlpY/HHRaEokEEolmjuZJeYOGhgTa2tp4Fy8g+os0t8Mhov8ow/wCtLW1ER8vRXIyp/UkIiIiIiIiIiIiIiIiIvpVsj1Exfz58/Hw4UNs2LAB06ZNw9KlS3Hs2LEM6eLi4jBgwADY29sjICAAdnZ2cHd3R1xcXI4ETkREREREREREREREREREREREpEy2OkbFxcVh165dmDRpEqpUqYKmTZuiX79+2LJlS4a0R44cgZaWFsaOHYty5cph0qRJ0NPTU9iJioiIiIiIiIiIiIiIiIiIiIiIKCdlq2NUYGAgkpOTYWdnJy6rVq0a/v77b8hk8tMD/f3336hWrRrU1NQAAGpqaqhatSru3bv341ETERERERERERERERERERERERFlQiM7id++fQsjIyNoamqKy4yNjZGQkICPHz+iYMGCcmnLly8vt32hQoUQHBycrQAlEkAQsrUJkZxFna0RnyjN7TCI6D9KR1Nd/FuS7QlsiYhy1rJutkhIlmWdkIgoh2lp/FMRYp2IiHIb24qIKDexrYiIfhfNKhdFFZP8uR0GEf1HmRrpin+zTkTf4/9jNKkkWx2j4uPj5TpFARBfJyYmqpQ2fbqsFCzIGzL9mIrFCuR2CEREMDLSy+0QiIhQ2ph1ayLKXawTEdHvgG1FRPQ7YL2IiHLb8CbmuR0CERHrRPRLZKvvnZaWVoaOTamvtbW1VUqbPh0REREREREREREREREREREREVFOy1bHqKJFiyImJgbJycnisrdv30JbWxsGBgYZ0r57905u2bt371CkSJEfCJeIiIiIiIiIiIiIiIiIiIiIiChr2eoYValSJWhoaODevXvistu3b8PKygqSdBM/2tjY4O7duxAEAQAgCALu3LkDGxubH4+aiIiIiIiIiIiIiIiIiIiIiIgoE9nqGKWjowNnZ2dMnz4d9+/fx6lTp7B27Vr06tULQMroUd++fQMAtGjRAp8/f8bs2bMREhKC2bNnIz4+Hi1btsz5vSAiIiIiIiIiIiIiIiIiIiIiIkpDTUgd0klF8fHxmD59Ok6cOAF9fX307dsXvXv3BgBUrFgRc+fORYcOHQAA9+/fx7Rp0xAaGoqKFStixowZqFy5co7vBBERERERERERERERERERERERUVrZ7hhFRERERERERERERERERERERET0u8vWVHpERERERERERERERERERERERET/BuwYRUREREREREREREREREREREREeQ47RhERERERERERERERERERERERUZ7DjlEkSkxMROvWrXH9+vXcDiXHXb9+HRUrVsztMORERUWhYsWKiIqKyu1QMhg/fjzGjx8PAPD19UXPnj1V2i4xMRE7d+787nJPnz6N+vXrw8bGBhcvXvzufBRxdHREQEAAAKBnz57w9fX97rz+/PNPXLlyJadCyzHKjn+jRo3w+vVruWPwM2XnnMkNFStWFK9zv+qY5KS017OsriMBAQFwdHTMsN2P2rlzJ7y9vXMkL6Kf5fXr1/Dw8ECNGjVQr149zJ07FwkJCbkd1i/xo/e5nyFt3eJ3kv46mvYekZUnT57gzp0731VuQkICBg8eDGtr6xy/Z+bktT84OPi3vadn9/j7+Phg5cqVv6ye8jvX9YHvr+//W6ha3/uRa8D3unz5Mv7888+fWgYR/XqOjo6oWLGiwn+qXFfev3+Po0eP/tT4vve7b9q6hSK+vr6oVq0a7O3tERsb+70hZpCT1+iEhAS0b98eMTExcsvHjx+PihUr4vnz5z8cb1o/2j72K/yO3xlySk7cz2NiYtC+ffv/zHdIIqLfXcWKFRV+j8qqnpIZQRAwZcoU2NraonHjxj8aopzstOEr86vbFX5VmxiQed00IiIC7dq1g5WVFRYvXpytemxm+5DdNrI9e/ZgypQpKqcnot8fO0YRgJQGglGjRiE4ODi3Q/kp7OzscOnSpdwOQ46JiQkuXboEExOT3A4lU25ubio3lBw+fBgrV6787rJ8fHzg4OCAI0eOoHr16t+djyK7d++Gk5PTD+dz7do1vH79GnXq1MmBqHKWouMfEREBbW1tFC1aNJei+r3l1HnxK33v9Swnr4MdOnTAiRMn8OzZsxzJjyinCYIADw8PxMfHY8uWLfD29sbZs2exePHi3A7tl/D19YWbm1tuhyFn0qRJmDRpUm6HkaVLly7Bzs5OpbRDhgxBeHj4d5Vz8eJFXLx4EVu3bsXChQu/Kw9lnJycsHv37hzJa+bMmRgyZEiO5JXTsnv8r169itq1a/+8gP7FslPf/7fIzmc5J7bLjrp16+L169d58gdJRP91EydOxKVLlzL8U+W6smDBApw/f/4XRJmzPn36hKVLl2LcuHHYv38/9PX1cyzvnGw3W7VqFRo1agQjIyNxWUJCAk6ePImSJUti3759P1xGWj/aPkY/Jifu50ZGRmjUqBFWrVqVQ1EREdGPOnToEK5evZpj+QUGBmLnzp1YsmQJtmzZkmP5AjnTFv87P0P8kTaxrGzevBlASn2qT58+ufYMh+1IRHkPO0YRQkJC0Llz5xz/ddTvRFNTE4ULF87tMOSoq6ujcOHCUFdXz+1QMqWnpwdDQ0OV0gqC8ENlffnyBdWqVYOpqSm0tbV/KK/0ChYsmCN5Ll++HK6urjkQUc5TdPxZectcTp0Xv9L3Xs9y8jqooaGB9u3bY/Xq1TmSH1FOCwsLw7179zB37lxUqFAB9vb28PDwwKFDh3I7tF/C0NAQenp6uR2GnPz58yN//vy5HUaWChcuDE1NzZ9ezpcvX2BsbAxLS0sUKVIkR/PW1tZGwYIFfzifmzdv4u3bt6hVq1YORJW7vn79imfPnsHS0jK3Q/ktZae+/2/xvZ/lX3UN6NatG5YvX/7TyyGiXyt//vwoXLhwhn+qXFd+tD0lt6SOEFW7dm2YmprmaN451W729etXbNy4EV26dJFbfv78eeTLlw/dunXDvn37cvQ9+Le+n3lFTt3PXV1dsXHjRsTFxeVAVERE9KNMTU0xc+ZMJCYm5kh+X758AQDUr18fxYoVy5E8U+VEW/y/5RliTouNjYWFhQVKliyJAgUK5NoznOvXr+eJNjEi+gc7RhFu3LiBmjVrYseOHVmm9fX1xciRIzFhwgTY2NigefPmOH36tLg+MTERf/31F2rWrImaNWti9OjR+PjxI4B/hn1ctmwZqlevjpkzZ+Lz588YNmwY7O3tUb16dYwePVpu2O2AgAC0bNkS1tbW6NChA27evCmuc3R0xJYtW9C5c2dYWVmhXbt2ePjwocK4FQ1beeLECTRp0gRWVlZwd3cX41S0z2PHjsWsWbNgZ2cHR0dHXLp0CZs3b0adOnVQq1YtbNy4EQCwYsUKtGnTRm77tWvXolu3bhnyVTQk+NGjR9GyZUvY2Nhg1KhRiIyMRK9evWBjY4Nu3brh9evX2Y4JAD5//owxY8agatWqcHBwwKxZs/Dt2zdx/a1bt+Ds7Axra2sMHz4c8fHxcvufdmqNXbt2oUWLFrC0tETNmjUxY8YMSKVSXL9+HRMmTEB0dLS4X4IgYNmyZXBwcIC9vT0GDhyIFy9eKDzOjo6OiI6OxsSJE8WhT2/fvg1XV1fY2NjA1tYW/fv3x5s3bwCknBs9e/bEihUrUL16ddStWxf79u3DsWPH0KhRI9jb28PLy0su//TDbb58+RIWFhZ49OiRuOz9+/eoXLkyIiIiMsQYFhaGO3fuoEGDBnLv4cGDB1GvXj3Y29vjr7/+QnJyMoCUhrCVK1fC0dERlpaWcHBwwNKlS8X8evbsiVmzZqFx48Zo2LAhYmNj8fLlSwwcOBA2NjZwdHTE0qVLIZVK5fbZx8cHNWvWhL29PebOnQtBEBQef0B5x6is3puYmBgMHToUdnZ2aNy4MbZt2yY3zOjp06fh7OwMKysr2NvbY9SoUfj69avC9za9AwcOoEmTJrCxscGff/6JUaNGiaMUpB/KPf3nJCQkBH379oWdnR2srKzQrVs3hIaGAkj5nDs6OmLatGmoVq2a+Ku+pUuXonbt2qhZsyZ27dolF0va8yI2NhYTJkxA7dq1YWlpiRYtWuDUqVNi2ooVK2L//v1o3bo1LC0t0a1bN0RGRirdz7t378LV1RW2trZwdHTEtm3bxHWp09e0bdsWtWvXVvjrio0bN6JRo0awsrJChw4dcOvWLXE/0w/5euzYMdSvXx9Vq1bF1KlTFX45zO518NKlS2jTpg2sra3Rr18/zJo1S24arMaNG+Pw4cP4/Pmz0mNAlFsKFy6MNWvWwNjYWG55ZlN7nD17Fu3bt4e1tTWcnJxw4sQJcZ2i63Vaqdef3bt3o27duqhevTpWr16NmzdvokWLFrCzs8PYsWMhk8kAADKZDGvWrEHjxo3FqdSCgoLE/CpWrIglS5agZs2aGDhwIICUe3WHDh1gbW2NNm3a4Pjx40r3Je21dPz48Zg7dy5GjBgBGxsbNGjQINNfxKtaH/n27RuqVq0qd5ySkpJQs2ZNhb/eSz9tV3bqMdmpIwHAyZMn4eTkBBsbG7i4uODGjRtyMc6aNQv29vaoX79+hpEZ0g65nTodY/Xq1WFpaYn27dvj9u3b4jGOjo7GhAkTxP16+vQpevbsCWtrazRv3lzprw0DAgIwfvx4vHjxAhUrVkRAQAASExMxd+5c1KtXD1WqVIGjo6Nc3Tz1/OrYsSOsra3h5uaG6OhoDBs2DDY2NmjXrp048quyYeQnT54snk+pZs2ahTFjxiiMc9u2bWjSpInce/jXX39h4MCBsLa2hrOzs9yw6d9zj96+fTscHR1hZ2eX4XOQWV1f0fFftGgRHBwcxM9U2pFwb926BTs7O4WNiVl9ttavX4969eqhatWq+Ouvv9CzZ0+x7pDZOZKVyMhI9O7dGzY2NmjTpg38/f3F903Re5j2c63K+eLl5QUHBwc4OztDEIQcqe8DWV9Trl69Kg5537hxY2zfvl3pMXj16hWGDx+OGjVqoGbNmvjrr7/EOkxAQAC6du2KIUOGoFq1ajhw4ECG7TMrK/3w+cHBwWLdtW/fvkq/k6Sfgi+z75uZvYdJSUmYPHkyatasCTs7OwwcOFDuOlW/fn3cvn0bYWFhSo8PEeUtoaGhsLS0FK+ZiYmJaN68OebMmQNfX1/s3bsXe/fuFa8jmbXjpN5Xt27dinr16sHW1hZjxoyR+x64fft2NGzYEFWrVs3QETOr9oDXr1+jX79+sLW1Rfv27ZX+kDIqKkqMt0mTJuI9Oav7iJeXl3gfcXJywuPHj+Ht7S3Wz1KnFFQ2fcyBAwdQs2ZNse0FAI4fP46GDRsq7JB08OBBlClTJsNI2ocOHYK9vT0aNWqE6OhouTZHRWWnvV9mt30mMDAQXbt2hY2NDerVqyfXNpSZH4kj1bp168T6Vt++fZW2Y2RWL8vO/T29+/fvi217zZs3x+HDh8V1qrSbpJX2Pq1qPSCr+7mythcg5Xtl6dKlcfDgQZX3l4iIfp4RI0bg9evX8Pf3V5oms++ZaV2/fl28n1pYWMDX11el5zn+/v7o06cPrK2t4eLigoiICEyZMgV2dnZo1qyZ2AalbNq2H32GqOrzCUXfqbPzvC6n28Qyq5umNX78eAQEBGDfvn3ivqd9hpOdfYiNjcWoUaNgZ2eH5s2b48GDB3LrM6sDhISEwMjISPzh4YULF9C+fXvY2Nigbdu2YttnTj8DBDJvp1L0XOnIkSNo3rw5rKys4OTkJPdMi4jksWMUoVu3bpg4cSJ0dHRUSn/y5EkIgoCAgAB07NgRHh4eCAkJAZDyQOLhw4dYvXo1Nm7ciNjYWAwfPlxu+zt37mDPnj3o1asXfHx88PbtW2zbtg0bN25EYGCgeFMMCAjArFmz4O7ujn379qFOnToYMGCAXIOyr68vBgwYgAMHDiB//vz466+/VN7vlStXYtGiRdi8eTMePHiAdevWKU175MgR5M+fH/v374e1tTVGjBiBS5cuYdOmTejZsyfmzZuHDx8+oFWrVnj69Knc9FJHjx5Fq1atVIrJx8cHnp6e8PPzw4kTJ+Dq6gpXV1ds374db9++lRudRdWYgJTpa758+YJt27Zh+fLlePDgAWbOnAkA+PDhA9zd3VGnTh3s27cP5cuXx7FjxxTGd+PGDfz1118YNWoUjh07hhkzZmD37t04ffo07OzsMHHiRBQrVkwc3nPz5s04ePAgFi5ciB07dqBQoUJwc3NDUlJShrx3796NYsWKYeLEidi9eze+fPkCd3d31K1bF4cOHYK/vz+eP38uN4T13bt3ERkZid27d6NVq1aYPn06Nm7ciBUrVmD8+PFYs2YNHj9+rPR4m5iYoFq1anIVi+PHj6NSpUooVapUhvQXL16EtbV1hqHhly5dCm9vbyxduhQnTpwQH1rt27cPGzZswOzZs3Hs2DEMGTIEvr6+ch2xAgIC4OXlhaVLl0JPTw9Dhw5FoUKFsHfvXsydOxcHDx6UG3797t27ePbsGbZt24YpU6Zg48aNuHLlisLjLwgCbt68iRo1amTYl6zem1GjRuHDhw/Ytm0bpk6dimXLlonbPn/+HMOHD0e3bt1w9OhRLF68GFeuXMHOnTuVHutUt27dwsSJE9GvXz8EBARAR0cHR44cyXI7IKUjwcCBA2Fqaor9+/dj+/btkEqlch3goqOjkZiYiICAALRu3Ro7duzAxo0bMWfOHKxfvx579uxRmv/s2bPx7NkzrF27VmwgnTRpktwXJ19fX0yaNAkBAQGIiYlROi1XaGgo/vjjD1SvXh0BAQEYNmwY5s2bh5MnT4pp9u/fjxEjRsDPzw+lS5eW2/7x48eYP38+pk2bhqNHj8Le3h4jRowQO1Wkt3PnTnh7e2PlypW4cOEC/Pz8VDiiyq+DkZGRGDRoEFq2bIl9+/bBysoqw5eZcuXKoUCBAnKNx0S/CwMDA9SrV098LZPJsHnzZqW/8rl69SqGDRuGdu3aYf/+/ejUqRNGjhwp12Ce9nqtaIqQN2/e4NSpU9i0aRMGDhyIRYsWYc6cOfD09MSiRYtw5MgRsTP5smXLsHbtWkycOBF79+6Fqakp+vXrJ/dL5LNnz2Lbtm0YPXo03r59C3d3d3To0AEHDx5Ev379MH78eLkv7JnZsmULqlSpgkOHDqFZs2aYNm2a+Ks4RVSpj2hra6NJkyZy99ArV65AQ0ND4X0nvezUY1SNCUgZBn3cuHEYNGgQDhw4gLZt26J///5ih2dfX1+cPXsWK1aswJIlS+Q6YKU3evRoSKVSbN++Hfv27UPRokUxffp0MZ/UesukSZPw7ds39O/fX2xsGjduHJYvX66wE5qTk5PcPdvJyQmrVq3CuXPn4Ovri2PHjsHZ2RmzZs3Cu3fvxO0WL16MP//8E1u3bsXjx4/Rvn171KlTB7t374aOjg4WLVqU6TFv1aoVLl++LHbsk8lkOH78uMJ6qiAIuHz5MurWrSu3fPv27Shfvjz27t2L6tWrY8CAAfjw4cN33aPPnDmDpUuXYsqUKdi7dy+qVauGXr164dOnT+I2yur66Y//yZMnsWPHDixevBiHDh2CsbExJkyYIOajrKN4Vp+tAwcOwMfHBxMnTsSOHTsQFRUld9/L7BzJTHJyMtzd3WFgYIA9e/ZgwIABKj8gBaDS+XLw4EH4+/vD09MTMTExOVLfT6XsmiKVSjFixAi0aNECR48exfDhwzFjxgzxu2JaiYmJ+OOPPxAfH49NmzZh8eLFOHfuHObPny+muXv3LsqXL4+dO3fCwcFBbvvslAWkdPTr168f9uzZg+TkZIwbN06lY63sHMzqPdyyZQtu3ryJtWvXYvfu3fj69SvmzJkjrtfX14eVldVvN907Ef085cqVw4ABA7BgwQLExsZi2bJlkMlkGDlyJNzc3NCyZUu0bNlSnA43s3YcIKXuefz4caxZswa+vr44ceKEWO+4ePEiZs+ejREjRmDHjh148OABoqOjxW2zag8YPnw4ZDIZdu3ahf79+2PDhg0K98nExET88dGuXbswadIkle4jGzZsQI0aNXDgwAEYGhrijz/+wPv377Fjxw6xI7Wy775Ayo90vn37hmvXronLUjvRq6mpZUh/8eJF1KlTR27Z169fcf78eTRq1AilS5dGuXLlsHfvXqVlKpKd9pmxY8eiUqVKOHToEGbPno01a9bk2NSJyuIAUupuS5cuqI2LOwAASDxJREFUxejRo7F3717o6ellaKcFkGm9LLv33LTev38PNzc3VKpUCXv37oW7uzvGjRuHwMBAldpNlMluTMru56q0vdSpUwcXL17MMiYiIvr5ihYtCg8PD6xcuVJhhyBVvmemsrOzE5/jXLp0CW5ubio9z1m2bBk6d+6MgIAAfPnyBS4uLjA2Nsbu3btRoUKFLJ9R/ugzRFWfTwAZv1Nn53ldTraJZVU3TWvSpElivVjRNILZ2Ydp06YhLCwMmzdvxuTJk+WeAWdVB0jbjhQcHIxBgwahadOmYse0wYMH4+3btzn+DFCVNuC0z5Xy58+PsWPHwt3dHceOHUPHjh0xatQopQOBEP3nCURpmJubC9euXVO63sfHR6hTp46QkJAgLuvevbvg6ekpxMXFCVWqVBECAwPFdZ8+fRIsLCyEwMBAITIyUjA3NxfOnz8vrh84cKDg5uYmxMXFCYIgCCEhIUJISIggCILg7OwsLFy4UK78zp07CwsWLBAEQRAaNWokeHp6iutOnTolVKlSRWHc165dE8zNzQVBEMQ4zp49K66fM2eO0KdPH6X77ODgIMhkMkEQBOHcuXOCubm58Pz5c0EQBCE+Pl4wNzcX7ty5IwiCILi4uAjLly8XBEEQoqKihMqVKwvv3r3LkG9qHJGRkYIgpBz77du3i+tdXFyEMWPGiK/nz58vuLm5ZTumiIgIwcLCQvj8+bOYV2BgoLhs8+bNQpMmTcS8BEEQOnbsKIwbN04sq0ePHoIgCMKDBw+EgwcPyu1H586dhaVLlwqCIAh79uwRGjVqJK6rX7++cPr0afF1cnKyUKtWLbllaTVq1EjYs2ePIAiC8ObNG8Hf318urgULFgi9evUSy6pcubLw9etXQRBSzh1zc3PhypUrYvratWuL8abNu0ePHoKPj48gCIKwZcsWoWnTpuI2PXr0EPz9/RXGN3bsWGHy5Mni69T38OTJk+Ky3bt3C7Vq1RJkMplw9epVufNMEAShbt26wt69e8WyRowYIa67cuWKUKtWLUEqlYrLTp8+LdSoUUPcZwsLC+HLly/iemdnZ2HFihXi+rTH//Hjx0KHDh3E12mPQWbvTVhYmNz5JAiCsG3bNvEz9OzZM2Hbtm1y+zVy5EhhwoQJgiDInzPpjRo1Su68TkpKEho0aCC+H2nfG0GQ/5x8/fpVWL16tfiep8bVuHFjQRD++ZynXkMEQRA6dOggnp+CIAjBwcFy17m0x2TPnj1CUFCQmDY0NFQwNzcXXrx4IQhCymd08+bN4voNGzYIzZo1U7ifc+bMEbp06SK3zMvLS+jcubMgCIIwbtw4oVOnTgq3FQRBOHHihGBpaSnG8/XrV+HKlStCUlJSltezgIAAoU6dOuI+pZ4T2bkOLly4UOjWrZtcTJ07dxavC6n69Okj934R/a48PT0FKysruc94WkOGDBFGjRolt2zEiBHCyJEjBUHIeL1OL/XzFRYWJgjCP/fhXbt2iWlcXFyElStXCjKZTKhRo4bcPT8xMVFo0KCBeG01NzcXtm7dKq739vYWhg4dKlfm3LlzMyxLlfZaOm7cOLl7wZcvXwRzc3Ph9u3bCrfNTn3k3Llzgp2dnfDt2zdBEARh/PjxwsyZMxXmO27cOLm6RXbqVtmJafTo0cLcuXPlyh46dKgwd+5cQSaTCbVq1RLvw2nLTlsfu3btmiCTyYT169cLL1++FNNeuHBBsLCwEF+nvYfs3LlTaN++vVy5GzduzLAsVfp79smTJ4WbN2+KrxMSEgRzc3NxWaNGjeTqxcOHD5e7Tm/ZskW8Jym79kulUqFu3brC/v37BUEQhOvXrws1atQQEhMTM8T3/PlzwdzcXHj16pW4bNy4cUK7du3E11KpVHB0dBQ2bdr0XfdoV1dXYePGjXLltm/fXlyWVV0/7fFft26dULduXSE6OloQBEF4//693PFs27at8PTpU0EQ5OspWX22unTpIixevFhc9/HjR8HGxkbYs2dPludI+rp+WhcvXhRsbW3l6nQLFiwQ37f054cgyH+uVTlfvLy8xPU5Wd/P7JoSExMjmJubCzt37hTXX716Vfj48WOGY3Dq1CnBxsZGbt358+eFypUrC7GxscKePXuEihUrCvHx8Rm2FQQhy7LS1/fSnkup701ISIjC72TKtkt7Dmb1Hs6aNUto06aNEBMTIwhCyvfChw8fyu3D5MmTM9StiOjfq1GjRoKlpaVga2sr98/JyUlMk5CQILRo0ULw8PAQqlSpIly/fl1cl7aulFU7Tup9NfXeJggp9dnU9ophw4aJ388FQRA+fPggWFlZqdQe8PTpU8Hc3Fy8pwqCIMybNy/DfSlV+uuoKveRtN+Vt2zZIlSpUkW83qe27bx+/TrTa/Tw4cOFSZMmCYIgCHFxcYKtra3w4MEDhTE2bNhQOHDggNyyffv2CZUqVRLev38vCIIgLFq0SLCzsxPbJxXdx9PeL7PbPlO1alVh8eLFYnvPnTt3hDdv3iiMN60fjcPZ2VnuO/vbt28FT09PIT4+Xq5ukVm9LDv39/Q2bNggODo6yrVzrV27Vrh7965K7Sbp75Op58CP1APS3s8za3tJdeDAAaXnPxER/Tqp1/bk5GShTZs2gru7uyAI8vfcrL5nppe2zUQQBJWe56RtP5w/f77QsGFDufat1HuMorb41Pv5jzxDVPX5hKLv1Fk9r/tZbWJZ1U3TS18HUPW5Vtp9+Pz5s1CpUiW5tpPNmzeL70lWdYBBgwaJ58KcOXMyPO/y9vYWQkJCcvwZYFbtVOmfKz169EgwNzcXLl++LAiCIMhkMuHixYtinZaI5Gnkdscs+vextLSUm6fd0tISoaGhiIyMRFJSErp27SqXXiaTITw8HFWqVAGQMg9wql69emHw4MGoXbs2ateujebNm4vDSIaGhmLIkCFyedna2opTcgCQG2VFX19fYa9gZdKOCJTVtiVKlBB/dZY6l23qfqS+Th1VplWrVti7dy8GDRqEo0ePokaNGihUqJBKMZmZmYl/a2tryx0rbW1tuZFrVI0pNDQUMpkM9evXlytLJpMhIiICISEhsLCwkPtVnZWVldz0GqksLS2hra0NHx8fhISEICgoCBERERl+wQ2k/Pru1atXGDlyJCSSfwan+/btm8Jpw9IrXLgwnJ2dsX79ejx58kQsr2rVqmKaQoUKQVdXFwCgpaUlHhdlx0yRFi1aYPbs2Xjy5AkKFy6MO3fuyI1ukNaHDx9QqVKlDMvTxmRpaYkPHz4gJiYGtWrVwt9//42FCxciNDQUT548wdu3b+V+eZb2PQ4NDcXHjx9RrVo1cZlMJsO3b98QExMj7nPakUr09fXlho9PS9noCFm9N4mJiTA0NJQ7H21tbcW/S5cuDU1NTaxYsQLBwcEIDg5GSEgI2rVrpzCOtIKCgtClSxfxtYaGBiwtLbPcDgB0dXXh6uqKffv24eHDhwgLC8Pjx48zTJWV9hxIfx0pX768eM6k5+zsjFOnTmHnzp0ICwsTe/WnHcZU1etGaGgorK2t5ZbZ2dnJDe2e9r1Pz8HBAebm5mjTpg0qV66Mxo0bo1OnTtDQUHzbTltW5cqV8e7dO7kRN5RRtj9BQUGwsrKSS2tra5shT0NDQ7x//z7Lcohyk5eXFzZs2ABvb2+Ym5srTBMaGpqh/mJnZyc3ylxmn9lUqdfN9Pfl1GWJiYl4//49Pn78CBsbG3Fdvnz5xPqUovLCwsJw9uxZ2NnZicuSkpJQpkyZLGMCMtaXACi9d6Tdj9S4ldVH6tatC01NTVy8eBENGjTAqVOn5EY5zEx26lbZiSk0NBRHjx6Vm1YsKSkJDg4OiImJyXAvT3+tS6WmpgZXV1ccOXIEd+7cwbNnz/Dw4UOloxeEhYUhMDBQ7j2SSqUKp25TpEmTJrh8+TI8PT3F+1tqHqoeg6zqwRKJBC1btsSxY8fQtm1bHD16FE2bNkW+fPkypE2tdxgZGcktT1vnkUgkqFy5MkJDQ7/7Hu3l5SU30lVCQoJcPVHVun6rVq2wefNmNG7cGLa2tmjSpAlcXFwApNTf3r9/jwoVKmTYLqvPVlBQEAYMGCCuK1CggLguu+dIWkFBQShTpoxcnc7W1lZuapnMqHK+pD0/crq+r+yaYmhoCFdXV0yePBnLly9Ho0aN0LFjRxQoUCBDOaGhoShdurTcuqpVqyI5OVmcsqlQoULi9SC97JQFyNeVSpQoAUNDQ4SFhSms26el7BzM6j3s0qULDh8+DAcHB9SoUQNNmjRBhw4dMuxDYGBgpuUT0b+Lh4cHmjVrJrcs7Xc4TU1NzJgxAz179kTHjh2VjrKZVTtOqvTf51Lrd+nrtkZGRmI9Iqv2gISEBBgaGqJ48eLiOisrK6UjDaanyn0kfbuNsbGxeL1PbdvJqi2ndevWmDx5MqZPn45z586hSJEiStsWPnz4kKFOc/jwYVStWlWcHqVZs2ZYuXIlTpw4oVLbBpC99hl3d3csWrQIO3bsQMOGDdGuXTsULlxYpXJ+JI5nz56J7bEAYGxsrHDUxMzqZdm956b17NkzVK5cWe5c69OnD4CU0dezajdRJrsxKbufq9L2wnYPIqLfi7q6OqZPn45u3bplmDIsq++ZWX3/U+V5Tvp6TPHixeXat1R5RvkjzxCz81wz7Xfq7Dyvy+k2sczqptmRnX149uwZpFIpLCwsxGVp2wAzqwNIpVLcuXNHHGksfX0KSJnWEUgZFTYnnwGq0gacNr9KlSqhYcOG6NOnD8qUKSPuh6ozRBH917BjFGVb+gfzUqkUEolEbIjfunVrho4HhQoVEofuS23kAIDatWvj/PnzOH36NM6dO4epU6fi0qVLWLBggVy6tGWlvaEoepCjquxsq6gzQtobb1pOTk6YN28eIiIicPz4cXTu3FnlctI/PFNWRnZikkqlyJ8/v8IpxIoWLQogZbqUtPLly6fwQcnFixcxZMgQODs7o169ehgyZAhmzJihML7U82HJkiUZHtyq0njy+vVrdOzYEVWqVEGdOnXQuXNnnDt3Dn///beYRtExUDRsemYKFiyI2rVr4/jx4yhSpAhsbGxQrFgxhWnV1NTkHjilSnsupZ6fampq2LVrF+bMmYNOnTqhWbNmGDduHHr16iW3bdrzPDk5GWXLllU4x3L+/PkBQK5TYqr071+qq1evonfv3hmWZ/Xe3Lp1S2meQMo0Ra6urnB0dIS9vT169+6tdGj99NTV1TPknVlZaY/3169f4eLiAiMjIzg6OqJ169YICwvD2rVr5bZJf+1In7+yzkVjx47F3bt30a5dO7i6uqJw4cJynbgA1a8biq5fMplMbn8UpUmlo6ODXbt24caNGzh79iwCAgKwbds2cS7t9NJ+9lP3V5VYlaVR9X2SyWSZXqeIctusWbOwbds2eHl5oXnz5krTKfvMpq1zZPaZTZX++qLo86Esn/R1nPT3hzZt2mDgwIGZlqeMos96ZtdeVesjGhoaaN68OY4fP458+fJBX19fruNMZrJTt8pOTFKpFP3794ezs7Pc8rSdK9Luu7LroEwmg5ubGz5//gwnJyc4OjoiKSkJQ4cOVZg+OTkZtWvXxtSpU5XuQ2a8vb2xa9cudOjQAc7Ozpg2bRocHR3l0mSnnqhM69at0bNnT8TGxuLkyZNKO4OnSt/opex7wPfco6VSKSZOnJihE3faB3uq3ncLFy6Mo0eP4vLlyzh79iz8/f2xc+dO7Nu3D9euXUPNmjUVbpfVZyuz+2F2z5G0srrPKqrPpn3Qqsr5klV96Efq+5ldU6ZPn47u3bvj1KlTOHXqFHbs2IHly5ejQYMGmcYH/FPvS/0/q+uuqmUBGT8/Mpnsp9aVKlSogDNnzuDcuXM4d+4cFi1ahEOHDmHLli3i+8t6FFHeU6hQIbmHVYoEBgZCXV0dd+/eRWJiosLv+Fm146S2i6TfNu11SNF1PzVvQHl7wNWrV5VuqwpV7iOq1JmzUr9+fUilUty8eRPHjx9Hy5YtlaZN35YTExODK1euIDk5GZUrV5ZLu2/fPrRr1y7LezGQvfaZAQMGoGXLljh16hTOnDmDP/74A7NmzUKnTp0y3c8fjUPV7wtZ1cuyc89NK7Pys2o3UVNTkzue6fc7OzEpO4cza3tJbTPl/ZqI6PdTtWpVdOzYEbNnz0a/fv3E5ap8z8yMKs9zcqIe8yPPELNTL0vfBgOo9rzuZ7SJ/Uj98nv2QZG0dabM6gCvX79G6dKlxXpQZvWZnH4GqEobcNr81NTU4Ofnh/v37+P06dM4efIktm7diq1bt2bZEZDov4i1esq2oKAguYckDx8+RMWKFWFmZgZ1dXV8/PgRpUqVQqlSpaCvr4+5c+cq/WXN+vXr8ejRI7Rv3x5LlizB3LlzceLECQBAmTJl5DrBAMDff/+t8ugIuaVIkSKoUaMG9uzZg8DAwAy/FvzVypQpgy9fvkBNTU18X759+4b58+cjMTERFSpUwOPHj+Uqhk+ePFGY165du9CxY0fMnDkTnTp1Qrly5fD8+XOxUpO2wcbAwACFChXC27dvxXJNTEzg5eUlN3+yMidPnkSBAgXg5+eHP/74A/b29oiMjMz0Qe73at26Nc6ePYvz589nOpdz2g5+aaU9Xg8fPkSRIkVgZGSEbdu2YciQIZg4cSKcnZ1hZGSE9+/fK92HMmXK4MWLFyhYsKB4zKKiouDj46NSh6+0aZKSknD//n25nuepsnpvypUrh0+fPsnN0/3w4UPx7/3796N69epYuHAhunXrBmtra0RERKj03pQvX15ufmWpVCp3/DQ1NfH161fxddoYbty4gTdv3mDjxo3o168f6tSpgxcvXmRaboUKFfDgwQPxdVRUFD5//pwhXWxsLA4dOgRvb294eHigadOm4uhI33POKbp+3b17V+Xr1927d+Hn54datWphwoQJOHbsGBISEnD79m2F6Z8+fSr+ff/+fRQrVkzpyFiqqFChgtz7BCDDayClQTn9aCBEv4ulS5di+/btWLRoUabXduDHP7PZkT9/fhgbG+PevXvisqSkJDx69EhpeWXKlEFERIR4zS5VqhROnz6NgwcP5nh82dWmTRtcuHABZ86cQYsWLbLdQTmnlSlTBlFRUXLHaseOHbhw4QKMjIxgbGwsd19IHWknvZCQENy8eRPr16/HwIED0bBhQ7x58waA4vtCmTJl8OzZM5QoUUIs9969e9i0aZNKcW/fvh1TpkzB6NGj4eTkJHZYyel6j42NDYoWLYrVq1dDEASlI1WkXtvT13vS3rOlUikCAwNRsWLF77pHlylTBq9evZJ7r1auXCn32VDVuXPnsGvXLjRs2BAzZszA/v37ER4ejqdPn+LatWsKR9BMjSGzz1b6ektsbKw4Ukd2z5G0KlSogPDwcMTGxorL0paTL18+ufqQIAiIiooSX2f3fMnJ+n5m3r59ixkzZqBUqVIYNGgQ9uzZg1q1auHMmTMZ0pYpUwbh4eFy59i9e/egoaGBkiVL5mhZgHxdKTw8HJ8/f/6ha3xW7+G+fftw9uxZtGzZEvPmzcOaNWtw+/Ztue/FrEcR/fe8evUKixcvhqenJ5KSkuRG2kxbh8qqHScr6b8Hp71/ZdUeYG5ujk+fPsmNTKXsnqHIj9xHskNTUxNNmzbFyZMncfny5Wy15Zw4cQIymQxbtmzBvn37xH9ubm64du0aXr16JT6sS3s/Tnsvzkra9zMhIQF//fUXNDU10adPH2zatAmdO3fG8ePHs8znR+MoVaqU3OiEqaObp88js3pZdu+5aZUuXRpBQUFy7/+IESOwZs2aLL+Dpa8PpW0f+pGY0peXVdsL79dERL+n0aNHIy4uDv7+/uKyH/2emd3nOd8rN54hZud5XU63iWVWN/1Z+1C2bFnky5dPaRtgZnWA9DOxpK9PAUDXrl1x+PDhHH8GmN024NDQUMybNw/W1tYYOXIkDh8+DBMTE1y8eDHbx5fov4AdoyjbIiMj4eXlhbCwMKxYsQKPHj2Ci4sL9PX10alTJ0yfPh3Xr19HSEgIxo4di4iICLnhJdN69eoVZs6ciXv37iE8PBzHjx8Xf63Vu3dvbN68Gfv27cOzZ8+wYMECBAYGitNi/M5at26N9evXo27duir1VP6ZypUrh3r16mH06NG4f/8+Hj16hAkTJiAuLg4GBgZo1aoV4uPjMXv2bISFhYmN9ooYGhri7t27CAoKQnBwMMaPH4+3b9+KDXM6Ojr49OkTwsPDkZycjN69e2Px4sU4c+YMwsPDMXnyZNy5cwdly5bNMm5DQ0O8ePECV69eRWRkJFatWoUTJ06o1AiYXU2aNEF4eDhu3LiBFi1aKE1XuXJlBAUFZVg+e/ZsPHjwAFeuXMGSJUvQvXt3AClDgl69elUcanTkyJFISkpSug8ODg4wNTXFmDFjEBQUhFu3bmHKlCnQ0dFRaSqetMf/77//hrm5udLpRzJ7b8qUKQMHBwdMnDgRgYGBuHz5Mnx8fMRtDQ0NERQUhPv37+PZs2fw9PTEgwcPVHpvevTogcOHD2PXrl0ICwvDnDlzEB0dLTYaWlpa4ujRo7h//z7u37+fody4uDicOnUKUVFR2LVrF7Zs2ZJpuT169MDGjRtx/PhxPH36FJMmTVL4Kw5NTU3o6OjgxIkTiIqKwsWLFzFz5kwAWQ/hr0i3bt3w5MkTLFq0CM+ePcPevXuxdetW8dzIira2NpYtW4Zdu3YhKioKhw8fRlxcHCpWrKgw/axZs/D333+L75WikcKyo3Pnzrh37x5WrVqFZ8+eYeXKlbh161aGDg9Pnz7NMIws0e8gNDQUy5cvR//+/VGtWjW8fftW/KdI7969cfz4cWzYsAHh4eFYv349Tp48CVdX158SX+/eveHj44MzZ84gNDQUU6ZMQUJCApycnBSm79atGx4+fAhvb2+Eh4fj4MGDWLRokdwUJ7mlWrVq0NHRwd69e7PsgPYr9O7dG0eOHMHGjRvx/PlzrF+/HuvXr0fp0qWhpqaG7t27w8fHB1euXMGDBw8wd+5chfkYGBhAIpHg8OHDiI6OxrFjx+Dr6wvgn/uCrq4uwsLC8PHjR7Rt2xbfvn3D1KlTERoaivPnz2P27NkqD4VuaGiIs2fPIjIyErdu3cLYsWPlyspJTk5OWLduHVq0aKG0fmFiYgIjI6MM9Z4bN25g7dq1CAsLw+zZsxEfH48WLVp81z26T58+2LBhA/bt24fnz5/Dy8sLR48eRbly5VTaj7THXyaTYf78+Th58iSioqIQEBAAHR0dlC5dWunUwkDWn62ePXti48aNOHHiBEJDQzFx4kTExcVBTU1NpXNEmdq1a8PExARTpkxBaGgojh07ho0bN4rrLS0t8fHjR2zatAmRkZGYO3eu3HS22T1fcrK+n5kCBQrg5MmTmDNnDp4/f46bN28iMDAww2gcQMpUnGZmZhg7diyCgoJw7do1zJo1C61bt4aBgUGOlgUA69atw4kTJxAYGIgJEyagUaNGWY7qkpms3sMvX75g9uzZ4neZgwcPolixYnJTOQUFBSmNl4j+nb58+SJX70z9FxcXBwCYMWMG7Ozs0LZtW0ycOBGrVq1CSEgIgJTv89HR0Xj9+nWW7ThZ6dGjB44ePYqdO3ciNDQUU6dOxbdv38T1mbUHlCtXDrVr1xbbA06dOoXNmzerfAx+5D6SXa1bt8bu3btRrFgxhVPmpkrflnPo0CHUq1cP1apVg7m5ufivd+/ekEgk2L9/P4yNjWFiYgJ/f39ERkYiICAA586dUzm2tO0z6urquHPnDmbNmoWwsDA8ePAAt27dEu8BX79+xYcPHxTm86Nx9OzZExs2bMCpU6fw7NkzTJs2DSVKlMjQTptZvSyre+6XL18U/ogQSPkRxcePHzF//nyEh4cjICAAp0+fRt26dbNsN7GyssLly5dx9epVPH36FDNnzhQ7imW3HqCMKm0vvF8TEf2ejIyMMHr0aERHR4vLfvR7Znaf5/yI3HiGqOrzupxuE8uqbvoz9kFfXx/t2rUTn5tcv34dS5cuFddnVgdI347k6uqKW7duYd26dYiIiICfnx+Cg4Nhb2+f488As9sGbGBggG3btmH58uWIjIzEuXPnEB0dzboLkRLsGEXZZmNjgw8fPsDZ2RlHjx7FqlWrxPlgx48fj9q1a8PDwwOdO3eGhoYGVq1apfShy/Dhw1G1alUMGjQI7dq1Q1xcnDilh5OTE0aOHAkfHx+0bdtWfBCj6sOS3NSsWTNIpVKlDzh/tfnz56NEiRLo3bu3ONfsokWLAKQ0JqxZswYPHjxAu3btcOXKFbRr105hPkOHDkWhQoXQpUsX9OnTB1paWnB1dRV/PVirVi2UKlUKbdq0wZMnT9C3b1+4uLhg6tSpcHZ2xosXL+Dv769SRa9ly5Zo27YtPDw80LFjR1y/fh3jxo1DaGhojldE9fX1Ub9+fdja2mb6ALNevXoIDAyU+8UakHKuuru7Y9SoUejUqRMGDBgAAJg4cSJiY2PRrl07DBs2DBUrVkTTpk2V/tpSXV0dK1asgEwmQ+fOnTFs2DA0aNAAkydPVmk/0h7/a9euoVatWkrTZvXezJ07F7q6uujcuTOmT5+ODh06iA1QPXv2hK2tLXr37o1u3brhxYsXGDJkiNJRN9Kys7PDtGnTsGzZMrRv3x6xsbGws7MT8+7Tpw8qV66MHj164M8//8TgwYPltk0dhr9t27YICAjA1KlT8f79e7x+/Vphee3atYOHhwdmzZqFbt26oW7dugq/BGlqasLLywvHjx9Hq1at4OnpiUGDBqFw4cLZ+nVsquLFi8PPzw8XL15EmzZtsGLFCowfPx4dO3ZUaftKlSph9uzZWLNmDVq2bImVK1fCy8tL6fXP1dUVgwYNwogRI9CuXTv88ccf2Y45LVNTU/j4+GDPnj1o06YN7t69i8aNG8sNcRsWFoavX78qHW2EKDedPn0aUqkUK1asgIODg9w/RWxsbDB//nxs27YNrVu3xp49e7B48WKlnSl+lJubGzp16oQpU6agQ4cOePXqFTZt2oSCBQsqTG9qaoqVK1fi4sWLaN26NRYvXozx48ejbdu2PyW+7FBTU0OLFi1QrFgxWFpa5nY4sLW1xfz587F161Y4OTlh586dWLhwIapXrw4AGDhwIJydnTFy5Ei4u7srnb6kWLFimD59OlavXo3WrVtj1apVmDx5MjQ0NMT7naurK7Zs2YLJkydDX18fq1evRnh4OJydnTF58mR0794d7u7uKsU9Z84cPHnyBK1atcKECRPQokULWFtbf9c9KCtOTk6ZdsQDUt7XunXrZug84+joiGvXrsHZ2RmPHz/GunXrYGBg8F336LR1/datW+Pq1atYsWIFSpcurdJ+pD3+jo6O8PDwwNy5c9GyZUscOXIEy5cvF0fzMTU1VZhHVp+tVq1awc3NDdOmTUOnTp1gamoKU1NT5MuXT6VzRBmJRAJfX1+8fv0a7dq1w/Lly+XqWqVLl8a4ceOwYsUKODs7QxAEuelAs3u+5GR9PzOamppYvnw5AgMD0bZtW4wYMQIuLi4KP2fq6uri0PGdO3fGqFGj0LhxY7Fjek6WBaTUMRcvXozOnTujUKFCmDNnjkrlKJPVe9i9e3c4OztjzJgxcHJywuPHj7FixQrxe/HXr18RFBSE+vXr/1AcRPR7mTNnToa6p4ODA9avX4/jx4/j4sWL4vd7R0dH1K1bF1OmTIEgCGjXrh2ePXuGtm3bQhCETNtxsmJvb4+5c+fCz88PLi4uKFiwoNxUGlm1B3h7e8PIyAhdu3bFokWL0LNnT5WPwY/cR7KrZs2a0NPTy7LtrV69erhz5w4A4PXr17h165bCH10WLVoUjRs3xt69eyGRSDB79mzcv38fTk5OOHbsWIYpTTKTvn3M29sb8fHxcHFxQd++fWFvby+2d6xdu1bpj0B/NI527drBzc0NM2bMQIcOHZCQkCD3A7RUmdXLsrrnzp49G8OGDVNYvoGBAfz8/HDr1i20bt0aq1evxsKFC1GpUqUs203atWuH5s2bY/DgwejXrx9at26NIkWKAMh+PUAZVdpe7ty5w/s1EdFvysXFBXZ2duLrH/2emd3nOT8iN54hqvq8LqfbxLKqm/6MfQCAKVOmwM7ODn369MH48ePRo0cPcZ2yOoCZmRmePHkCW1tbMW3JkiXh6+uLPXv2oHXr1jh+/DhWrlyJokWL5vgzwOy2ARcuXBi+vr7ic62ZM2di1KhRStvAif7r1ISfMS8V5Vm+vr64ceOGytOC/FelVgAuX74MPT293A6HVNC1a1d06tQpy44rPXv2RMeOHeHs7IyoqCg0btwYp0+fVjoq2r9RfHw8rly5gvr164sPd44ePQovL69sD0ue3v3796Gvry/Xg79Vq1bo27cvOnTo8EN5U855+vQpkpOT5X5ZMGDAAFhZWYkNnkuXLsXLly8xe/bs3AqTiH4Tf/75J0qVKgUPD4/cDoVUcPnyZUyZMgWnT5/OdOrD69evY9KkSTh16hSAlB9AAICnp+cvifN3cOPGDZiZmcHExAQAkJycjFq1amHZsmWoWbPmd+f7/v17PH78GPXq1ROXrVmzBufPn+f3rH+JH30P9+7di/3792P9+vU/MUoiorwtNjYWdevWxaFDh8QfbCpL17BhQ+zfv19pZ+nc5ubmhrVr1+Z2GN8lMTERHh4eclND5hVRUVHo0KEDzp49y/ZdIiLKUXyGSET063HEKKIcFBsbi2PHjmHGjBlo1aoVKzT/AteuXcPy5csRGhqa6TR6qdzd3bF9+/ZfEFnu0dLSwsSJE7Fs2TJERkbi7t27WLZsmdxIBd/r7t27cHd3x507dxAZGYmVK1fi5cuXcg+VKPc9f/4cffr0weXLlxEdHY1du3bh6tWraNq0KQAgKSkJ+/fvh5ubWy5HSkS56d69e9iyZQtOnz7Nzq3/Am/evBE7Oru4uGTaKQpIGYXB2NgYly9f/kUR/n5OnToFDw8PPH78GBEREZg7dy709fXlfjn4vQYNGoStW7ciOjoaV65cwYYNG1Sqi9Lv40fewx07doijzBIRUfYIgoBjx45h6tSpsLOzy7RTFJAySnj37t2xc+fOXxRh9hw4cABVq1bN7TC+29q1a9GsWbPcDuOn2LlzJ1xdXdm+S0REOYbPEImIco9GbgdAlNdMnjwZJUuWFKcEpN/b/v37cfr0acycOVOlSqiDgwN2796NS5cuqTzVy7+NRCLBsmXLMH/+fKxbtw76+vpo27YtRo4c+cN5d+/eHVFRURg2bBi+fPmCSpUqYfXq1ShcuHAORE45pUmTJggODsakSZPw/v17lClTBt7e/2vvzqNyTv//gT8zdrIbY6yNozJKKzNtlhuDFmJsNaLE1BBihiKDyh7pq0aFIctYSskWKUOyTRpbTKXuNjEzmgYVQ9v1/cOv96e7neHno+/zcc6cc/d+X+/rel3L/XbO3K9zXZugrq4OAAgNDcWIESPei6NNiejtiY2NxY4dOzB//vx6tXNifZWfn48lS5ZAW1sbdnZ2dXpmxYoVWLlyJYyMjN5ydP+d5s6dCw8PD9jZ2eHFixfQ0dHB9u3b0aRJk39Vb/v27eHj44P/+Z//wZo1a9ChQwdMmTIF1tbWbyhyetv+zRzGxsaic+fOMDQ0/P8QKRFR/aOkpAQvLy/pKJK6cHR0xKRJk2Bra4u2bdu+5QhfzahRoxSOrX/f2Nvbv9fxV+fRo0c4d+4cDh48+K5DISKieoa/IRIRvRs8So+IiIiIiIiIiIiIiIiIiIiIiOodHqVHRERERERERERERERERERERET1DhOjiIiIiIiIiIiIiIiIiIiIiIio3mFiFBERERERERERERERERERERER1TtMjCIiIiIiIiIiIiIiIiIiIiIionqHiVFERERERET0XpLJZFBTU4OamhrU1dWho6ODyZMnIzY29l2HVidqamr45Zdf3nUYyMzMxJgxY6CpqQkfH583WrerqytcXV0BAL6+vrCxsXmj9b9tNjY28PX1fddh1EgmkyEsLOyN1PU+zlF98yrzee/ePcTExLx2WzWt74KCAoSHh7923fRu/dt31+XLlyGXywEAYWFhkMlkbyq0aj1//hyrVq2CsbExPvvsM8yfPx9//fXXW2+XiIiIiIiI6j8mRhEREREREdF7a8mSJbhw4QJiYmJw8OBB6OrqwsHBAZcuXXrXob039u7dCwA4ceIE7Ozs3mjdbm5ucHNze6N1EtFLS5Yswa1bt95K3UFBQQgNDX0rddPb5+vri+nTp7/287a2tlJSkqmpKQ4dOvSmQqvWhg0bEB0dDW9vbwQFBeHBgweYM2cOhBBvvW0iIiIiIiKq3xq+6wCIiIiIiIiIXpeysjI6duwIAOjUqRMWLVqEnJwcrFmzBseOHXvH0b0fCgoKoK6uju7du7/xupWVld94nUT09jEZ5f3Wpk2bN1ZX06ZN0bRp0zdWX1WKi4sRGhoKd3d3DBgwAACwdu1ajBw5EllZWejRo8dbbZ+IiIiIiIjqN+4YRURERERERPXKpEmTcPfuXWRmZgIAnjx5gu+//x6GhobQ09PDwoUL8eTJkyqf/eKLL7Bz506FaxYWFggJCQEAXL9+HVZWVtDW1oZMJsP+/fulcuWPjStT23F58fHxsLCwgKamJqZMmYL79+9L986cOQNLS0toampCX18fCxYswNOnT5Gfnw9NTU1cuXJFKltQUABNTU3Ex8cDAKKiomBqagotLS2MHz8ecXFxVbbv6uqKsLAwhIeHQ01NDdnZ2fjzzz8xd+5c9O/fHxoaGhg7dix+/fVXAEB2djbU1NRw7tw5yGQy6OjoYOXKlbh79y7GjRsHbW1tODg4oKCgoNoxqcs4l+fr64tFixbB09MTOjo6kMlkuHDhAvbu3QtDQ0N8/vnn2L17t1Q+Ly8PCxcuhK6uLoyNjeHp6Ynnz58DAH755RfIZDIcOnQIRkZG6N+/P7Zt24arV69i5MiR0NHRwaJFi1BaWirV98cff2DKlCnQ1NTExIkTkZSU9EptLV++HHp6eti6dSsePHiA6dOnQ0dHBwYGBvD09ERRUVGlPq9cuRJz586V/vb394eGhgZevHgBAEhPT4empiaePXsGAEhJScHkyZOhqakJS0tLJCYmKsQ/b948DBgwAJ999hlWrlyJwsLCKtcDABQVFcHd3R26urowNDRUmKeCggIsXrwYBgYG0NDQwMiRIxEdHQ3g5W4vU6ZMUajL29sbtra2tY5VVc6fP4+xY8dCS0sLo0ePxuXLlwG8TNgJCAiATCaDhoYGjI2N4efnJz1nY2MDT09PDB06FIMHD0ZBQQF+//13ODo6QktLCzKZDH5+figpKZGeiY+Px7hx49CvXz9YWFggMjJSule2hkePHg0DAwNkZGQgIiICI0aMgKamJkxNTaUxqKiqNQAABw4ckL4/NjY2SE5OrvL5msbb1dUVcXFx8PPzk44/rK2fUVFRGDFiBLS1teHh4aFwr7ywsDD4+fkhLi4OampqAIAXL17Ay8sLgwYNgra2NhwdHfH7779X+bydnR1WrlypcM3R0VE6qlMul8Pe3h66urowMTGBn5+f9J2r6jjH8scLVjW/Fd26dQtWVlbQ0tLCiBEjcOLECeleSEgIRo4cCQ0NDXz22Wdwd3eXxqGqua5t3d69exc2Njbo168fRowYgZ9++km65+vri1mzZuGrr77CgAEDqnwPp6amwt7eHjo6OtDU1IS1tbV0hB3w8jtkbGyMfv36wcbGBikpKdIcWVlZYcOGDdDR0cHgwYMV3p/lj9Krql81tVt2bN7UqVPh6+tb6Si92ubv22+/xfLly6GrqwsDAwNs27ZNejYpKQmTJ0+GlpaW9CwAlJaWwsvLC0OGDJHKtmzZEgCqnGMiIiIiIiKiV8HEKCIiIiIiIqpXevXqBeDlD84A4OTkhMTERAQEBGDnzp2Qy+VVJusAgJmZmUJShFwuR3p6Or744gvI5XJMmzYN/fv3R1hYGObMmYN169YhKirqtWMNCQnB0qVLcejQITx58gQbNmwAAGRlZWHevHmwtrbGyZMn4ePjg0uXLiE4OBjKysowMTFRaPfcuXNo164d9PT0kJSUBBcXF3zzzTc4evQoRo8ejZkzZ0qJYuW5ublh1KhRGDVqFC5cuIDOnTvju+++Q0lJCQ4cOIDw8HB06tQJK1asUHhu69at2LJlCzw9PbFnzx44OTnh22+/xY8//ogbN27UeuxSTeNclYiICCgrK+PIkSPo168fnJ2dceHCBezZswc2NjZYt24d/v77b6lP+fn52L9/P7Zs2YKEhAR4eHhIdT18+BDR0dHYs2cPHB0d4e3tjdWrV2Pt2rXw9vZGREQEzpw5I5U/fPgwRo4cifDwcHTr1g1OTk5SIkVtbd2/fx+FhYUICwuDubk5PD090bx5c4SHh+OHH35AZGQkgoODK/XXxMQEV69elXbtuXr1KoqLi5GQkAAAuHTpEvT09NC8eXMAwKFDhzBjxgwcPXoUrVu3xvLlywEAhYWFmDZtGv755x/s2bMHPj4+OHfuHNavX1/t3Fy/fh2NGjVCeHg4vv76a6xdu1ZKmFi1ahXS09OxY8cOHD9+HPr6+nBzc0NhYSHMzMzw66+/Ijc3V6orMjISZmZmdRqr8lJSUvDNN99g+PDhOHLkCMzNzTFr1izk5OQgPDwcu3btwqpVq3Dq1CnMnj0bvr6+uHPnjvR8WFgYvLy84OfnhxYtWsDJyQnt27fH4cOHpd3kAgICAAA5OTlwcHDAuHHjcOzYMcyYMQOurq5SkiEAHDlyBM7OzggMDISysjIWLVoEBwcHnDp1Cl9++SUWLFiAx48fV9mXimvg559/hp+fH77//nscPnwYenp6mDp1apXJmjWNt5ubG3R0dDB9+nT4+vpCCFFjP1NTU+Hs7AwrKyuEhoaiuLhYSnisyNTUVErgu3DhAgBg+fLliIqKwrp163DgwAEUFxdj1qxZCkmEZczMzHD69Glp/ebn5+PChQswMzPD33//DWtra3z44YcICQnB8uXLsXfvXoXkxtqUn9+y5Jkyubm5mD59Ovr06YPDhw/DwcEBLi4uSEpKQlxcHFauXIkFCxbg1KlTcHd3x6FDhxS+7+XnumfPnjWu2+fPn2PmzJnQ09PD0aNH4eLigi1btiA8PFyq78yZMzA3N8euXbvQr18/hVhLS0vh6OiILl264MiRIzhw4ABKSkrg5eUF4GUi28GDB+Hj44Pjx4+jQ4cOWLx4sfR8QkICEhMTcfDgQTg5OcHd3V2ar4rK96t79+41tlv2/q7qOL66zF9kZCSaNGmCw4cPw97eHhs2bEB6ejoAYNGiRejTpw+OHz+OVatWYfv27YiJiUHjxo0xbNgwhV0GN2/ejO7du0NdXb2G1UBERERERERUB4KIiIiIiIjoPTRkyBARGhpa6XpRUZFQVVUVR44cEYmJiUJVVVWkpaVJ91NTU4WqqqqQy+WVnk1NTRVqamri999/F0II4evrKxwcHIQQQqxevVpMmjRJobyXl5eYOHGiEEIIFxcX4eLionBfVVVVXLlypcr4VVVVxYEDB6S/g4KCxMiRI4UQQqSnp4v9+/crlJ8/f75YvHixEEKI48ePCxMTE1FaWiqEEMLJyUmsWbNGCCHEd999J30uU/5+ReXjLi0tFUFBQVL/hRDi/PnzQl1dXQghxL1794SqqqqIjY2V7hsYGAgfHx/p73nz5onvv/++Ut2bN28WU6ZMEULUPM4Vbd68WRgbG0t9PXfunFBVVRVZWVlCCCH++ecfoaqqKq5duyYyMzOFurq6yMvLk55PSkqSrl25ckVhPZQ9GxISIpUfP368CAgIEEIIMWXKFDFnzhzpXn5+vtDW1hYxMTF1bis1NVW6b2FhIVxdXUVhYaEQQog7d+6Ie/fuVerzs2fPRN++fUVycrIoKioSOjo6wt7eXgQGBgohhJg1a5bYvn27EOLl92Djxo3Ss1FRUUJTU1MIIUR0dLTQ0tISjx8/lu7HxMSITz/9VBQUFFQ51uXXlRBC6OvrixMnTgghhAgNDRXJycnSPblcLlRVVcWDBw+EEEKMHDlSWtNJSUmib9++4tGjR7WOVUWrV6+W1kqZTZs2idTUVHH58mVx9uxZhXtGRkbi8OHDQoiXc+bs7Czdu3Tpkvj8889FSUmJdO3MmTNiwIABUr1OTk4K9a1Zs0a65uLiIiZMmCDdu3PnjlBVVRUXL14UQrz8zsTGxopnz55V6kdVa8DKykrs3r1bodzYsWOla+Xfa7WN95QpU8TmzZvr1M+1a9eKqVOnSvcKCwuFsbGx9HxF5b+vjx8/Furq6grf+0ePHgktLS1x/vz5Ss8+efJE9O3bV8THxwshhAgLCxPm5uZCCCF27dolBg0aJIqKiqTy+/btE0ZGRpXaLVN+TCrOb0W7du0SMplMYRx27Nghrl+/LhISEsSxY8cUyk+cOFH4+fkJISrPdW3rNjg4WIwdO1ahvt27d0vXNm/eLAwNDauN9enTp2Lbtm3i6dOn0rX9+/eLoUOHCiGE2LlzpzAyMhL3798XQgiRm5srrl69KoR4uTY0NDTEX3/9JT27aNEi6X1Vfm1U7Fdt7Qqh+G9XaGioGDJkiDS+tc2fkZGRKC4ulu4PGDBAHD16VAghhK6urvDx8ZHm59q1a+Lhw4eVxsbb21toaWmJmzdvVjt+RERERERERHXV8F0nZhERERERERG9SWXH7rRs2RJpaWlo1aoVVFRUpPu9evVC69atkZaWhk8++UTh2V69ekFNTQ2nTp2Cra0tTp48CQcHBwAvdzWquOOHjo4ODhw48Nqxdu/eXfqsrKwsHZXWs2dPNG7cGP7+/khJSUFKSgpSU1MxZswYAMCQIUPg5uaGmzdvQk1NDbGxsdKOHXK5HCdPnsTBgweluouKimBsbFxrPEpKSrCyskJERASuXbuG9PR03L59u9KuMN26dZM+N23aFF26dFH4u6aj2oCax7kqXbt2hZKSklQ/AKnNsr8LCwshl8tRWlqKgQMHKjxfWlqqsGNWWfwV66oq/vJz3rJlS6ioqCAtLQ0lJSV1aqtr167S5xkzZmDJkiWIiorCwIEDYWpqik8//bRSf5s1awY9PT3ExcXh+fPn6NKlCwYNGoSLFy+ipKQEcXFxmDdvXqX+AIrrSC6Xo2fPnmjdurV0X1dXF8XFxcjKykKfPn0qtV1+rCvWZ2lpiejoaAQHByMtLU3apalsBy1TU1OcPn0akyZNwunTp2FoaIg2bdrg+vXrNY6VhoaGwvX09HT07dtX4ZqzszOAl2vn5s2b2LhxI+RyORITE5GTk6OwRsvPp1wux+PHj6Gnp6fQ7vPnz/Ho0SOkpaXh7Nmz0NHRke4XFRUpvDPK19enTx8MHjwYdnZ2UFFRwdChQzFhwgQ0a9as0liWH9Py8Xh5ecHb21u69uLFC2RkZFR6rrbxLq+2fsrlcoX5btSoUZXzX5WMjAyUlpZCS0tLutamTRuoqKhALpfDxMREoXyrVq0wcOBAnDp1Cnp6ejh58iRMTU2lOPv27YuGDf/zvyR1dHSQk5ODvLy8OsVTfj4qSk9Px6effooGDf6zSb6dnZ30uWnTpti8eTNSU1ORnJyMzMxMhXdjxbVT07pNS0tDUlKSwtopKSnBBx98UKdYmzdvDisrK4SHh+P27dtIS0vDb7/9hg4dOgB4ufPW3r17MXToUGhra2PYsGEYP3689HyPHj3Qvn176W8NDY1q/z0qH0dt7dakLvPXtWtXhTFo0aIFiouLAQAODg7w9vbGwYMHMXjwYIwZMwYdO3ZUaOPGjRvYunUrAgICKv2bS0RERERERPQ6mBhFRERERERE9UpycjIAoHfv3tLnikpKSqpMLgD+cwyUiYkJsrOzMXToUABAkyZNKpUtLS2V6lFSUpKOjgIg/RBck/I/3peXlJQEKysryGQy6Ovrw9bWFrt27ZLuN2/eHEOGDEFkZCT+/PNPdOjQQfoBuaSkBDNnzoSlpaVCnWVJQDUpLS3F9OnTkZeXB1NTU8hkMhQVFcHJyUmhXPkfvWvqR02qG+eqlP8RvqY2S0pKoKysjNDQ0Er3OnXqhJs3b1ZZX03xV+xraWkpGjVqVOe2yq+b0aNHw8DAANHR0Th37hzmzp2LmTNnYv78+ZXqMDIyQlxcHF68eAFdXV3o6enBz88PCQkJaN68OVRVVauNsUxVa7ZsvVa3/quqq2xdL1q0CNevX8eYMWNgZWWFjh07YtKkSVI5U1NTBAYGIi8vD6dPn4a9vb3UVk1jVVFV810mJCQEq1evxoQJE/DFF1/AxcUFU6dOVShTvt/FxcX45JNPsGXLlkp1KSsro7i4GBYWFnB0dKw2hvL1KSkpITAwELdu3cKZM2cQFRWFffv2Yd++fdUmGpV/vqSkBEuWLIGBgYFCmYpHwgG1j3d5tfUTgML7CXiZHFUXVa2jsr5UdZQeAJibm2PdunWYM2cOLl26hKVLl1ZbV1kdJSUlCkl5ZSq+S6uLB6h57cTGxmL27NmwtLSEiYkJZs+eDXd392rrrm3dFhcXw8DAAMuWLau2zZpiffr0KcaPH4+2bdtCJpPB3NwcaWlp2LFjBwCgY8eOOHnyJC5evIizZ8/ixx9/RHBwsHRUX8W+lpSUVPsuKx9Hbe3WpLb5A6peV2Vr7+uvv8aoUaMQHR2Nn3/+GdOmTYOnpycmTJgglT179iz69++PQYMG1RoPERERERERUV28+v+5JCIiIiIiIvovFhoair59+6Jbt25QUVFBXl4e0tLSpPupqakoKChQ2BGmPHNzc9y8eRPh4eEYNGgQWrRoAQBQUVGRkl3KXL9+XaqnUaNGePr0qXTv3r17r92HI0eOoH///ti4cSOsra3Rr18/ZGZmKiQ2mJmZISYmBtHR0dJuLGVxZmdno0ePHtJ/Bw8exPnz52ttNzU1FVevXkVQUBAcHR0xePBgPHz4EEDlpIp/q7px/jdUVFSQn58PJSUlqe/Pnz/H+vXra93Fqjp3796VPufl5SEjIwOffPLJa7W1adMm5ObmwsrKCoGBgXB2dsbp06erLGtiYoKrV6/i119/hb6+PtTV1VFcXIzdu3fXafcv4OV4ZGRk4PHjx9K1GzduoGHDhgq7ldVFQUEBjh8/jk2bNmHu3LkYPnw4njx5AuA/a6NXr17o1asXDhw4gIyMDAwbNkyK41XGqkePHkhKSlK4NnnyZJw4cQL79+/H7NmzsWTJElhaWqJt27bIzc2tdn2qqKjgwYMHaNeundR2dnY2Nm/eDCUlJaioqCAzM1Ph+3LmzBkcO3asyvrkcjnWrVuHfv36Yf78+Thx4gQ6d+6M2NjYOo2jiooK/vjjD4X2AgICcOPGjVce71fpZ+/evZGQkCCVLy0trTTG5ZVPUOrWrRsaNmyoEOOjR4+QmZlZ7XtUJpMhLy8PP/74I9TU1KT1pqKigjt37qCoqEgqe/36dbRr1w5t2rSp9B59+vQp/v7772rjrKhnz55ITk5WGCNnZ2ds374dISEh+PLLL+Hh4YEJEyagV69eyMrKqnHt1LRuVVRUkJ6ejq5du0r3b9y4gT179tQp1ri4ODx8+BC7d+/GjBkzYGhoiAcPHkjxnDt3DiEhIRg8eDDc3d1x5MgRZGRkSO+kzMxMhbG6ffu2QsLk67Zbk9rmryYvXrzAypUr0bhxY9jZ2WHPnj2YOHEiIiMjFcq1a9cOMpms1liIiIiIiIiI6oqJUURERERERPTeys/PR05ODh4+fIjk5GSsWrUKERERcHV1BfAyUWPgwIFwcXHBrVu3cOvWLbi4uKB///7V/oD88ccfo1+/fti1axfMzMyk69bW1khMTIS3tzfS09Nx+PBh7Nu3D1999RUAQFNTExcvXsTly5dx9+5deHh41HlHloratGmD5ORk3Lp1C+np6Vi7di0SEhIUkkgGDhyIhw8fVkqMsrW1RUREBHbv3o2srCwEBQUhKCgIPXv2rLXdVq1aoUGDBjhx4gTu37+PU6dOwdfXFwBeO7GoOtWN87/Rq1cvmJiY4LvvvsOtW7dw584dLF68GM+ePUOrVq1eq85jx44hODgYqampWLJkCXr06IHPP//8tdpKS0uDh4cHkpKSkJKSgpiYmCqP0gMAdXV1NGjQAOfPn4eenh4aNGgAHR0dREREVDq6rDpGRkbo1q0bFi1ahOTkZFy5cgWenp4wNzd/5fFo3LgxmjVrhtOnTyM7OxuxsbHw8PAAoLg2zMzM4O/vj4EDB0q7IL3qWFlZWSE+Ph47d+5EZmYmAgMDkZKSAn19fbRt2xaXL1+WjnmcP38+ioqKql2fxsbG6NKlCxYuXIjk5GTEx8fj+++/R7NmzfDBBx/A2toat2/fxqZNm5CRkYFjx47B29sbH3/8cZX1tWrVCvv378eWLVtw7949nDt3Dvfv3692Hiuys7PDrl27EB4ejqysLHh5eeHkyZPo1avXK4938+bNkZGRgdzc3Fr7OXHiRNy+fRv+/v5IS0vDunXr8ODBg2rjbNasGR4+fIjs7Gy0aNECEyZMgKenJ3755RckJSVh4cKF+Oijj2BkZFTl802bNsXQoUOxc+dOhe+3hYUFCgsLsWzZMsjlckRHR8PX1xdWVlZQUlKCpqYmkpKScPLkSaSnp2PZsmWvtCOdhYUFHj9+jPXr1yMjIwNhYWE4c+YMjIyMpGMdk5OTkZKSAldXV+Tk5FS7dmpbt6NHj8bz58+lvsTExGDVqlUKx9vVpE2bNnj27Bmio6ORnZ2NkJAQ/PTTT1I8paWlWL9+PaKiopCdnY2wsDA0a9ZMepc/e/YMy5cvh1wuR3BwME6dOgVra+t/3S7wcm2lpKQgPz+/0vjWNH81adKkCa5duwZPT0+kpaUhISEB8fHxlb4748aNq7TjIREREREREdG/wcQoIiIiIiIiem+tXr0axsbGGDhwIOzs7JCeno6goCAMGDBAKrNu3Tp069YNtra2sLe3R+/evfHDDz/UWK+pqSkaNmyIwYMHS9c+/vhjBAYGIjY2FhYWFvD394erqyu+/PJLAMCYMWMwYsQIzJo1CzNmzIC5uTk+/PDD1+qXjY0NtLW1YWtrC2trazx48ACzZ8/Gb7/9JpVp3Lgxhg0bho8++gjq6urSdW1tbaxfvx779u2DqakpgoODsXHjRvTv37/Wdj/66COsWLEC27Ztg7m5ObZu3YqlS5eiYcOGCm2/KVWN87+1fv16dO3aFba2trCzs4OKigq8vb1fuz4bGxscOnQIY8eORV5eHvz8/KQEgFdta8WKFejQoQNsbGwwceJEfPjhh3Bzc6uyrJKSEgwNDdGhQwcpSUdfXx8NGjSAoaFhnWL/4IMPpKPVJk6ciAULFmDo0KFSgs2raNy4Mby8vBAZGQkzMzOsXbsW33zzDTp27IjExESpnKmpKZ49e1Yp2e1Vxqp79+7w9fVFaGgozM3NERkZiYCAAHTq1AlLlixBQUEBxowZgzlz5kBNTQ3Dhw9XiKHiGPj7+6O0tBQTJ07EnDlzMGjQIOloty5duiAgIACxsbEwNzeHj48PXF1dMXr06Crr69ixI3x9faVx8PDwwIIFC+q8i5epqSnmz5+PzZs3w9zcHJcvX4a/v3+lxMW6jPeECRMQGxuLGTNm1NrPHj16wN/fHydOnIClpSVycnJqPKps+PDhKC0thZmZGXJzc+Hi4gJDQ0PMnTsXVlZWaNKkCYKCgtC4ceMa+1pYWKiQuNmyZUts374dWVlZsLS0hKenJ6ZNmyYd12lgYABbW1ssW7YMkydPRu/evaGlpVWnsQVeJq4FBgYiPj4e5ubm2LZtGzZu3Ig+ffrAyckJ7du3x6RJk2BnZ4cmTZrAysqq2rUD1LxuW7ZsiW3btiEjIwOWlpZYunQpvvrqKzg4ONQpVh0dHek4v9GjRyMsLAzLli1Dbm4u/vzzT8hkMsydOxdr1qzBqFGjEBERgS1btqB169YAgM6dO6Njx44YP348tm/fDi8vL+jp6f3rdoGX773169dLibFlapu/2mzatAn//PMPxo8fD3t7e+jr62PWrFkKZVatWoU5c+bUqT4iIiIiIiKiulASb3ovfCIiIiIiIqL33KZNm/DHH39g3bp17zqUeo3jTFR/BQcH4+jRo9i7d++7DqXeCQsLg5+fH37++ed3HQoRERERERHRf72G7zoAIiIiIiIiov8WSUlJSExMxL59++Dv7/+uw6m3OM5E9VdmZqZ0bJ+zs/O7DoeIiIiIiIiI/o/jUXpERERERERE/8/t27fh7u6OCRMmQF9f/12HU29xnInqr+zsbLi5uUFXVxcWFhbvOhwiIiIiIiIi+j+OR+kREREREREREREREREREREREVG9wx2jiIiIiIiIiIiIiIiIiIiIiIio3mFiFBERERERERERERERERERERER1TtMjCIiIiIiIiIiIiIiIiIiIiIionqHiVFERERERERERERERERERERERFTvMDGKiIiIiIiIiIiIiIiIiIiIiIjqHSZGERERERERERERERERERERERFRvcPEKCIiIiIiIiIiIiIiIiIiIiIiqneYGEVERERERERERERERERERERERPUOE6OIiIiIiIiIiIiIiIiIiIiIiKje+V+JVrZCv8fZUQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "stkbar_df = df.dropna()\n", + "_ = pd.crosstab(\n", + " df['Do you have family members who have careers related to your career aspirations?'],\n", + " df['What are your career plans right after graduation?'],\n", + " normalize='index'\n", + ").plot(kind=\"bar\", stacked=True, rot=0, figsize=(30, 15))" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-02-24T06:19:11.835916Z", + "start_time": "2024-02-24T06:19:11.455489Z" + } + }, + "id": "ae23070caa8a3c88", + "execution_count": 9 + }, + { + "cell_type": "markdown", + "source": [ + "Most students across all groups are looking to \"get into the job industry\".\n", + "Across all groups, the proportions of \"Attending Grad School\" and \"Get into the job industry\" are similar, except for students who have extended family in their career.\n", + "They are more unsure about their future compared to other groups.\n", + "Also, students with no family in their field are more diversified in their career plans." + ], + "metadata": { + "collapsed": false + }, + "id": "5f7faaa1acde66ef" + }, + { + "cell_type": "code", + "outputs": [ + { + "data": { + "text/plain": "Do you currently work? No Yes\nWhat is your current class standing? \nFreshman 0.923077 0.076923\nGraduate 0.000000 1.000000\nJunior 0.696078 0.303922\nSenior 0.725490 0.274510\nSophomore 0.693182 0.306818", + "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th>Do you currently work?</th>\n <th>No</th>\n <th>Yes</th>\n </tr>\n <tr>\n <th>What is your current class standing?</th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>Freshman</th>\n <td>0.923077</td>\n <td>0.076923</td>\n </tr>\n <tr>\n <th>Graduate</th>\n <td>0.000000</td>\n <td>1.000000</td>\n </tr>\n <tr>\n <th>Junior</th>\n <td>0.696078</td>\n <td>0.303922</td>\n </tr>\n <tr>\n <th>Senior</th>\n <td>0.725490</td>\n <td>0.274510</td>\n </tr>\n <tr>\n <th>Sophomore</th>\n <td>0.693182</td>\n <td>0.306818</td>\n </tr>\n </tbody>\n</table>\n</div>" + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": "<Figure size 640x480 with 1 Axes>", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAHqCAYAAADS0J5tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUm0lEQVR4nO3dd1QU198G8Gd3kS7SBEUUsUQREREUFYy9o2INauwtRdFo1GADCwhqNEYTSxSj0cSSYIk91jexd0SF2EVsiIjSYXffP/i5cQXLKstd2OdzTk7kzt2Z784F9mHmzoxEqVQqQURERFTEpKILICIiIv3EEEJERERCMIQQERGREAwhREREJARDCBEREQnBEEJERERCMIQQERGREAwhREREJARDCBEREQlhILqAt0lKeo7ifE9XiQSwsSld7N9HScCx0B0cC93BsdAdJWUsXryPd6HzIUSpRLEejBdKyvsoCTgWuoNjoTs4FrpDn8aCp2OIiIhICIYQIiIiEoIhhIiIiITQ+TkhRET0fpRKJXJzc97YRyIBMjMzkZOTrTfzEHRVcRkLmcwAUmnhHMNgCCEiKoFyc3OQlPQASqXirX2fPJFCoXh7P9K+4jIWJibmsLCwhkQi+aD1MIQQEZUwSqUSKSlPIJVKUaZMWUgkb/6rVSaTQC7X4T+99Yiuj4VSqUR2dhZSU5MBAGXK2HzQ+hhCiIhKGIVCjpycTJQpYwtDQ+O39jcwkCI3V/f/+tYHxWEsDA2NAACpqckoXdrqg07NcGIqEVEJ8+JwvkzGvzNJO14EEbk894PWwxBCRFRCfej5eqLXKazvLYYQIiIiEuK9Q0h2djb8/Pxw4sSJ1/a5fPkyevbsCXd3d3Tv3h0xMTHvuzkiIioEPXp0gq+vF3x9vdCkSX20bt0Ew4YNwokTx0SXVuzl5ORg27bNqq9HjhyOlSuXCaxI3c6df6JHj06vXX748EH07/8JWrdugsGDP8WpU8e1XtN7hZCsrCyMHTsWV69efW2f9PR0DB8+HF5eXoiKioKHhwdGjBiB9PT09y6WiIg+XGDgOGzduhubN+/EsmWrUKeOOyZMGINTp17/RyW93b59e7BmTaToMt5LbOxlTJv2DTp06ITIyHXw8WmCCRO+wo0b17W6XY1DyLVr19CrVy/cuXPnjf127twJIyMjTJgwAVWrVsXkyZNhZmaG3bt3v3exRET04czNzWFjYwtb27KoUqUaRo0ag1at2mDRovmiSyvWlLp8h7G32L59Kzw8PBEQ8CkqVqyEIUNGoEYNF+zbt0er29U4hJw8eRLe3t7YsGHDG/tduHABnp6eqskrEokE9erVw/nz59+rUCIi0p7Onbvhxo3ruHs3HgDw7NkzRESEolOnNmjbtilmzpyKZ8+eFfjagICuWL9+rVpb//6fYPv2LQCAmJhofP75ELRq5YuePTtjy5bfVf1CQ0MQGhqi9lpfXy+cPXu6wG0lJz/BtGlBaNOmKTp3botly36AUqnE/fv34Ovrhfv376n6rly5DCNHDgeQdyri888HIyjoa7Rt2xR79+7CyJHDsWDBHPTs2QXdunVEenoaHj58gIkTv0LLlj7o0aMTIiOXQy6Xq9bx4hRLx44t0a5dMyxaNB9KpRJnz55GWNh0PHhwP18dDx8+QJMm9REXF6v2Ppo29Vbt7xd++20thgzpp/p6795d8PX1wr17CQDyzjI0a9YQd+/GQ6FQ4Ndf16Bnzy5o0cIHo0aNwPXr19T244oVS9GxY0tMnPiV2nYUCgWmTJmIgQP74Pnz5/Dz88cXXwSq9TE1NUN6elqB41BYNL5+q0+fPu/ULzExEdWqVVNrs7GxeeMpnIJoe3K3VCrR6gzyF6s2MJBq7Ta8SqUSCkXxTeAvlISxAErGeHAsdMf7jIVC8e79X6za2dkZAHDr1g04OlbEpElfIysrE3PmLIBSqcS330YgLCwE4eH5j5a0atUWhw4dQEDAp/9bx03Ex9/Bxx+3wK1bNxEY+Dk++aQPgoKm4tKlGHz7bTisrGzQtGlzjd4XAAQFfQ2ZTIbFi5chPT0dwcFBsLW1RePGTd762osXo9G//2CMGPElLC2tsG3bZuzc+Sfmz1+MUqUMYWJiisDAz1GtWnWsWrUOjx8/xty5YZBKpRg4cCiAvEBlY2ODJUtW4sqVywgNDUHDho1Rt64nAgPHYf36tfjpp9WwtLRSbdfevhzq1KmLQ4f2o0aNmgCAQ4cOoHr1GnB0rKg2Fg0bNsbixQuRmpoKc3NznDt3FhKJBBcvXoCDQwWcP38W9vbl4OhYEStXLsOWLX9g4sTJcHSshHXrVmPcuFH47bcomJiYAACOHPk/LFmyEnK5AleuXFJt6/vv5+PatX/x448rULp0adSs6aK2r86dO4MzZ07i008HvHGfSiT5P6c1+XbV2kXkGRkZMDQ0VGszNDREdna2RuuxsSldmGXlp5ADUpl2twHA0tJMeysvovegdSVhLICSMR4cC93xHu8hM1OGx4+lkMkkMDDIf8BbKs3fbmFh8b/XZuDmzWs4f/4sNm7cjEqVnAAA06fPQkBAdyQk3IGTU2W117Zt2w6rV6/EkyeJsLOzx6FD+9CgQUNYW1tizZqVqFGjBr78YhQgAapUqYI7d27ht9/WoGXLlqqA9Wo9Mpk0X9vVq/8iJiYaUVF/wsGhAgBg4sTJSE9Ph0wmzfe6FwHOwECq+vfgwUNhbJx3AzeJRAIfnybw8PAAAJw6dQIPH95HZOQaSKVSVKlSBYGBX2HmzBAMHTocUqkECoUCkyZNhZmZOapUqYING35FXNwVNGrUGBYWpSGVSmFvb6da/4t93aZNO/z221p8+eUoAMDBg/vQunXbfO/R2bkKbGxsERNzHr6+HyM6+hwaNfJBTEw0Onb0w9mzJ9GoUWPIZBL88cdGfPHFSDRrlhfmJk+eiu7du2Dfvl3o2rUHAKBr1x6oUqUKACAu7jIA4Lff1uDQoX1YvnwV7OzK5vv+iI29gm++GYeAgL5o0KBBvuVAXtCVSqWwsjJT7c/3obUQYmRklC9wZGdna1xsUtJzrf2lJJPl7UD8MRR4/K92NqJtth8B3VcgOTkNcrlu32XvTUrEWAAlYjw4FrrjvcfC2A6o8QUgzQBkr/xZqsgBnj8AEuPUmtOepwIAzORPceviUZQ2M0Mlk0xVv8pmgIW5GW5d+AdOpllqr3U2B6pVroQD235FQJcO2L9nOwb08gcS43Dr3xi4VnUCJFDdCdTV1Q2bN/+O3FyFah7Fq3cJlcsV+dpu3rwFC4sysLMrr1rWuPHHAKA6/fHy6xQK5f8e4qeAQqGElZU1DAwMVcuVSiXs7f9b140bN5CSkoKWLf87qqJQKJCVlYWkpCdQKJSwtraGWXYSkJ53esTMUILcZ//bn88f5O3fF/s2Jx1ITwIS49DSvTLmz7+Hf0/sgY2VJS5cOIeQUQPzjQMAeLu74Ow/f8HFzghJjx/hi77dsHzdJiAxDqeO/Y3P+wfgydWTePYsBa4OpVXrMABQs0pF3LpyFvB1AwCUN5X/t43nD/D4cSKWLv0Bdnb2KFPGKt8+VigUCAmZioYNG+Ozz0a99u6tcrkSCoUCyclpKFVK/SGJEsm7H0DQWgixt7fH48eP1doeP34MOzs7jdajVEL7TxN8/C9w/4KWN6J9xXhO1H9KyFgAJWA8OBa6Q9OxMK8IVMsGcjOBV09HKZWAPCvvA/Il167lhZyqDra4dvsuAGW+PnKFAvKcjHztANDaxwsHjxyHd52PcO9hIj6uVwvISYeRgRRQqN9VUy5XqIKhRCJRm9CZm/v6O3AaGLz+I6ugU1Yv5nK88OrR+Vfb5HI5KlWqjPDwb/P1MzMz/18NpfL264t9oFRAmZuT97U8K2//vrQM8rxllqYGqF/HBQf/PgJba0vU/qgK7MqYFLgvG7jVwLqtu1G7WiXU/qgK6tZwwq34BNy6eR3x9+7D08X5vzuV5mSqrUORmwN5TraqzVCq+G+5PAtSiQTfLliEWbOmY/XqSAwf/oXatu/dS8CtWzcwb97373Qa8EM/o7V2szJ3d3ecO3dO9c2VN3HnLNzd3bW1SSIiek/b9/+DmlWd4GBfFpUcyuF5WjpuJzxQLb8Zfw9p6RlwcihX4OvbNPFGzL83sOvQMfh4usHUJO+od6UK5RATd02t76VL0arTPAYGBmqTH19MwCyIo2NFPHuWgocP/6tr06b1CAoalxcOALXbQLxpXQWpWNEJDx8+gKWlFRwdK8LRsSLu30/AypXL3ukD+W192jbxxj+nL+DomWi09i34NAcANHCvhWu37+Lo2WjUdfkIZUqbw6lCOazcuA11XKrDxNgI5mamsLa0QMy//11Cm5ubi9jrt+FUoeAxAgBrqzKoX98bX3wxGuvXr803MTY7OxuNG/vC3t7+re+3MBRqCElMTERmZiYAoF27dnj27BlCQ0Nx7do1hIaGIiMjA+3bty/MTRIRkYbS0jOQlJyCx0+e4trtu1iw8jf8deQkAgd+AgCo7Fgejeq5Yfr3K3D56k1cunoDM75fCY9aH6Gqk2OB6yxX1gau1Z2xYftfaPXSB2z3ds1x9eYtLFmyCHfu3MauXdsRFbUJ3br1BAC4uLji1KmTOH36JG7cuIb58yNQqlSpArdRpUpVeHrWR3j4TFy/fg1nz57G2rU/w8vLG9bW1rCzs8evv65BQsJd7Nz5J44d+0ej/dKgQUOUK1cOM2ZMxfXr13DhwjnMmRMGY2NjyGRvn5djYmSE52npuHPvIXJfOQoDAB97e+DOvYc4eykOLRp5vXY9ZUqb46PKlbDn/07A3SXvAg/3Wh9h35FTaFS3tqpf705tsHz9Vvx96jxu3r2HsCWrkZ2Tg1Y+rw84L7Rs2Rq1atXGggVz1dorVqyEiROnqJ4/pG2FGkJ8fX2xc+dOAHnXoS9btgxnzpxBt27dcOHCBSxfvhympqaFuUkiItLQgsj16DhkLDoN+xqjQr7F7XsPsHj6eNRzraHqExw4BBXsy2JkyDyMmbEAzpUcEPHNyDeut5VPA8hkMvh4/nfEu1xZG8ybNgHHjh3DgAEBWL16JUaO/AodO3YGALRt2wHNmrVAUNA4jBsXiNat28HGxva125g6dSaMjU0wYsRATJ8+BZ07d0W3bj0hlUoRFDQVV65cQr9+vXDw4D707z9Yo/0ik8kQHj4fSqUCw4cPwOTJE9CwoQ/GjPn6nV7v6VYTjuXs8OlX03D1Zny+5WYmJmhUrzZqf1QV1pYWb1yXd11XAECt6nmTSuu6VIdSqURDj/9CSJ/ObdGldRPMXrIaA7+eiUdJyfhxxnhYlXm3+RhjxozH6dMncPjwAVXbxYsX0KVLOzx69PCd1vGhJEodv7vK48fam5hqYPC/SV/LPi6+577LuwMj/g/JyWk6//jnNykRYwGUiPHgWOiO9x2LTPOKuN5oHmwtSsNQWnS/4pesi0JiUjKmBQ5RX1DKFChbo9iOw8sMDKR5Ez0LmMvxLoYFzUaXVk3g19K3kCt7R4U0Fjk52UhKug8bm/IoVUp9ro1EAtjaCp6YSkRE+uHqrXj8e/MOonYfxNxJgW9/gR46czEWF2Kv4tbde2jR+PWnYvQNQwgREX2Q2Ou38O2KX9G9fQvUdakuuhydtPPQUfx96hy++by/atIuMYQQEdEH6tSyCTq1fPsdS/XZ1FGazU/RF1q7RJeIiIjoTRhCiIiISAiGECIiIhKCIYSIiIiEYAghIiIiIRhCiIiISAiGECIi0hlSqQQGBtIi+U8qfftD6V7VsGE9TJu7KF/79gP/wH/EhMLYBXqF9wkhIiKdIJVKUMbSFAayovn7OFeuQMrTdCgUmt3afu//HUXnlo3h5eaipcr0B0MIERHpBKlUAgOZFKPXn8O1R6la3VY1O3MsDPCAVCrROISUtyuLucvXYe38EJQqxY/RD8G9R0REOuXao1RcuvdMdBmvNaJfL8z5cSXWbt2NQT38Cuzz6PETLPx5A05FX4ZEIkWbJt4YNaAnDEuVKuJqdRvnhBAREWmgrI01hgV0wc+/78C9h4n5lufk5OLL4HnIyMzCjzMnIvTrz3D0TDQWr9kkoFrdxhBCRESkoV4dWqFieTt8u/K3fMuOnYtB4pNkhIwZhmpOjvByc8HXw/rij92HkJ6RKaBa3cUQQkREpCGZTIoJI/rh6JloHD5xVm3Zrbv3UMnBHhbmZqq2OjWrQS6X4+6DR0Vdqk5jCCEiInoPdWpWg18LXyxY+Rsys7JV7UaG+ed9yBUKAIDif/+nPAwhRERE72lk/x7IyMrGuq17VG2VHMrhzr2HSHn+3xU+MXHXIZPJUKGcnYgydRZDCBER0XsqU9ocX/brgfuPHqvaGri7ooJ9WUxfuALXbt/FmYux+HbFr2jbxBulzUwFVqt7eIkuANh+JLqC91ecayciKkA1O/NitY1OLX3x5/5/kPgkGUDefJG5QaMw76d1GDIxFKYmxmj7sTc+79u90LZZUuh9CFEq5JB0XyG6jA+iVMhFl0BE9MEUCiVy5QosDPAoku3lyhUa36js+PGzQGIckJOuapNIJPhpdpBaPwf7spg/ZUxhlFmi6X0IkUhlmLsnFvFP0t/eWQdVtDbF+LY1RZdBRPTBFAolUp6mv9czXd53e5qGECpceh9CAOBQXKJO353vTVwdLBhCiKjEYDDQL5yYSkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBO8TQkREOkMqlejszcqCgyfh4sUL2PhDBIxl6stGhXyLzKxsLA/7BhJJ0dRfEjCEEBGRTpBKJbC2NIZEVjQfTUp5Lp48zXznIDJq1Ffo06cHft60BZ8FdFK1Hzx+Bucux2H13GkMIBpiCCEiIp0glUryAsgfQ4HH/2p3Y7YfQdJ9BaRSyTuHEFvbshg6dASWLV2Ezs0bwsG+LDKzsrFw1Qb06dwWVZ0ctVtzCcQQQkREuuXxv8D9C6KrKFCvXgHYsXUTFq3ehNkTvsC6rbshk0oxuGcnPHz8BHOXr8Wp6CuwKlMafi18MKhHJ8hkUuTm5mLO8rU4fOIcsnNy4Fm7JiaM6Ac7GyvRb0koTkwlIiJ6RwYGBvj6s0E4dOIsDp84i3VbdmP88E9hZFgK30T8AKsyFljzbTCmjhqMvX+fwOo/dgAANu06gHOX/sXCaWOxas5UpGdmYuGq9YLfjXgMIURERBrwqO2Cth97Y9K8pfDxckdDj9o4ffEKHiQmIejz/nCqUA6etWti1IBeWL/9LwDA/UePYWRYCuXtbFDZsTymjhyMfl07CH4n4vF0DBERkYYGdO+I3YePY3CvvAmqt+7eR0pqKlp+OlLVR6FQIis7GynPU+Hfuin++vskOg4Zi3quNdDUux46NvcRVb7OYAghIiLSkJGhodr/5XIFnCqUx5xvRubra2ZqgjKlzbF5WQSOnInGkdPRWLL2D+z9+wSWzpqo11fUMIQQERF9oEoVyuFhYhKsLErD3MwUAHDi/CXsOHgEwYFDsfPgUZQqZYDWvg3QsnF9xMRdx9CgMDxJeQYbyzKCqxeHc0KIiIg+kLe7K8qVtUHwwhW4dvsuzl/+F+FL18DYyBAymRSp6RlYEPkbTkVfxr2Hidj9f8dhZ2MFy9KlRZcuFI+EEBGRbrH9qNhtQyaTYm5QIL5dsQ5DJobC1NgILRp7YdSAXgCAHu2b41HSE0xfuALPUtNQs2plzA0aBZlMv48FMIQQEZFOUCiUUMpzIem+oki2p5TnanTb9pc52NnieNRKtbYK5cpi/pQxBfaXSqUY2b8nRvbv+V7bK6kYQoiISCcoFEo8eZqps8+OocLHEEJERDqDwUC/6PfJKCIiIhKGIYSIiIiEYAghIiIiIRhCiIhKGiXnVJB2KZWKQlkPJ6YSEZUwpTIfQ5r9HM9yLWChC7/l5UogOwtyefEPRwqFJO/9KIrprdY/cCyUSiXk8lw8f/4UEokUBgalPqgcXfj2JCKiQiSTZ6LihW8R7z4Ojw114I6csixA8QAKReH89SySVCoFnqcA8mzRpbyfQhoLQ0NjWFhYf/BzbxhCiIhKIPOnV/DRPyORY2wLiH5AWtmawCdrkZKSXqyPhshkEpQpYwpsmAYkxoou5/0UwlhIpVJIpbJCefAeQwgRUQklk2dClnZXdBlAaWvA2BgZGXLk5hbfoyEGBlIYGxsDmY+A1HjR5bwfHRsLTkwlIiIiIRhCiIiISAiGECIiIhKCIYSIiIiEYAghIiIiIRhCiIiISAiGECIiIhJC4xCSlZWFSZMmwcvLC76+voiMjHxt37/++gvt27eHh4cHevfujUuXLn1QsURERFRyaBxC5syZg5iYGKxevRrBwcFYvHgxdu/ena/f1atXMW7cOIwYMQJbt26Fi4sLRowYgYyMjEIpnIiIiIo3jUJIeno6Nm3ahMmTJ8PV1RWtW7fG0KFDsW7dunx9jxw5gmrVqsHf3x+VKlXC2LFjkZiYiGvXrhVa8URERFR8aXTb9tjYWOTm5sLDw0PV5unpiaVLl0KhUOQ92Od/LC0tce3aNZw5cwYeHh6IioqCubk5KlWqpFGBoh95UJxwX+kWjofu4FjoDo6F7tDWWGiyXo1CSGJiIqysrGBoaKhqs7W1RVZWFp4+fQpra2tVe4cOHXDgwAH06dMHMpkMUqkUy5YtQ5kyZTTZJGxsdOAJkMWAlZWZ6BLoJRwP3cGx0B0cC92hK2OhUQjJyMhQCyAAVF9nZ6s/1jg5ORmJiYmYNm0a3N3d8dtvvyEoKAibN2+GjY3NO28zKek5lFp66KJMJtWZgfhQyclpkMvFP4zofZWksQCK93hwLHQHx0K3lKTx0OZYSCTvfgBBoxBiZGSUL2y8+NrY2Fitfd68efjoo4/Qt29fAMDMmTPRvn17/PHHHxg+fPg7b1OphNZCSEnD/aRbOB66g2OhOzgWukMXxkKjian29vZITk5Gbm6uqi0xMRHGxsawsLBQ63vp0iXUrFnzvw1JpahZsybu3bv3gSUTERFRSaBRCHFxcYGBgQHOnz+vajtz5gzc3NzUJqUCgJ2dHa5fv67WdvPmTTg6Or5/tURERFRiaBRCTExM4O/vj5CQEERHR2Pfvn2IjIxE//79AeQdFcnMzAQA9OrVCxs3bsSWLVtw+/ZtzJs3D/fu3UPXrl0L/10QERFRsaPRnBAACAoKQkhICAYMGABzc3OMGjUKbdq0AQD4+vpi9uzZ6NatGzp06IC0tDQsW7YMDx48gIuLC1avXq3RpFQiIiIquTQOISYmJoiIiEBERES+ZXFxcWpf9+zZEz179nz/6oiIiKjE4gPsiIiISAiGECIiIhKCIYSIiIiEYAghIiIiIRhCiIiISAiGECIiIhKCIYSIiIiEYAghIiIiIRhCiIiISAiGECIiIhKCIYSIiIiEYAghIiIiIRhCiIiISAiGECIiIhKCIYSIiIiEYAghIiIiIRhCiIiISAiGECIiIhLCQHQBRET0FrYfia7gwxT3+klrGEKIiHSYUiGHpPsK0WV8MKVCLroE0kEMIUREOkwilWHunljEP0kXXcp7q2htivFta4oug3QQQwgRkY47FJeIS/eeiS7jvbk6WDCEUIE4MZWIiIiEYAghIiIiIRhCiIiISAiGECIiIhKCIYSIiIiEYAghIiIiIXiJLhEVrLjf5bK410+kBxhCiCgf3qWT6A2Kc8DVsdoZQogoH96lk6hgJSGg61I4ZwghogLxLp1E+RX3gK5r4ZwhhIiISAPFOaDrWjjn1TFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkhMYhJCsrC5MmTYKXlxd8fX0RGRn52r5xcXHo3bs36tSpg06dOuH48eMfVCwRERGVHBqHkDlz5iAmJgarV69GcHAwFi9ejN27d+fr9/z5cwwePBjVqlXDn3/+idatW2PkyJFISkoqlMKJiIioeNMohKSnp2PTpk2YPHkyXF1d0bp1awwdOhTr1q3L13fz5s0wNTVFSEgInJycEBgYCCcnJ8TExBRa8URERFR8GWjSOTY2Frm5ufDw8FC1eXp6YunSpVAoFJBK/8s0J0+eRMuWLSGTyVRtf/zxRyGUTERERCWBRiEkMTERVlZWMDQ0VLXZ2toiKysLT58+hbW1tao9Pj4ederUwdSpU3HgwAFUqFABEydOhKenp0YFSiQadddr3Fe6heOhOzgWuoNjoTu0NRaarFejEJKRkaEWQACovs7OzlZrT09Px/Lly9G/f3/89NNP2LFjB4YMGYJdu3ahfPny77xNG5vSmpSot6yszESXQC/heOgOjoXu4FjoDl0ZC41CiJGRUb6w8eJrY2NjtXaZTAYXFxcEBgYCAGrVqoUjR45g69at+Oyzz955m0lJz6FUalLlu5PJpDozEB8qOTkNcrlCdBnvrSSNBVC8x4NjoTs4FrqlJI2HNsdCInn3AwgahRB7e3skJycjNzcXBgZ5L01MTISxsTEsLCzU+pYtWxZVqlRRa6tcuTLu37+vySahVEJrIaSk4X7SLRwP3cGx0B0cC92hC2Oh0dUxLi4uMDAwwPnz51VtZ86cgZubm9qkVACoW7cu4uLi1Npu3LiBChUqvH+1REREVGJoFEJMTEzg7++PkJAQREdHY9++fYiMjET//v0B5B0VyczMBAAEBAQgLi4OixYtwu3bt7Fw4ULEx8ejS5cuhf8uiIiIqNjR+GZlQUFBcHV1xYABAzB9+nSMGjUKbdq0AQD4+vpi586dAIAKFSpgxYoVOHjwIPz8/HDw4EEsX74c9vb2hfsOiIiIqFjSaE4IkHc0JCIiAhEREfmWvXr6xdPTE1FRUe9fHREREZVYfIAdERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREJoHEKysrIwadIkeHl5wdfXF5GRkW99zd27d+Hh4YETJ068V5FERERU8hho+oI5c+YgJiYGq1evxr179zBx4kQ4ODigXbt2r31NSEgI0tPTP6hQIiIiKlk0CiHp6enYtGkTfvrpJ7i6usLV1RVXr17FunXrXhtCtm3bhrS0tEIploiIiEoOjU7HxMbGIjc3Fx4eHqo2T09PXLhwAQqFIl//5ORkzJ07FzNmzPjwSomIiKhE0ehISGJiIqysrGBoaKhqs7W1RVZWFp4+fQpra2u1/uHh4ejatSuqV6/+3gVKJO/9Ur3DfaVbOB66g2OhOzgWukNbY6HJejUKIRkZGWoBBIDq6+zsbLX2o0eP4syZM9i+fbsmm8jHxqb0B71eX1hZmYkugV7C8dAdHAvdwbHQHboyFhqFECMjo3xh48XXxsbGqrbMzExMmzYNwcHBau3vIynpOZTKD1rFa8lkUp0ZiA+VnJwGuTz/KbHioiSNBVC8x4NjoTs4FrqlJI2HNsdCInn3AwgahRB7e3skJycjNzcXBgZ5L01MTISxsTEsLCxU/aKjoxEfH4/AwEC11w8bNgz+/v4azRFRKqG1EFLScD/pFo6H7uBY6A6Ohe7QhbHQKIS4uLjAwMAA58+fh5eXFwDgzJkzcHNzg1T63xzXOnXqYO/evWqvbdOmDWbNmgUfH59CKJuIiIiKO41CiImJCfz9/RESEoKwsDA8evQIkZGRmD17NoC8oyKlS5eGsbExnJyc8r3e3t4eNjY2hVM5ERERFWsa3zE1KCgIrq6uGDBgAKZPn45Ro0ahTZs2AABfX1/s3Lmz0IskIiKikkfjO6aamJggIiICERER+ZbFxcW99nVvWkZERET6hw+wIyIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISQuMQkpWVhUmTJsHLywu+vr6IjIx8bd9Dhw6hS5cu8PDwQKdOnbB///4PKpaIiIhKDo1DyJw5cxATE4PVq1cjODgYixcvxu7du/P1i42NxciRI9G9e3ds2bIFAQEBGD16NGJjYwulcCIiIireDDTpnJ6ejk2bNuGnn36Cq6srXF1dcfXqVaxbtw7t2rVT67t9+3Y0bNgQ/fv3BwA4OTnhwIED2LVrF2rWrFl474CIiIiKJY1CSGxsLHJzc+Hh4aFq8/T0xNKlS6FQKCCV/ndgpWvXrsjJycm3jufPn39AuURERFRSaBRCEhMTYWVlBUNDQ1Wbra0tsrKy8PTpU1hbW6vaq1atqvbaq1ev4tixYwgICNCoQIlEo+56jftKt3A8dAfHQndwLHSHtsZCk/VqFEIyMjLUAggA1dfZ2dmvfd2TJ08watQo1KtXDy1bttRkk7CxKa1Rf31lZWUmugR6CcdDd3AsdAfHQnfoylhoFEKMjIzyhY0XXxsbGxf4msePH2PQoEFQKpX4/vvv1U7ZvIukpOdQKjV6yTuTyaQ6MxAfKjk5DXK5QnQZ760kjQVQvMeDY6E7OBa6pSSNhzbHQiJ59wMIGoUQe3t7JCcnIzc3FwYGeS9NTEyEsbExLCws8vV/+PChamLqmjVr1E7XvCulEloLISUN95Nu4XjoDo6F7uBY6A5dGAuNDku4uLjAwMAA58+fV7WdOXMGbm5u+Y5wpKenY+jQoZBKpVi7di3s7e0LpWAiIiIqGTQKISYmJvD390dISAiio6Oxb98+REZGqo52JCYmIjMzEwCwbNky3LlzBxEREapliYmJvDqGiIiIAGh4OgYAgoKCEBISggEDBsDc3ByjRo1CmzZtAAC+vr6YPXs2unXrhj179iAzMxM9e/ZUe33Xrl0RHh5eONUTERFRsaVxCDExMUFERITqCMfL4uLiVP8u6C6qRERERC/wAXZEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCcEQQkREREIwhBAREZEQDCFEREQkBEMIERERCaFxCMnKysKkSZPg5eUFX19fREZGvrbv5cuX0bNnT7i7u6N79+6IiYn5oGKJiIio5NA4hMyZMwcxMTFYvXo1goODsXjxYuzevTtfv/T0dAwfPhxeXl6IioqCh4cHRowYgfT09EIpnIiIiIo3jUJIeno6Nm3ahMmTJ8PV1RWtW7fG0KFDsW7dunx9d+7cCSMjI0yYMAFVq1bF5MmTYWZmVmBgISIiIv2jUQiJjY1Fbm4uPDw8VG2enp64cOECFAqFWt8LFy7A09MTEokEACCRSFCvXj2cP3/+w6smIiKiYs9Ak86JiYmwsrKCoaGhqs3W1hZZWVl4+vQprK2t1fpWq1ZN7fU2Nja4evWqRgVKpYBSqdFLNObqYAETQ5l2N6IlVWzNVP+WloRpxuXqAKVMRVfx/mz++54v7uNRnH8ugJL1s8Gx0C3FeTyKYiz+d+zhnWgUQjIyMtQCCADV19nZ2e/U99V+b2NtXVqj/u9jTg93rW9D26yszN7eqTjoslh0BYWiJIxHSfi5ADgWuqQkjAVQMsZDV8ZCoxxkZGSUL0S8+NrY2Pid+r7aj4iIiPSTRiHE3t4eycnJyM3NVbUlJibC2NgYFhYW+fo+fvxYre3x48ews7P7gHKJiIiopNAohLi4uMDAwEBtcumZM2fg5uYG6Ssnl9zd3XHu3Dko/zehQ6lU4uzZs3B3L/6HsYiIiOjDaRRCTExM4O/vj5CQEERHR2Pfvn2IjIxE//79AeQdFcnMzAQAtGvXDs+ePUNoaCiuXbuG0NBQZGRkoH379oX/LoiIiKjYkSiVml17kpGRgZCQEOzduxfm5uYYMmQIBg4cCACoUaMGZs+ejW7dugEAoqOjERwcjOvXr6NGjRqYPn06atWqVehvgoiIiIofjUMIERERUWEoAVdsExERUXHEEEJERERCMIQQERGREAwhREREJARDCBFpXXp6uugSiEgHMYSQXrh69Sr++usvpKenIz4+HrworGj5+fnh8uXLosug/zl9+rTGz/Ei7UtJSYFCodCr308MIVSipaSkYODAgejSpQtGjx6NpKQkhIaGws/PDwkJCaLL0xtSqRQ5OTmiy6D/+fLLL3Hjxg3RZRDy7ia+ZMkSeHt7o1GjRkhISMD48eMxbdo0vQiKGj1Fl97d7du3ERMTU+AvXn9//6IvSE/NmjULJiYmOH78OJo2bQoACAsLw/jx4zFr1iwsWbJEcIX6oVmzZhg0aBCaN2+OChUq5HvC9siRIwVVpp+qV6+O6Oho1KxZU3Qpeu+HH37Ajh07EB4ejq+++goA0LVrV0ybNg1z5szBlClTBFeoXQwhWrBixQrMmzcPZcqUgZmZ+uOSJRIJQ0gR+vvvv/HLL7+oPWDR2toaQUFBCAgIEFiZfomLi4OrqysePXqER48eqS2TSCSCqtJfZcqUQXBwML7//ns4OjrmC4Vr1qwRVJn+2bx5M8LDw1G/fn3Vz4KPjw8iIiIwevRohhDSXGRkJMaPH48hQ4aILoUAZGVl5Wt78uQJDAz47V9UfvnlF9El0EtcXFzg4uIiugwCkJSUVODT5S0sLPRiQjd/C2tBVlYW2rRpI7oMQt6EyNDQUMyYMQMSiQTp6ek4fvw4goOD0aFDB9Hl6ZXLly9j5cqVuHHjBuRyOZydndG3b180aNBAdGl65+XTX6mpqZDL5ShTpozAivRXw4YNsXLlSsyYMUPVlpqaivnz58Pb21tgZUWDz47RgpCQEJiYmGDChAk81CxYdnY25s+fj3Xr1iEnJwcSiQQymQw9evTAN998A2NjY9El6oW//voLX331Fdq0aQMPDw/I5XKcP38e+/btw3fffYdWrVqJLlHvrF69GitWrMDjx48B5J2m7N27N+fnFLEHDx5g5MiRuH//PpKTk1G1alXcu3cPDg4OWLJkCRwdHUWXqFUMIVrw9ddfY/fu3bCysoKjoyNKlSqltpznW4teZmYm4uPjIZfLUbFiRZiZmeHJkyewtrYWXZpe8PPzQ48ePVRP3H7h559/xubNm7F161YxhempH374AWvXrsXo0aPh4eEBhUKBs2fPYvHixRg0aBCGDx8uukS9kZ6eDlNTUxw7dgw3btxAbm4unJ2d4evrC6m05F/AyhCiBYsXL37jcv6lUXRcXFxw5MiRfGEjISEBfn5+OHfunKDK9Iu7uzu2bdsGJycntfbbt2+jU6dOiI6OFlSZfmratCmCg4PRokULtfZ9+/YhNDQUBw8eFFSZ/mnRogUWL16MWrVqiS5FCM4J0QKGDLG2bNmCqKgoAHnX4H/55Zf5jkY9evQIZcuWFVGeXqpatSr+7//+D/369VNrP3z4MCpUqCCoKv2VmpqKypUr52t3dnbGkydPir4gPabv99BhCNGCjIwMbNiwAdeuXYNcLle1Z2dn4/Lly9i1a5fA6kq+1q1b4+7duwCAkydPom7duvkulTY1NUXr1q1FlKeXRo0ahVGjRuHChQtwd3cHAJw/fx579uzBnDlzBFenfzw8PBAZGYkZM2aoDvnL5XJERkaiTp06gqvTL/p+Dx2ejtGCcePG4ejRo2jcuDF2796N9u3b4/bt27h48SJGjhxZ4r+pdMnmzZvRsWPHfD/YVPSOHTuGX3/9FdevX4eRkRGcnZ0xcOBAfugJcP36dfTt2xempqZwdXUFAFy6dAnZ2dlYsWIFb2JWhF49OvgyiURS4ucQMoRoQf369bFw4UI0btwYnTt3RlhYGGrXro3w8HDcv38fCxcuFF2iXrly5QquXr0KhUIBIO8UzYujUtOnTxdcHZEYycnJ+PPPP3Hjxg1VKOzUqVO+o4ZE2sTTMVqQlZWlOt9avXp1xMTEoHbt2vjkk0/w6aefii1OzyxevBiLFy+Gra0tkpKSYG9vj8ePH0Mul/N0jJYFBQVh8uTJMDc3R1BQ0Bv7zp49u4iqohesrKzQv39/0WUQ9PseOiX/+h8BqlatiqNHjwLICyFnzpwBADx//rzAu3eS9mzYsAHTp0/HP//8g/Lly+OXX35RnSqrVKmS6PKIikzLli2RnJwMIO+KjJYtW772Pyo6f/31F3r16gWlUolu3bqhW7dukEgkGDx4MPbt2ye6PK3j6Rgt2L9/P0aPHo1p06ahSZMm6NixIxo0aIC4uDjUrVsXCxYsEF2i3qhduzb27t0LBwcHfPnll2jbti06d+6MmJgYBAYG4sCBA6JLJCoSL8+P2rx58xv7du3atYiqIn2/hw5Px2hBy5YtsWvXLigUCpQvXx6//vortm7dinr16r1xEhIVPnt7e8THx8PBwQFVq1bF5cuX0blzZ5ibm/NSxCJ27NgxXLx4ETk5OXj1bx9O1ta+l4MFQ4buiI+PR/PmzfO1N2/eHPPnzxdQUdFiCNGSihUrqv5ds2ZNzjYXpGfPnhg7dizCwsLQqlUrDBw4EHZ2djh69CjHpAiFh4djzZo1qFmzZoFPlqai9ezZM0RGRuLixYvIzc3NFwpL+hUZukTf76HDEKIFp0+fxqxZs3Djxo0Cb0Jz5coVAVXpp88++wzlypWDiYkJ6tSpg6CgIKxfvx6WlpYICwsTXZ7e+OOPPxAeHo7OnTuLLoUATJgwARcvXkSnTp1gbm4uuhy9pu/30OGcEC1o27Ytqlevjl69ehX4gDR9mPFM9LKGDRti/fr1Bd6lk4penTp1sHbtWt6jRUfo8z10eCRECx49eoSlS5fC2dlZdCl6j5eG6oa+ffti0aJFmDlzJkxNTUWXo/fs7e314uFoxUWjRo3QqFEj0WUIwRCiBZ06dcKOHTs42U4H5ebmIj4+HleuXOE9W4rQyZMnce7cOezevRs2Njb5nuWzf/9+QZXppwkTJiAkJASBgYFwcnLKNx4ODg6CKtM/jx49wooVK3Djxg1kZ2fnW17S5+fwdIwW3LlzBz169IC5uTkqVKiQb+JdSf+mKg5WrFiBf//9Vy/OueoCXhKqW16dlP3id5RSqYREIuG8tSLUt29fJCYmok2bNgWevi/pf8wyhGhBr1698OzZM7Rq1Uovv6mKg7t376JTp044d+6c6FKIilxCQsIbl+vDVRm6om7duli/fr3eXq3H0zFaEBcXh6ioKFStWlV0KVSA9PR0bNy4EVZWVqJL0Rv9+vV746W4PDpYtF6EjKtXr+LWrVvw8fFBUlISHB0decl0EXN3d8edO3cYQqjweHp64vr16wwhOqBmzZoF/lI1MjLCrFmzBFSkn7y9vdW+fjE35/Dhw/j8888FVaW/UlJSMHr0aJw8eRIAsGfPHoSGhiI+Ph7Lly/nkZAiFBoait69e+PAgQMFnr4v6UfOeTpGCyIjI/Hjjz+iWbNmqFixImQymdrykv5NpUtOnDih9kMtkUhQqlQpVKtWjfdH0AFRUVHYu3cvli5dKroUvTJ+/HikpqYiIiICTZs2xbZt22BmZobx48fD0NAQS5YsEV2i3hg3bhz27NmDWrVqwcjISG2ZRCIp8UcJeSRECw4ePAgXFxc8fPgQDx8+VFvGQ51F69W/wEm31K9fH9OnTxddht75+++/8csvv8DCwkLVZm1tjaCgIAQEBAisTP/s378fkZGRenv/KIYQLfjll19El6DXWrRo8c5hj5eGFo179+7la0tLS8PKlSt56F+Qgp7o/eTJExgY8GOhKDk4OMDExER0GcLwu01Lbty4gbi4uAJ/0P39/Yu+ID0yatQo1b/v3LmD1atXo3fv3nBzc0OpUqVw+fJlrF27FgMGDBBYpX55EQxfPftbvnx53j5fAD8/P4SGhmLGjBmQSCRIT0/H8ePHERwcjA4dOoguT68EBgbim2++wcCBA+Ho6JgvBNavX19QZUWDc0K04Oeff0Z4eDgsLCzyzTuQSCT867sIdevWDcOGDUP79u3V2vft24fvvvsO27dvF1SZfnn1ktAXc3NsbW15ilKA7OxszJ8/H+vWrUNOTg4kEglkMhl69OiBb775psBbC5B2vOmqGH24ZwtDiBb4+Phg2LBhGDhwoOhS9J6Hhwd+//33fFcqxcXFISAggPcJ0aI3nRYzMDCAlZUVfHx8MHz48HwT8kh7Hj9+DCsrK8hkMmRmZuLixYuIjo6GsbExunbtytvqU5FiCNECT09PbNmyBRUrVhRdit4bOnQolEolwsLCYG9vDwCIj4/HpEmTYGVlhe+//15whSXXm+6SqlQq8fz5c/z666/w8vJCaGhoEVamn9LS0jBu3DgcPnwY27dvR9WqVbF582ZMnjwZ5cqVg5GREbKzs7Fu3TqUK1dOdLl6JTMzE9u2bcP169chl8tRpUoVdOjQAZaWlqJL0zqGEC2YMWMGjIyMMHHiRNGl6L1Hjx4hMDAQFy5cQJkyZaBUKvHs2TM0bNgQCxYs0Isfcl0WGxuLTz/9FKdPnxZdSokXHh6OI0eOICQkBPXq1UNGRgaaNGmC6tWr45dffkGpUqUQHByMtLQ0zJs3T3S5euPff//F0KFDIZPJULt2bcjlcly6dAnZ2dn45ZdfUK1aNdElahUnphaSl+8ImZOTg3PnzmHXrl1wdHTM97TKkn7dty6xs7PD+vXrcfXqVVy/fh0AUL16dd5ITkckJydz/kER2bt3L8LCwuDp6QkA+Oeff5CWloZ+/fqpHmDXrVs3jBgxQmSZeic0NBQ+Pj6YOXOmalJqbm4upkyZgrCwMERGRgquULsYQgrJq/ej8PHxEVQJvSo3NxcWFhaoU6cOgLxTATdv3sSVK1d4JYAgt27dQnh4OE6cOIFBgwaJLkcvJCYmolKlSqqvjx49CplMBl9fX1Wbra0tMjIyRJSnt86fP4/g4GC1q2IMDAwwbNgw9OjRQ2BlRYMhpJC87S6oT548gZWVFa8EKGL79u3D1KlT8fTp03zLypYtyxAiiLm5OZydndGrVy+0aNFCdDl6wd7eHvHx8XBwcIBSqcThw4fh7u6OMmXKqPqcO3cO5cuXF1il/ilbtizu3LmDKlWqqLXfuXMHZmZmgqoqOtK3dyFNPXz4EF999RWuXLmCrKwsfPrpp/Dx8UHLli0RGxsrujy98u2336J169bYsWMHLCwssH79eixduhQVKlTAmDFjRJent2xtbTFx4kQGkCLUpUsXhIaGYv/+/QgLC8P9+/fRp08f1fLY2FjMnz8f7dq1E1il/gkICMCUKVOwadMmxMXFIS4uDhs3bsTUqVPRs2dP0eVpHY+EaEFISAjS09NhaWmJqKgo/Pvvv1i/fj22bduGmTNnYt26daJL1Bvx8fFYtmwZKlWqhNq1ayMxMRGtWrWCVCrFnDlz0K1bN9ElEhWJzz//HKmpqZg0aRIkEgkCAwPh5+cHAIiIiMCqVavQrFkzPlCwiA0ZMgQZGRmYN28eUlJSAOSF9IEDB2Lw4MGCq9M+Xh2jBR4eHoiKioKzszOGDBkCOzs7zJ49G/Hx8fDz88OFCxdEl6g3GjdujFWrVqFGjRqYNWsWLC0tMXLkSCQkJMDPz4/3CSFC3n1z5HI5atWqJboUvZaUlAQjIyO9ergmj4RogZGREbKyspCSkoITJ07g22+/BQDcvXtX7fwraV/Tpk0xffp0zJgxA97e3pgzZw6aN2+OPXv2wM7OTnR5RDqhRo0aokvQa/r8mA+GEC1o1aoVxowZA2NjY5QpUwbNmjXDzp07ERYWhq5du4ouT69MnjwZoaGhiImJQZcuXbBnzx706NEDpqammDt3rujyiEjPve0xHyU9hPB0jBbk5uZi7dq1SEhIwCeffIJq1aphy5YtSE1NRd++fXmFTBHavn07fHx8YGVlpWpLTU2FkZGR6t4IRESi6PtjPhhCtCwlJQWlS5eGRCJh+BCgfv362LBhQ77L34iIdIG+P+aDl+hqgVKpxJIlS+Dt7Y1GjRohISEB48ePx7Rp05CdnS26PL3i7e2N7du3c78TkU7q0qULfv31V9FlCMMjIVqwePFi7NixAxMmTMBXX32FP//8E3fu3MG0adPQvHlzTJkyRXSJeqN37944d+4cpFIprK2t8z2tdf/+/YIqIyJ9VdBjPsqVK6eXj/ngxFQt2Lx5M8LDw1G/fn3VN5qPjw8iIiIwevRohpAi1KtXL/Tq1Ut0GUREKnzMx38YQrQgKSmpwMs/LSwskJ6eLqAi/ZOQkIBVq1ZhwoQJMDQ0hJ+fn9ozMerXr4/w8HCBFRKRvnrdYz6Sk5MhlUr16lYOnBOiBQ0bNsTKlSvV2lJTUzF//vx8CZgK37Vr19ClSxfcuHEDz549A5AXSnr37o2RI0eiR48e+PPPP3HgwAHBlRKRvlMoFPjuu+/g4+ODxo0bo2HDhmjatCmWL18uurQiwTkhWvDgwQOMHDkS9+/fR3JyMqpWrYp79+7BwcEBS5YsgaOjo+gSS7TAwECYmZlh9uzZqjYPDw9s27ZNNQN96tSpePDgAX766SdRZRIRITQ0FHv37sXo0aNRu3ZtKBQKXLx4Ed9//z0++eSTtz4ctbjj6RgtsLCwwO+//45jx47hxo0byM3NhbOzM3x9ffNNOqLCd/LkSURGRr6xT8+ePTFs2LAiqoiIqGBbt27F4sWL0aBBA1VbzZo1UaFCBXz99dcMIaQ5Pz8/LF68GI0aNUKjRo1El6N3MjIy1G5OBgA//vij2jwda2trXrZLRMIZGxsXeONECwsLvbi3FP8s1wKpVIqcnBzRZegtBwcHxMXFqbU1atRI7fLcS5cuwcnJqahLIyJSM2HCBEyaNAkHDx7E06dPkZqaitOnT2Pq1KkYMGAA7t27p/qvJOKcEC2YNWsWoqKi0Lx5c1SoUAGGhoZqy0v64TXRvvvuO+zatQt//PFHgU+jTEtLQ0BAAPz9/TFkyBABFRIR5alZs6bq3y+OfLz8sSyRSKBUKiGRSHDlypUir0/bGEK0oF+/fq9dJpFISvzNZ0TLyMhAQEAAkpOTMXjwYNSrVw+WlpZ49uwZzp07h9WrV8PW1hZr166FgQHPSBKROAkJCe/ct0KFClqsRAyGkELSt29fLFmyBBYWFqq2zMxMGBsbC6xKf6Wnp2Px4sXYsmULnjx5ovprwtLSEt27d8eoUaM4NkSkM44cOYLr169DoVDA2dkZjRs31ouHbDKEFJKaNWviyJEjsLGxUbXVq1cPW7du1dsHE+kCpVKJO3fuIDk5GRYWFnBycoJMJhNdFhERgLxbOnzxxRe4efMmnJ2dIZfLcfv2bTg4OGDVqlWwt7cXXaJW8Vi0FjHfiSeRSODk5MRJqESkk6ZPnw4bGxusWrVKdafU5ORkjB8/HqGhofj+++8FV6hdvDqGiIhIkOPHj2P8+PFqt2q3srLC119/jSNHjgisrGgwhBAREQlSpkwZpKSk5Gt/9uyZXswJ4emYQrRr1y61S0IVCgX++usvWFtbq/Xz9/cv4sqIiEgXdezYEVOmTEFISAjc3NwAABcuXMCMGTPQoUMHwdVpHyemFpIWLVq8Uz+JRIL9+/druRoiIioOsrOzMW3aNGzbtk01j1Amk6Fnz56YOHFiib+KjyGEiIhIgMePH8PKygoymQzPnj3DrVu38H//93+wsrJC165dYWpqKrpEreOcECIioiKUlpaGzz77DE2aNMGtW7cAAPv370dAQACioqKwdu1adOrUCQ8ePBBbaBFgCCEiIipCixYtQkJCAtauXYsqVaogPT0ds2bNQp06dbBnzx7s2rULvr6+mDdvnuhStY4hhIiIqAjt3bsXkydPhqenJyQSCf755x+kpaWhX79+qitiunXrhn/++UdwpdrHEEJERFSEEhMTUalSJdXXR48ehUwmg6+vr6rN1tYWGRkZIsorUgwhRERERcje3h7x8fEA8u6sffjwYbi7u6vdsOzcuXMoX768qBKLDEMIERFREerSpQtCQ0Oxf/9+hIWF4f79++jTp49qeWxsLObPn4927doJrLJo8BJdIiKiIpSbm4u5c+diy5YtkEgk6N+/P7744gsAQEREBFatWoVmzZph4cKFMDIyElytdjGEEBER6Yi4uDjI5XLUqlVLdClFgiGEiIiIhOCcECIiIhKCIYSIiIiEYAghIiIiIRhCiIiISAiGECq2hg8fjqCgILW27du3o0aNGli0aJFa+48//oguXboAAGrUqIETJ0681zaVSiXWrVv32uX9+vXLt216f2/b32/SokULREVFFXJF7+dD3se7WLRoEfr16wcAiIqKQosWLQplvQqFAj/88AOaN28OLy8vDBs2DLdv3y6UdRMBDCFUjHl5eeHixYtqbSdOnICdnV2+kHH+/Hk0aNDgg7d56tQpzJgx47XLFy1ahMGDB3/wdijP2/Z3cVGU76NDhw74/fffC2Vda9aswc8//4ypU6di/fr1kMlkGDp0KDIzMwtl/UQMIVRseXp64vr160hLS1O1nThxAkOGDMH58+fVflFeuHChUELI265ot7S0hJmZ2Qdvh/KUlDsIFOX7MDY2hrW1daGsa8OGDRg8eDBatGiBatWqYd68eXjw4AHOnj1bKOsnYgihYsvNzQ2lSpXCpUuXAAAPHjzAvXv30LNnT5QuXVr1i/LmzZtISUmBl5eX6rWnT59Gp06d4Obmhk8//RQJCQmqZfv374e/vz/c3Nzg5eWFsWPHIi0tDXfv3kX//v0BvP6UzsunY+7du4fBgwfDw8MDjRo1wsyZM5GTk5PvNdu2bYO3tzdyc3NVbXv27EGzZs2gVCqRlZWFuXPnomnTpqhbty4+++wz3L9/HwBw9+5d1KhRA3fv3lW99tVD8wEBAfjyyy/h6emJbdu25dt+eno6pk2bBm9vb3h7e2Pq1KnIysoq8H2+fKj/xIkTaNGiBYKDg+Hp6Ynly5fjm2++wTfffIPOnTujUaNGuHXrFp49e4bx48ejXr168PX1xcyZM1UB8cU6fv31VzRp0gR169bF+PHjkZ2d/U77Ozc3F/Pnz4evry88PT0RGBiI5OTkfP1SU1MRFBSERo0aoXbt2mjXrh327dunWr5z5060bdsWbm5u6NChg9qyNWvWoHnz5nBzc0O3bt1w+vTpfOsHgJycHEyZMgXe3t7w8PDAZ599hocPHxb4PrKzszF79mw0adIErq6uaNGiBTZs2KBaV4sWLbBu3Tr06tULbm5u6NKlC2JiYlTLr127ht69e8Pd3R39+/dXe88FjVFB+/eFbdu2oVWrVnB3d8e4ceMwduxY1ffwN998g27duqn6mpiYwMDAAKmpqQXuAyJNMYRQsWVoaAh3d3dER0cDAI4fP47atWvDzMwM9evXV31onT9/HtWrV4eVlZXqtZs2bcKUKVPw+++/IyUlBfPmzQMA3LlzB6NHj0afPn2wa9cufPfddzh69Cg2btyI8uXLq345//PPP/Dw8HhjfTNnzoSpqSm2bNmCH374AXv27MHGjRvz9WvZsiUyMzNx/PhxVduuXbvQvn17SCQSBAcH46+//kJERATWr1+P3NxcfPHFF1AoFO+0n86dO4dq1aph48aNak/pfGHKlCk4c+YMfvzxR0RGRuLMmTP47rvv3mndCQkJyM7ORlRUFPz8/AAAW7duxZgxY7Bs2TJUrlwZkydPxvPnz/Hbb7/hxx9/xMWLF9VOTTx69Ah79uzBihUrsGjRIuzduxdbtmx5p/29cOFCbN68GWFhYdiwYQOSkpIQHBycr19oaChu3ryJyMhIbN++HV5eXpg8eTKys7ORlJSECRMmYMSIEdi9eze6d++OsWPH4unTp7h8+TLmzJmD4OBg7Nq1C15eXhgzZkyB+37dunU4deoUIiMj8fvvvyMtLQ1hYWEFvo/ly5fj0KFDWLRoEXbv3g1/f3/MnDkTjx8/Vq1v0aJFGD58OLZt24bSpUtj1qxZAIDs7GwMHz4cFStWRFRUFNq2basWYF71uv0L5IXxSZMmYejQoYiKioKJiQl27typem3Tpk1hb2+v+nr58uUwMDCAt7f3a7dHpAkD0QUQfQgvLy9VCDlx4oTql2ODBg2wfft2AAXPB/n8889VfXv06IH169cDyJuIN2XKFPTq1QsA4OjoiMaNG+Pq1auQyWSqp1yWLVv2rbUlJCTA1dUVDg4OcHJywvLly2FhYZGvn5mZGZo3b47du3fD19cXGRkZOHz4MH755RekpKRg69at+Omnn9CwYUMAwLx589CsWTMcOXIEzs7Ob61DIpHg888/h7Gxcb5lKSkp2L17N1atWgVPT08AwIwZM3DlypW3rveFoUOHwsnJSfW1m5ub6i/xO3fuYN++fTh58iRKly4NIC+c+fv7qyYVvziCUL16ddSoUQNNmjTBxYsX0atXrzfub6VSiY0bN2LixIn4+OOPAQDTp0/Hrl278vWtX78+Bg0ahI8++ggAMHjwYGzatAlJSUlITk5GTk4OypUrhwoVKmDw4MGoUaMGjIyMkJCQAIlEAgcHBzg6OmLMmDFo3rw5FAoFpFL1v+Hu3r0LIyMjVKhQAZaWlggPD8fTp08L/L6pWbMmGjZsiLp16wIAPvvsM/zwww+4desWbG1tAQBdu3ZFq1atAACDBg3C6NGjAeQ99v3p06cICQmBqakpqlatipMnT+LJkycFjs+b9u9vv/2GDh06ICAgAAAQEhKCf/75p8D1bNy4EYsXL8b333+v9rRXog/BIyFUrL08OfXEiROqsNGgQQPExMQgOzsb58+fR/369dVeV6lSJdW/S5curTr9ULlyZXz88cdYsmQJxo4di06dOmHXrl3vfNThZUOHDsWff/6JRo0aYezYsbh37x4cHR0L7Ovn54d9+/YhNzcXhw4dgp2dHWrXro1bt25BoVDA3d1d1dfS0hLOzs64fv36O9VhY2NTYAABgNu3b0Mul8PV1VXV5uXlpTqd8y5efU8VKlRQ/fv69etQKBT4+OOP4eHhAQ8PDwQEBEChUKhdZfFyiDE3N1c7NfU6ycnJePr0qVrt1apVw6hRo/L19ff3x61btzBr1iwMHjwYvXv3BgDI5XK4uLigWbNmGDRoENq1a4d58+bB0dERJiYm8PX1xUcffYROnTqha9euiIyMRJUqVWBgkP/vt08++QSJiYnw9fXF4MGDcfjwYVStWrXA2lu1aoWsrCyEh4dj+PDhqtAml8tVfSpXrqy2T16cyrt27RoqV64MU1NT1XI3N7c37qvX7d+4uDi11xoYGKB27dr5Xp+QkICZM2diypQpaNmy5Ru3RaQJhhAq1jw8PPDo0SNcvHgRjx49Qr169QAA1atXR+nSpXHq1Clcu3Yt35GQV/+KfSE2NhYdO3bEtWvX4OXlhdDQUHTo0OG9auvcuTMOHjyIcePGIS0tDYGBgViwYEGBfT/++GPI5XKcOnUKe/bsQfv27QHgtU/QlMvlUCgUkEgk+Za9+gH+pqdwlipV6l3fjmq7r3p1/S9/LZfLUbp0aWzZskXtv71796JatWqqfoaGhmrreJeJnAUFgdeZMGECIiIiYGFhgd69e2PZsmWqZRKJBMuWLcOmTZvQtm1bHDx4EF27dsWVK1dgYmKCTZs2YfXq1WjQoAGioqLQrVs3PHz4MN82qlevjgMHDmDu3LkoW7Ys5s+fj8GDBxf4XhYsWIDx48fDwMAA/v7+BZ5OedPYvLrOt43j6/avTCbLt66C6j169Cjs7OxU4Y2osDCEULFmamoKFxcXbNiwAW5ubjAxMQGQ98FSv359REVFoXLlyu98tcDWrVtRv359fPvtt+jTpw/q1KmD27dvq34xF/Sh/zoLFixAUlKS6kNvzJgx2Lt3b4F9DQ0N0bp1a/z11184cuQIOnbsCACoWLEiDAwMcP78eVXf5ORk3L59G87OzqoPn5evEHp5kurbVKxYETKZDLGxsaq2ffv2oWvXrgDyPtxeXnd8fPw7rxsAnJ2d8fz5c0gkEjg5OcHJyQmZmZmYM2eO2uTI13nT/rawsICVlZVa7VeuXMHHH3+sdmVUamoqtm/fjgULFiAwMBCtW7dGSkoKgLwP3OvXryMiIgJ16tTBV199hR07dqB8+fL4+++/ce7cOSxbtgwNGzZEUFAQdu/ejaysLJw5cyZfPVu2bMHBgwfRvn17REREYMWKFThz5gySkpLyvY/169dj6tSp+Prrr9GhQwdkZGSo6nmb6tWr49atW3j+/Lna+34f1apVU03sBvJCY0HrMjU1VQVjosLEEELFXv369bFjx458RzsaNGiA/fv35zsV8yaWlpaIi4tDdHQ0bt68ifDwcFy8eFH1gfki5MTExKhO4bzOjRs3MGPGDMTGxuLq1as4fPjwGx/P7efnh99//x3lypVD9erVAeTNF+nZsydmzpyJEydOIDY2FuPHj0e5cuXg4+MDW1tblC9fHitXrkR8fDyioqJw6NChd36/5ubm8Pf3R2hoKKKjo3Hx4kUsWLBANf/Ezc0Na9euxa1bt7B//36Nb/5VtWpVNGnSBF9//TWio6Nx6dIlBAUFIT09vcD5Ma962/7u168fFi5ciOPHj+Pq1asIDQ1F3bp11U4/GRoawsTEBHv37sXdu3fx999/qybGZmdnw8LCQjVpNj4+HocOHUJCQgJq1aoFY2Nj/PDDD9i0aRPu3r2LHTt2ID09HTVq1MhXy/PnzxEaGopjx44hPj4ef/75J8qVKwcrK6t878PS0hIHDx5EfHw8Tp8+jQkTJqjqeZvGjRujfPnymDx5Mq5fv46oqCi1yaSa+PTTT7Fjxw5s2rQJN27cQFhYmGoezMuaNWvG+9+QVjCEULHn6emJ9PT0fDP2GzRogIyMDI3uD9KvXz/UrVsXAwcORJ8+fXDv3j18+eWXuHz5MoC8Syx9fHwQEBCAw4cPv3FdISEhsLW1Rb9+/dCrVy/Y2dlh8uTJr+3v7e0NMzOzfKd/Jk6ciMaNGyMwMBC9e/eGkZERfv75ZxgaGkIqlaoCRIcOHbB792589tln7/x+AWDSpEmoWbMmBg0ahGHDhsHb2xtfffUVAGDq1Kl4+vQp/Pz8sGLFCgQGBmq0bgCYM2cOHB0dMXDgQAwaNAjOzs6YP3/+O732bft7+PDhaNOmDcaMGYPevXujXLlymDlzplofQ0NDzJ07F3v27EHHjh0RHh6Ozz//HGXLlsWVK1dQtmxZLFq0SLV8xowZGDt2LHx9feHi4oLQ0FCsWLEC7du3x9KlSzF37twC53r07dsX/v7+GD9+PDp06IDLly9jyZIlkMlk+d5HWFgYrly5go4dOyIoKAjt2rVDnTp13umIRqlSpbBs2TKkpKSga9eu+O2339C3b9932p+v8vDwQHBwMH744Qd07doVqamp8PDwyHd6JzIyEj169HivbRC9iURZUu4GRFTMpaamwsfHB9u3b0fFihVFl0N6IDo6Gubm5qhSpYqqrWPHjhgyZIja/UGItIWX6BIJplQqsWfPHuzduxceHh4MIFRkzp07h7Vr1yIiIgJly5bFjh07cP/+fTRp0kR0aaQnGEKIBJNIJJg7dy5kMhmWLFkiuhzSI3379sXdu3cxatQoPH/+HC4uLvjpp5/e6T44RIWBp2OIiIhICE5MJSIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhGAIISIiIiEYQoiIiEgIhhAiIiISgiGEiIiIhPh/mnycTp5tpTkAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "_ = pd.crosstab(\n", + " df['What is your current class standing?'],\n", + " df['Do you currently work?'],\n", + " normalize='index'\n", + ").plot(kind='bar', stacked=True)\n", + "pd.crosstab(\n", + " df['What is your current class standing?'],\n", + " df['Do you currently work?'],\n", + " normalize='index'\n", + ")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-02-24T06:19:11.953795Z", + "start_time": "2024-02-24T06:19:11.836719Z" + } + }, + "id": "464b4dec962ea0ae", + "execution_count": 10 + }, + { + "cell_type": "markdown", + "source": [ + "The class standing most likely to work are graduate students, where 100% of participants work. \n", + "The freshman class is the least likely to work, where 92% of participants do not work.\n", + "\n", + "For Sophomore, Junior, and Senior participants, all 3 groups have similar proportions working with 30% of participants working. " + ], + "metadata": { + "collapsed": false + }, + "id": "d041734386169b98" + }, + { + "cell_type": "code", + "outputs": [ + { + "data": { + "text/plain": "<Figure size 1000x500 with 2 Axes>", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzQAAAH6CAYAAADRDwmaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPn0lEQVR4nOzdd1hTZxsG8DsJsocMQVHEvUUR3FgV91YcddS96kLr3ltEcc+6qANX3aNu29paVx04KwKK4mSIA9lJvj/4jEQSWYGThPt3XVzKyck5T54kPHly3vMekVwul4OIiIiIiEgHiYUOgIiIiIiIKLvY0BARERERkc5iQ0NERERERDqLDQ0REREREeksNjRERERERKSz2NAQEREREZHOYkNDREREREQ6iw0NERERERHpLDY0RERERESks9jQEBERERGRzjIQOoCvRUd/hFwubAwiEWBra6EVsWgb5kY15kU95kY1bcrL51hIPW16nrQhFm3D3KjGvKjH3KimTXnJSm3SuoZGLofgCfxMm2LRNsyNasyLesyNasyLbtCm50mbYtE2zI1qzIt6zI1qupYXDjkjIiIiIiKdxYaGiIiIiIh0FhsaIiIiIiLSWVp3Do2myGQySKUp2bqvSAQkJCQgOTlJp8YP5gXmRjXmRT3mRrW8zotEYgCxmN9hERGR/tG7hkYul+PDh7eIj4/N0XbevhVDJpNpKCr9wtyoxryox9yoltd5MTExh6WlDUQiUZ7tk4iIKLfpXUPzuZkxN7eGoaFRtgu3RCKCVMqvk1VhblRjXtRjblTLq7zI5XIkJSUiNjYGAGBlZZvr+yQiIsoretXQyGRSRTNjbm6Zo20ZGIiRksJvlFVhblRjXtRjblTLy7wYGhoBAGJjY2BhYc3hZ0REpDf0qqJJpVIAXwo3ERF98flvY3bPLyQiItJGetXQfMbx4URE6fFvIxER6SO9bGjU6dKlHTw83OHh4Y4GDWqiWbMGGDZsAK5evSx0aIJasGA2FiyYnal1u3Rph+PHj+ZuQN/Y94kTxwTZ94sXz3H58j+C7Ds4OAh3797W2PY8PNxx8+b1PNn3t56zmJi3+P33c9netj54+fIlPDzc8erVy2xv4/DhA+jevROaNfsOw4cPwsOH/2kwQiIiIu2XrxoaAPD2HocjR07h0KET2LDhF1StWg0TJ47Bv/9eFTo0nbBp03Y0bdpc6DDynK/vPDx4cE+QfU+dOgHh4c/0bt/r16/G5csXc2XbusLBwQFHjpyCvb1Dtu5/4cIfWLHCD/36DcKWLTtQokRJ/PTTCLx9G63hSLVTUlIS2rZti6tX1f/9fvDgAbp27Ypq1aqhc+fOuHdPmPcxERHlnnzX0Jibm8PW1g52doVQqlQZDB8+Gk2bNsfq1cuEDk0nWFtbw9jYWOgw8pxcwAuo6Ou+hXxc2kIikcDW1g4SiSRb9z969BBatWqLli3boHhxZ4wbNxkmJib455+/NRyp9klMTMTYsWMRHBysdp24uDgMGTIE7u7uOHjwIFxdXTF06FDExcXlYaRERJTb8l1Do0r79l54/DgUz5+HAwA+fPiAhQvnoV275mjRoiHmzZuBDx8+qLxv9+6dsGdPgNKyPn2+x/HjhwEA9+7dwbBhA9G0qQe6dm2Pw4f3K9ZTNdRL3XCgyZPHYs2aFYrfFy2aj86d2yp+v3btCry82ijiX7Rogcr4b968ji5d2mHJkoVo0aIhAgK2Ku3n3bt36NHDCz4+c1R+4Ew75GzkyCHYtm0Lxo4dCU/P+uje3eubw/fu3AnEsGED0aRJfTRt6oHx470RFRWldv3Dhw/Ay6sNmjdviK1bNyvdJpfLsXXrZnTo0BItWzbCxIk/4fXr14rbPTzccfz4YXTr1gHNmn2HOXOmK32IOXbsMHr27IxGjeqgTZsmWLp0kWJSic/PS9++PdC2bTPMmTMdgYE38csvmzBy5BC8epU6TOjSpYvo0qUdmjVrgBUrliA0NAQDB/ZG06YemDhxDOLiPik9lq5d26NZswYYOXIIQkNDlHJ68OA+DBnSD56e9dCvX0/FsKGRI4fg9etX8PGZo3JY4IkTxzBs2ABMmTIeLVo0xJkzJzPMTVqRkRGYPn0iWrZsjMaN62LAgF64cydQ7b4fPw7BqFFD4elZHz16eOHgwX2Zfs7S2rJlA06ePI6TJ4+jS5d2AL79uv1abr7vunRph3XrVqFDhxbo379nuvfBiRPHFK/9li0bo337Fjh16jf88cc5dO7cFi1bNsK6dasyleOvh5xl9b3bu3c/9OjRW7EviUQCY2NjfPqUs+twabuQkBB069YNz559++jhiRMnYGRkhIkTJ6J06dKYNm0azMzMcOrUqTyKlIiI8gIbGgAlSpQEAISFPQYATJ06HsHBj7B48XIsX74WYWFh8PGZrfK+TZu2wJ9//q74PSzsCcLDn+G77zwRFvYE3t7DUL16Dfj7B2DAgCFYs2YFLlz4I8sx1qpVF7du3VD8fuvWTUREvEFExBsAwL//XkWtWnUU8YeEBKmN//XrV0hKSsKWLQFo2rSlYnlCQgImTfoJJUqUxKRJ0zN1AvH27f5o2rQFduzYi7Jly2HRovkqLxQYGxuLiRPHoFatOtix41csW7YGz58/R0DALyq3e/XqZaxatRRDhgzHzz/74+HDB3j9+pXi9gMH9uLMmZOYNWs+NmzYChsbG4wdOwIpKV9mb9q0aT3GjJmA1at/RmhoMPz8fP6fuxtYscIPQ4eOwO7dBzF+/BT89tsRXLx4QXHf06dPYPDgYfDzW4Fx4yajShUXdO/+A3x8/BTrBARsha/vMkycOA379+/BpEnj8OOPI7Bs2Rrcu3cXx44dBgBcvPgXfvllI8aMmQB//52oVs0V3t5DlT6s+/tvwA8/9MPWrbthbm6OlStT9+Pj4wd7ewd4e4/D6NHjVebq7t07KFmyFDZs2IpatepmKjefzZ07A1KpDBs2/AJ//50oVMgeS5f6qtx3YmICxo8fDReX6ti2bTdGjBiDrVs349Sp3zL1nKXVo0dveHo2g6dnM2zatB1Axq/btHL7fXf27CksW7YWU6fOVvk+uH//Ll6+fIHNm1OHYC5ZshD79u3BokXLMXLkT9i1azsePXqYYY6/ltX3bvXqNVC8uLPi9jNnTuLlyxeoX/+7TD9WXXTt2jXUrl0be/fu/eZ6t2/fhpubm+I5FIlEqFGjBgIDA/MgSiIiyit6dR2a7DIzMweQOjwhJCQYgYE38euvh+Do6AQAmDlzHnr16oJnz8JQvHgJpfs2bdoC27ZtQUTEG9jbO+D338+iZs06sLS0xLZtm1GuXHkMHToCAFC8eAmEhT3Brl3b0bBh4yzFWKtWHaxcuQSxsbFITEzAhw/vUalSFdy9extNmjTH9etX0afPAEX8u3YdUHzQSRv/Z7169UWxYk6K32UyKWbNmgJDQ0PMmbMw00Ng6tb1QOvWqd+w9+07EP369cDbt9GwsyuktF5iYgL69h2E7t17QSQSwdGxKBo18sR//91Xud1jxw6jWbOWaNky9ajTlCkz0alTG8Xtu3btwNixk1CjhjsAYMKEqejQoSWuXLkED4/v/v8Y+6FePQ8AwJgxE/DTTyP+PyTHFJMnz0DDhp4AgCJFHLFnz048efJYsaxChUqK7QCAgYEBTExMYGlphU+fUo+89Os3CGXKlEWZMmWxatUyNG/eEjVrpjaV7u618PRp2P9j3Y7evfujfv0GAIDBg4fh8uV/cObMCXTp0h0A0KpVO3z3XSMAQPfuvTB9+iQAgKWlFcRiMczNzWFubq4yVyKRCH37DoCRkXGmcwOkHuVq0KARGjXyVJzD4eXVDRMmjFa57+PHD6NgQWsMHjwMAODkVByvX7/Er7/uRsuWbTJ8ztIyNTWFkVHqFMLW1tYZvm7z+n3XvHkrlC5dRu3tMpkMY8ZMgImJCdq398Kvv+7GwIFDFa+HDRvW4unTMJQtW/6bOU4ru+/dzy5f/gc+PnPg7T0OTk7FM/U4dVXPnj0ztV5kZCTKlFF+Hm1tbb85TE0dTUwQJxaLcjTT3Oe7GhiIkdMRm3K5HDKZdgz7zGleAM3lhnlRj7lRjXlRL6e5ycpDYUMDKIYGmZqa4enTJzA3t0Dx4s6KC945O5eAhYUlwsLSf7AqUaIkSpcuiz//PI9u3Xri99/PoU+f/gCAsLAwVKpUWWn9qlVdcOTIgSzHWKyYExwcCuP27VtISEhAlSoucHIqjjt3AuHmVgtPnjyGu3ttXLt2WRH/Z2nj//yhuHDhIkrb//33c0hJSUHjxk1haGiY6bjSfnAyMzMDAJVHAmxt7dCqVVvs3bsTwcGPEBb2BCEhj1C1ajWV2w0Le4KOHb0Uv1tZFYSjY1EAqY1nRMQbzJo1RenigImJiUonsLu4fNl2hQoVIZVKER7+FBUrVoaRkRG2bNmAJ09CERoagufPw1GnTl0YGIj/33A5wsDgy7ZFIhHEYhEMDMSQSMT/f+zFFOsYGRmhSJEiit+NjY2RkpICAwMxnj4Nw/r1q7Fhw1rF9pKSkvD8ebhifWfn4or/W1iYq8yhOtbWNopmJrO5+fyYOnXqgnPnTuPevTt4+jQMQUEPVR5hA1Jfz6GhwWjWrIFimVQqUzS/33rOMpL2ffeZkO+7IkWKfPN2GxtbmJiYAICiMUv7njIyMkJycnKWcpxRDtS9d4HUv2ELFszG99/3gpdX10w/Tn0XHx+f7u+ZoaEhkpKSsrwtW1uLHMcjlckhEee8MypY0ExrYtEImRQQZ+88sq/lODcajCXHtCkvAHOTB7HkmDblBcjT3LChQeo3owBQqlRphIaq/uZOJpNCJpOqvK1p0+b488/fUatWXbx69QIeHg0BQGVjIJXKIJWmfpgRiURK4/Mz+hBbq1Yd3Lp1A0lJiXBxqQYnJ2ds27YZN278i4oVK8PCwkJtM/J1/J8/hH1mb++A8eOnYPx4b/z771XUrFn7m7F8ZmCQ/iWk6tybyMgIDBrUG+XLV4S7e220b98Jly5dxP37d9Vu++vNFCiQuq/P57rMm7dI6cMfAFhaWir+L5F8ie1LzsW4evUypkwZj5YtW6NOnXro338Ili3zBRLeA5FBQMJ7GAKp//8sOQ6Ii05d9jYydfvvnwHG8am3y5Ihio34cp+E9/9/4EGQpiRhzMAf4F6tilKsZqYmqevLkmEQ//9tGxgDyNqHjLTPeWZzA6QeZfjppxH4+PEjmjRphvr1v0NycjKmTZugcj9SqRRubjUxduwktbGoe86y8hiUYxTmfZfRxXlVHcFM20B+iT/zOc7uexcA7t+/h4SEeAwYMOSbcec3RkZG6ZqXpKSkbE1sEh39MUffVkokYlhbm2H0nlsIiRD2HKcy9uZY2d0VMTGfFO8LoXzOCw4MAqIeCRoL7MoBnTczL6owN6oxL+ppIDciUea/TGJDA+C3346ifPmKcHQsiuTkZMTGfsTTp2EoWjT16MOTJ4/x6dOndB8QP2vatCU2bVqPU6d+Q926HjA1NQUAFC/ujMDAm0rr3r9/R7EdAwMDvH//TnHby5cvvhlnrVp1sX27P6TSFIwdOwnFihVHaGgI/vzzPGrXrvv/fZZAbOxHpWE6aeN/9+6dym27uFRHzZq10a5dJ6xY4Ydt2/aobFay66+//oCFhRUWL16hWLZ/v/rx76VKlcbDh1+Go8XFfcLz588BABYWFrC2tsHbt1GKIWXJycmYNWsqevbsjSpVXAAAISGPULZsOQDAw4cPUKBAARQv7gwfn1/Qpk17jBuX+sE8JSUFL148h3vFUqmNi/z/H3CTv0wiIIIMkCanLkv5fxOTEv9lHbkckCam+f3LNoo7OiAi4g2cCtVTbG/ean80rF0D39Wqnv6+X8nK4ePM5gZIPWcsMPAmjh07C2trawBQnOQvl8shEikfui5e3BkXL15AkSKOig/0p0+fwH//PcCYMeO/+Zype1yfG4uMXreq5NX7LicyynFa2X3vAqnNlKdnM5XNTn7m4OCQbuKRqKgo2NvbZ3lbcnn6hj07QiJicf+l6skuhKA1kw1GPQJeae56WznFvKjH3KjGvKiXF7nJd5MCxMbGIjo6ClFRUQgNDcHKlUtx/vwZjBw5BkDqEI86dephzpyZ+O+/+3jw4B4WLJiN6tVroFQp1WPqCxcujEqVquDXX3crXaOlU6euCA5+hA0b1uLZs6c4efI4Dh7cpxgSUrFiZfz77zVcv34Njx+HYNmyRShQoIDa2N3c3PH4cerwqAoVKsHa2hrFijnhzz/Po06dekrxz5s3K9PxpzVkyDDExMRg9+6ADNfNCktLK7x58xrXr1/DixfPERCwFRcu/K526Efnzt3w++/ncPToITx9GoZFixYgMTFBcfv33/fExo3rcfHiXwgPfwZf33m4e/e20tCkzZt/xq1bN3D//j2sXLkELVu2hampKSwtrXDv3m2Ehobg8eNQ+PjMQVRUFJKS1R8hMzEyQvirN3j7LusfRHq0a469x8/i5J+X8Px1BNZs34fzl/5FiWLfHtb0mbGxMZ4+DcOHD+8ztX5mcgMA5uYWEIvFOH/+NF6/foU//jgHf/8NAKB4XtLuu0WLVkhISICfnw+ePg3D5csXsWLFEsUH9YyeM1WP69Wrl4iMjMjW6zav3nc5kZkcf5aT926VKlUV5wzRF9WqVcOtW7cUzaNcLsfNmzdRrZrqoa5ERKSb8l1Ds2rVUnTo0BKdOrXCmDHD8ezZU6xc+TNcXd0U60yfPhdFixbF6NHDMXbsKJQsWQo+Pku+ud0mTZrBwMAAdet6KJYVLlwYixcvx9Wrl9C3b3ds27YFI0f+hDZt2gMAWrRojUaNPDFlyjiMG+eNZs1awtbWTu0+zMzMUaFCJZQrV0HxAczFxRVWVgVRvnxFpfgdHbMW/2eWllYYOHAotm/fgjdvVE/1mx2ens3QokUrTJ8+CYMG9cHNm9cxcuQYPH36RGVTU62aK6ZMmYUdO7Zi0KDesLa2QZky5RS39+jRG23bdoCf3wL0798Tb968xrJlq5WGVbVq1RYLFszGuHEjUb16Dfz0U+ownwEDhsLa2gZDh/bDTz+NgKGhIby8uuLR4zC18bdv2gBXbt3FmHnLs/zYm3nUwtBeXtiw+zB6jZmJ63f/w5Kp3ijumLmLKXbq1BUHD/4KX9/5mVo/M7kBUocZjhs3GTt3bkfv3t2wY8dWjB49HhKJBMHBQen2bWpqhiVLViE8/Bn69++JRYsWoHPnbujdO/XclYyes6+1aNEG4eFP0a9fD8jl8my9bvPifZcTmclxWtl9754/fxYdOrTMcL38IDIyEgkJqY10y5Yt8eHDByxYsAAhISFYsGAB4uPj0apVK4GjJCIiTRLJtezqdlFR2R+nnJychOjoV7C1LYICBTJ/YrsqBgZixaQAmbFhw9r/X29iTo72qwuymhsheHi4Y9WqnxUzfWXEwECceg6LmmFfeaaAKVCovNbnN6ty6zWj6++7V6+eo2vXjjh8+GS6mQFzg7q/kSIRYGeX85PehVC+fHls374dtWvXVvy+cOFCeHmlTlBx584dzJo1C6GhoShfvjzmzJmDSpUqZXk/OalNQOp7wNraDG1W/S34kLPKjpb4zbsBYmI+Cf635nNesOE74YfJFKkGDP2LeVGFuVGNeVFPA7nJSm3iOTQ5FBISjODgIBw6tB+LFmX923siyjp9eN9FRUXi6tXLKFCgACwtrYQOR2cFBQV983cXFxccOnQoL0MiIqI8luUhZ0+fPsXAgQPh6uqKRo0aYfPmL1cDDw8PR79+/VC9enW0bt0aFy9e1Giw2ujhwwdYutQX7dt3RLVq1YUOhyhf0If33b59e7B+/Vr07TswS1OlExERkbIsHaGRyWQYMmQIqlatikOHDuHp06cYO3YsHBwc0LZtW4wYMQLlypXDgQMHcO7cOYwcORInTpyAo6NjbsUvuLZtO6Bt2w5Ch0FfuXjxutAhUC7Sh/fdsGGjMGrUaMGHKRAREem6LDU0UVFRqFixImbPng1zc3OUKFECdevWxY0bN2BnZ4fw8HDs2bMHpqamKF26NC5fvowDBw5g1KhRuRU/ERERERHlY1kacmZvb48VK1bA3NwccrkcN27cwL///otatWrh9u3bqFSpkuJaEADg5uaGwMBATcdMREREREQEIAfTNnt6eqJnz55wdXVFixYtEBkZme5iZba2tnj9OmtT/4pEOfshIqJv499OIiLSJ9me5WzVqlWIiorC7NmzsXDhQsTHx6c7sdXQ0FDthRPVsbXN/tShCQkJePtWDIlElDoNbw5pYhv6irnJXfqYX318TJqQl3mRyUQQi1On9jQ2Ns6z/RIREeWmbDc0VatWBQAkJiZi/Pjx6Ny5M+Lj45XWSUpKynLRjI7O2XVoZDIZpFJ5jk+01YVrrQhFH3OjbR+29TG/+vaYNCGv8yKVyiGTyRAT8wkFCiQrlotEOfsyiYiISEhZ+hQXFRWFc+fOKS0rU6YMkpOTUahQIURFRaVb/+thaBmRy3P2Q0RE38a/nUREpE+y1NA8f/4cI0eOxJs3bxTL7t27BxsbG7i5ueH+/ftISEhQ3Hbjxg1Uq1ZNc9ES6ak6XgMxc/nGdMtPnDiGLl3aCRARERERkW7IUkNTtWpVVK5cGVOnTkVISAguXLgAPz8//Pjjj6hVqxaKFCmCKVOmIDg4GBs3bsSdO3fQpUuX3IqdKNPE4tTzqtT9SCRiSIxMIDE2y/GPqIBRtmI88/dVXL99T8OPnIiIiEi/ZekcGolEgnXr1mHevHn4/vvvYWJigt69e6NPnz4QiURYt24dpk2bBi8vLzg7O2Pt2rV6fVFN0g1isQhWBU1hIMmgf7esqJH9SaVSfAy9CXlyYpbuV8TeDn4//4KAhu0hEkk0EgsRERGRvsvypAAODg5Ys2aNytucnZ0REBCQ46CINEksFsFAIsboPbcQEhGbq/sqY2+Old1dIZYYQJrFhmZoj05YvDEAAQHb0Lv3AJXrRES8werVy3H9+jWIxSI0a9YSw4ePTjfDIBEREVF+ke1Zzoh0TUhELO6//CB0GGoVsi2IwT274Oet/mjSpAUcHYsq3Z6cnAxv72FwcnLCmjUb8e5dDBYtmg9AhDFjxgsTNBEREZHAtGuuWqJ8rlu7lnBycsKKFUvS3Xb16iVERUVgxox5KF26DNzcamLs2Ek4dGgf4uLiBIiWiIiISHhsaIi0iEQixsSJU3H58kX89defSreFhT2Bk1NxWFpaKpZVreoCqVSKFy/C8zhSIiIiIu3AhoZIy7i4VEObNu2xcuUSpYvVGhqmnz1NKpUp/UtERESU37ChIdJCw4aNQkJCPPbs+TLJRvHizggPf4YPH94rlt2/fwcSiQRFixYTIkwiIiIiwbGhIdJCVlYFMWzYKLx69VKxrGbN2nB0LIp582YiNDQEN29ex/LlfmjWrCUsLCwEjJaIiIhIOJzljPKNMvbmOrWPNm064LffjiIyMhJA6nWgfH2XYfnyxRgypC9MTc3QvHlLDBkyQmP7JCIiItI1bGhI78lkcqRIZVjZ3TVP9ieVSiGTpmTpPlcObkm3TCQSYf16f6Vljo5F4ee3MkfxEREREekTNjSk92QyOd6/i4NYLFK7jkQiBmLCgJSEnO9PmgJ5Fi+qSURERETZw4aG8gWZTA6ZTP7tlRLjgWRez4WIiIhIl3BSACIiIiIi0llsaIiIiIiISGexoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiIiIiEhnsaEhIiIiIiKdxYaGSGAzlm1A+8HjkZCY/mKcY8YMx7BhAyCXZ3ANHSIiIqJ8ig0N5QtisQgGBmK1PxKJGBIjE0iMzXL8IypglKXYvPt1Q2xcPLYe+E1p+YULvyMw8CYmTJgKkUikyXQQERER6Q0DoQMgym1isQg2BY0hkmTwcresqJH9yaXJeB8aCHly+iMuqhSyscag79tjw65DaN+iORwLlUdiYgJWr16O7t1/QKlSZTQSFxEREZE+YkNDek8sFqU2MwcGAVGPcndnduUg6rwZYokBpJlsaACgW5um+O33f7D6l51YuKwBdu3aAbFYjP79B+HNm9dYtmwRrl+/BmtrG7Ru3Q59+w6ERCJBSkoKli71xV9//YGkpCTUqOGO8eOnoFAh+1x8kERERETagw0N5R9Rj4BXt4WOQiUDiQTjB/fC8Jl+uHDhD+zatQPz5y+CoaERpk2biDJlyuKXX3YiKioKfn4+EIvF6NdvEA4c2Itbt25i2bK1MDY2xpIlC7Fq1TLMm+cr9EMiIiIiyhNsaIi0hGvl8mjRsD6mTp2ERo08Ubt2XVy/fg2vX7/Cxo1bIRaLUbx4CYwYMQY+PnPQr98gvHr1CkZGRihSpAgsLa0wbdpsvH//XuiHQkRERJRn2NAQaZG+3Tri1J8X0b//YADA06dP8OHDe7Ro0VCxjkwmQ2JiIt6/f4f27Tvh3LnTaN++BVxd3fDdd43RunVbocInIiIiynNsaIi0iJGhYeq/RqkzpUmlUhQvXgK+vkvTrWtmZg4rq4LYv/8YLl26iEuX/saGDWtw9uwprF27iTOjERERUb7AhoZIizk5OePNm9coWNAa5ubmAIB//72CEyeOY/r0OTh58jgMDQ3RpElzeHo2xb17d/Hjj/0RE/MWNja2AkdPRERElPt4HRoiLVarVh0ULlwYc+fOQGhoCG7fvoXFi31gbGwMiUSCT59isXLlUly/fg0vX77A2bMnYW/vACurgkKHTkRERJQneISG8g+7cjq3D4lEAl/fZVixwg9DhvSFiYkpGjduipEjRwMAvLy6ISIiAvPmzcTHjx9QvnxF+PouhUQi0WgcRERERNqKDQ3pPZlMDrk0BaLOm/Nkf3JpMmTSlGzd19GhEK5cuYmUFJliWdGixeDnt1Ll+mKxGMOHe2P4cO9s7Y+IiIhI17GhIb0nk8nx9l0CxGL1J8lLJGIgJgxIScj5/qQpkGfhopqkmwwkIkADEy8YGGhg5K9cjhSpPOfbISIi0kFsaChfkMnkkMky+MCXGA8kx+VNQKT7RCIg5qlGmuAcMTAGrJ0BsKEhIqL8iQ0NEVF2pSSwCSYiIhIYZzkjIiIiIiKdxSM0RERERKRb8mLmUl2IgQDoaUMjl3MsORHR1/i3kYj0gVwmzbOZSzMil0mFDoGgZw3N52tvJCUlwtDQSOBoiIi0S1JS6ux7Eole/eknonxGJJbA7/RDhL8V9hxGJxtTTGhRQdAYKJVeVTWxWAITE3PExsYAAAwNjSDK5rSqMpkIUk6DqpI+5kYmEwFSOSDL+TS8OSKVA0mJeplffXxMuvKakcvlSEpKRGxsDExMzCEW8/RJItJtfwZF4v7LD4LGUNnRkg2NltCrhgYALC1tAEDR1GSXWCyGTCbLeMV8SB9zIxaLgY/vAWmSsIFIEgHZa73Mrz4+Jl17zZiYmCv+RhIREekLvWtoRCIRrKxsYWFhDWk2r9YuEgHW1maIifkEDjlXpo+5kUhEsLIyBfbOBCIfChtMoQrA9wF4/z5Ob45o8DWTyzL5mpFIDHhkhoiI9JLeNTSficViiMWG2bqvSAQYGxujQIFkvfkApin6mBsDAzGMjY2BhAggNlzYYCxsAGNjxMdLkZKiH0c0+JrJZXr4miEiIsoKfl1HREREREQ6iw0NERERERHpLDY0RERERESks9jQEBERERGRzmJDQ0REREREOosNDRERERER6Sw2NEREREREpLOy3NC8efMG3t7eqFWrFho0aICFCxciMTERADB//nyUL19e6ScgIEDjQRMREREREQFZvLCmXC6Ht7c3LC0tsXPnTrx//x5Tp06FWCzGpEmTEBoainHjxqFTp06K+5ibm2s8aCIiIiIiIiCLR2geP36MwMBALFy4EGXLloW7uzu8vb1x/PhxAEBoaCgqVaqEQoUKKX5MTExyJXAiIsq/EhMTMXXqVLi7u8PDwwP+/v5q1z179ixatWoFV1dX9OjRA/fv38/DSImIKLdlqaEpVKgQNm/eDDs7O6XlsbGxiI2NxZs3b1CiRAlNxkdERJTO4sWLce/ePWzbtg2zZs3CmjVrcOrUqXTrBQcHY9y4cRg6dCiOHDmCihUrYujQoYiPjxcgaiIiyg1ZGnJmaWmJBg0aKH6XyWQICAhAnTp1EBoaCpFIhJ9//hl//fUXChYsiP79+ysNP8sMkShLq+eKzzFoQyzahrnJO/qSY75m8k52c6xrz01cXBz27duHTZs2oXLlyqhcuTKCg4Oxc+dOtGzZUmndf/75B2XKlEHHjh0BAGPHjsXOnTsREhKCqlWrChA9ERFpWpYamq/5+fnhwYMH2L9/P+7fvw+RSIRSpUrhhx9+wL///osZM2bA3NwczZo1y/Q2bW0tchKSRmlTLNqGucld1tZmQoegcXzN5C59fM2o8/DhQ6SkpMDV1VWxzM3NDT///DNkMhnE4i+DDwoWLIiQkBDcuHEDrq6uOHjwIMzNzVG8eHEhQiciolyQ7YbGz88P27Ztw/Lly1GuXDmULVsWjRs3RsGCBQEAFSpUQFhYGHbv3p2lhiY6+iPk8uxGpRkiUeqHL22IRdvoY24kErHWfRiMifkEqVQmdBgawddM3sjJa+bzc6QrIiMjYW1tDUNDQ8UyOzs7JCYm4t27d7CxsVEsb926NX7//Xf07NkTEokEYrEYGzZsgJWVlRChExFRLshWQzNv3jzs3r0bfn5+aNGiBQBAJBIpmpnPSpUqhStXrmRp23I5tOZDjzbFom2Ym9ynb/nlayb35Zf8xsfHKzUzABS/JyUlKS2PiYlBZGQkZs6ciWrVqmH37t2YMmUKDh06BFtb20zvU9eG5WWWvj6unGJe1GNuVGNe1MuL4dBZbmjWrFmDPXv2YNmyZUpjlVeuXIlbt25h69atimUPHz5EqVKlsroLIiIitYyMjNI1Lp9/NzY2Vlq+ZMkSlCtXDr169QKQ+oVcq1atcODAAQwZMiTT+9SlI1iZpW1HGbUF86Iec6Ma86JeXuUmSw1NaGgo1q1bhyFDhsDNzQ2RkZGK2xo3boyNGzdiy5YtaNasGS5evIjDhw9j+/btGg+aiIjyLwcHB8TExCAlJQUGBqllLDIyEsbGxrC0tFRa9/79++jdu7fid7FYjAoVKuDly5dZ2mdOh0zq2zBFTWFeVNPGvADMjTrMi3p5NRw6Sw3N+fPnIZVKsX79eqxfv17ptqCgIKxcuRKrVq3CypUrUbRoUSxdulTppE0iIqKcqlixIgwMDBAYGAh3d3cAwI0bN1C1alWlCQEAwN7eHqGhoUrLnjx5kuUZzvR1yKQ+PiZNYF7UY25UY17Uy4vcZKmhGTJkyDcP0Tdt2hRNmzbNcVBERETqmJiYoGPHjpg9ezZ8fHwQEREBf39/LFy4EEDq0RoLCwsYGxujW7dumDx5MqpUqQJXV1fs27cPL1++zPIlBYiISHvlaNpmIiIiIUyZMgWzZ89G3759YW5ujlGjRqF58+YAAA8PDyxcuBBeXl5o3bo1Pn36hA0bNuD169eoWLEitm3blqUJAYiISLuxoSEiIp1jYmKCRYsWYdGiReluCwoKUvq9a9eu6Nq1a16FRkREeUyc8SpERERERETaiQ0NERERERHpLDY0RERERESks9jQEBERERGRzmJDQ0REREREOosNDRERERER6Sw2NEREREREpLPY0BARERERkc5iQ0NERERERDqLDQ0REREREeksNjRERERERKSz2NAQEREREZHOYkNDREREREQ6iw0NERERERHpLAOhAyAiIiIiIg2wKyd0BKnyOA42NEREREREOk4uk0LUebPQYSjIZdI82xcbGiIiIiIiHScSS+B3+iHC38YJHQqcbEwxoUWFPNsfGxoiIiIiIj3wZ1Ak7r/8IHQYqOxomacNDScFICIiIiIincWGhoiIiIiIdBYbGiIiIiIi0llsaIiIiIiISGexoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiIiIiEhnsaEhIiIiIiKdxYaGiIiIiIh0FhsaIiIiIiLSWWxoiIiIiIhIZ7GhISIiIiIincWGhoiIiIiIdBYbGiIiIiIi0llsaIiIiIiISGexoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiIiIiEhnsaEhIiIiIiKdxYaGiIiIiIh0FhsaIiIiIiLSWWxoiIiIiIhIZ7GhISIiIiIincWGhoiIiIiIdBYbGiIiIiIi0llZamjevHkDb29v1KpVCw0aNMDChQuRmJgIAAgPD0e/fv1QvXp1tG7dGhcvXsyVgImIiIiIiD7LdEMjl8vh7e2N+Ph47Ny5E8uXL8cff/yBFStWQC6XY8SIEbCzs8OBAwfQoUMHjBw5Ei9fvszN2ImIiIiIKJ8zyOyKjx8/RmBgIP755x/Y2dkBALy9vbFo0SJ89913CA8Px549e2BqaorSpUvj8uXLOHDgAEaNGpVrwRMRERERUf6W6SM0hQoVwubNmxXNzGexsbG4ffs2KlWqBFNTU8VyNzc3BAYGaixQIiIiIiKir2X6CI2lpSUaNGig+F0mkyEgIAB16tRBZGQk7O3tlda3tbXF69evsxyQSJTlu2jc5xi0IRZto9e5sSsndARKMehLjvmaybsYsptjvXxuiPSBNvyNAbQnDiI1Mt3QfM3Pzw8PHjzA/v37sXXrVhgaGirdbmhoiKSkpCxv19bWIrshaZw2xaJt9C03cpkUos6bhQ4DQGos1tZmQoehcXzN5B59fc0Q5Wfa9DcGSI2HSFtlq6Hx8/PDtm3bsHz5cpQrVw5GRkZ49+6d0jpJSUkwNjbO8rajoz9CLs9OVJojEqV++NKGWLSNPuZGIhHD2toMfqcfIvxtnKCxONmYYkKLCoiJ+QSpVCZoLJrC10zu0sRr5vNzRETaQySWaMXfGODL3xkibZXlhmbevHnYvXs3/Pz80KJFCwCAg4MDQkJClNaLiopKNwwtM+RyaM2HHm2KRdvoY27+DIrE/ZcfBI2hsqOlomjoW375mskd+vyaIcrvtOFvDKD8d4ZIG2XpOjRr1qzBnj17sGzZMrRp00axvFq1arh//z4SEhIUy27cuIFq1appLlIiIiIiIqKvZLqhCQ0Nxbp16zB48GC4ubkhMjJS8VOrVi0UKVIEU6ZMQXBwMDZu3Ig7d+6gS5cuuRk7ERERERHlc5kecnb+/HlIpVKsX78e69evV7otKCgI69atw7Rp0+Dl5QVnZ2esXbsWjo6OGg+YiIiIiIjos0w3NEOGDMGQIUPU3u7s7IyAgACNBEVERERERJQZWTqHhoiIiIiISJuwoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiEjnJCYmYurUqXB3d4eHhwf8/f3VrhsUFIQePXrAxcUF7dq1w5UrV/IwUiIiym1saIiISOcsXrwY9+7dw7Zt2zBr1iysWbMGp06dSrfex48fMWDAAJQpUwbHjh1Ds2bNMHLkSERHRwsQNRER5QY2NEREpFPi4uKwb98+TJs2DZUrV0azZs0waNAg7Ny5M926hw4dgqmpKWbPng1nZ2d4e3vD2dkZ9+7dEyByIiLKDZm+Dg0REZE2ePjwIVJSUuDq6qpY5ubmhp9//hkymQxi8Zfv6q5du4YmTZpAIpEolh04cCBP4yUiotzFIzRERKRTIiMjYW1tDUNDQ8UyOzs7JCYm4t27d0rrhoeHw8bGBjNmzED9+vXRrVs33LhxI48jJiKi3MSGhoiIdEp8fLxSMwNA8XtSUpLS8ri4OGzcuBGFChXCpk2bULNmTQwcOBCvXr3K0j5Fopz9aKucPi7mJX/lBWBu1GFe1MuLx8UhZ0REpFOMjIzSNS6ffzc2NlZaLpFIULFiRXh7ewMAKlWqhH/++QdHjhzBjz/+mOl92tpa5DBq7WNtbSZ0CFqJeVGPuVGNeVEvr3LDhoaIiHSKg4MDYmJikJKSAgOD1DIWGRkJY2NjWFpaKq1bqFAhlCpVSmlZiRIlsnyEJjr6I+Ty7McskYi17kNPTMwnSKUyQWNgXlTTxrwAzI06zIt6OcmNSJT5L5M45IyIiHRKxYoVYWBggMDAQMWyGzduoGrVqkoTAgBA9erVERQUpLTs8ePHKFq0aJb2KZfn7Edb5fRxMS/5Ky8Ac6MO86JeXjwuNjRERKRTTExM0LFjR8yePRt37tzBuXPn4O/vjz59+gBIPVqTkJAAAOjevTuCgoKwevVqPH36FCtXrkR4eDg6dOgg5EMgIiINYkNDREQ6Z8qUKahcuTL69u2LOXPmYNSoUWjevDkAwMPDAydOnAAAFC1aFJs3b8Yff/yBtm3b4o8//sDGjRvh4OAgZPhERKRBPIeGiIh0jomJCRYtWoRFixalu+3rIWZubm44ePBgXoVGRER5jEdoiIiIiIhIZ7GhISIiIiIincWGhoiIiIiIdBYbGiIiIiIi0llsaIiIiIiISGexoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiIiIiEhnsaEhIiIiIiKdxYaGiIiIiIh0FhsaIiIiIiLSWWxoiIiIiIhIZ7GhISIiIiIincWGhoiIiIiIdBYbGiIiIiIi0llsaIiIiIiISGexoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiIiIiEhnsaEhIiIiIiKdxYaGiIiIiIh0FhsaIiIiIiLSWWxoiIiIiIhIZ7GhISIiIiIincWGhoiIiIiIdBYbGiIiIiIi0llsaIiIiIiISGexoSEiIiIiIp3FhoaIiIiIiHRWthuapKQktG3bFlevXlUsmz9/PsqXL6/0ExAQoJFAiYiIiIiIvmaQnTslJiZi3LhxCA4OVloeGhqKcePGoVOnTopl5ubmOYuQiIiIiIhIjSwfoQkJCUG3bt3w7NmzdLeFhoaiUqVKKFSokOLHxMREI4ESERERERF9LcsNzbVr11C7dm3s3btXaXlsbCzevHmDEiVKaCo2IiIiIiKib8rykLOePXuqXB4aGgqRSISff/4Zf/31FwoWLIj+/fsrDT8jIiIiIiLSpGydQ6PK48ePIRKJUKpUKfzwww/4999/MWPGDJibm6NZs2aZ3o5IpKmIsu9zDNoQi7ZhbvKOvuSYr5m8k90c87khIiJdprGGpmPHjmjcuDEKFiwIAKhQoQLCwsKwe/fuLDU0trYWmgopx7QpFm3D3OQua2szoUPQOL5mcpc+vmaIiIgyQ2MNjUgkUjQzn5UqVQpXrlzJ0naioz9CLtdUVNkjEqV++NKGWLSNPuZGIhFr3YfBmJhPkEplQoehEXzN5I2cvGY+P0dERES6SGMNzcqVK3Hr1i1s3bpVsezhw4coVapUlrYjl0NrPvRoUyzahrnJffqWX75mch/zS0RE+VG2L6z5tcaNG+Pff//Fli1b8OzZM+zatQuHDx/GgAEDNLULIiIiIiIiJRpraFxcXLBy5UocOXIEbdu2xY4dO7B06VK4urpqahdERERERERKcjTkLCgoSOn3pk2bomnTpjkKiIiIiIiIKLM0doSGiIiIiIgor7GhISIiIiIincWGhoiIiIiIdBYbGiIiIiIi0lkauw4NEekfsVgEsVikkW1JJDn7/kQmk0Mm44VWiIiISBkbGiJSSSwWwaagMUQSzfyZsLY2y9H95dIUvH2XwKaGiIiIlLChISKVxGJRajNzYBAQ9UjYYOzKQdR5M8RiERsaIiIiUsKGhoi+LeoR8Oq20FEQERERqcRJAYiIiIiISGexoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiIiIiEhnsaEhIiIiIiKdxYaGiIiIiIh0FhsaIiIiIiLSWWxoiIiIiIhIZ7GhISIiIiIincWGhoiIiIiIdBYbGiIi0jmJiYmYOnUq3N3d4eHhAX9//wzv8/z5c7i6uuLq1at5ECEREeUVA6EDICIiyqrFixfj3r172LZtG16+fIlJkybB0dERLVu2VHuf2bNnIy4uLg+jJCKivMCGhoiIdEpcXBz27duHTZs2oXLlyqhcuTKCg4Oxc+dOtQ3N0aNH8enTpzyOlIiI8gKHnBERkU55+PAhUlJS4Orqqljm5uaG27dvQyaTpVs/JiYGfn5+mDt3bl6GSUREeYRHaIiISKdERkbC2toahoaGimV2dnZITEzEu3fvYGNjo7S+r68vOnXqhLJly2Z7nyJRtu+q1fT1ceUU86Iec6Ma86JednOTlfuxoSEiIp0SHx+v1MwAUPyelJSktPzSpUu4ceMGjh8/nqN92tpa5Oj+2sja2kzoELQS86Iec6Ma86JeXuWGDQ0REekUIyOjdI3L59+NjY0VyxISEjBz5kzMmjVLaXl2REd/hFye/ftLJGKt+9ATE/MJUmn6IXp5iXlRTRvzAjA36jAv6uUkNyJR5r9MYkNDREQ6xcHBATExMUhJSYGBQWoZi4yMhLGxMSwtLRXr3blzB+Hh4fD29la6/+DBg9GxY8csnVMjlyNHDY220sfHpAnMi3rMjWrMi3p5kRs2NEREpFMqVqwIAwMDBAYGwt3dHQBw48YNVK1aFWLxl7luXFxccObMGaX7Nm/eHPPnz0f9+vXzNGYiIso9bGiI6NvsygkdgXbEQFrDxMQEHTt2xOzZs+Hj44OIiAj4+/tj4cKFAFKP1lhYWMDY2BjOzs7p7u/g4ABbW9u8DpuIiHIJGxoiUksuk0LUebPQYQBIjYXosylTpmD27Nno27cvzM3NMWrUKDRv3hwA4OHhgYULF8LLy0vgKImIKC+woSEitURiCfxOP0T4W2Gvru5kY4oJLSoIGgNpFxMTEyxatAiLFi1Kd1tQUJDa+33rNiIi0k1saIjom/4MisT9lx8EjaGyoyUbGiIiIlJJnPEqRERERERE2okNDRERERER6Sw2NEREREREpLPY0BARERERkc5iQ0NERERERDqLDQ0REREREeksNjRERERERKSz2NAQEREREZHOYkNDREREREQ6iw0NERERERHpLDY0RERERESks9jQEBERERGRzmJDQ0REREREOosNDRERERER6Sw2NEREREREpLOy3dAkJSWhbdu2uHr1qmJZeHg4+vXrh+rVq6N169a4ePGiRoIkIiIiIiJSJVsNTWJiIsaOHYvg4GDFMrlcjhEjRsDOzg4HDhxAhw4dMHLkSLx8+VJjwRIREREREaVlkNU7hISEYNy4cZDL5UrLr1y5gvDwcOzZswempqYoXbo0Ll++jAMHDmDUqFEaC5iIiIiIiOizLB+huXbtGmrXro29e/cqLb99+zYqVaoEU1NTxTI3NzcEBgbmOEgiIiIiIiJVsnyEpmfPniqXR0ZGwt7eXmmZra0tXr9+nb3IiIiIiIiIMpDlhkad+Ph4GBoaKi0zNDREUlJSlrYjEmkqouz7HIM2xKJtmJu8wxyrxryol93cMKdERKTLNNbQGBkZ4d27d0rLkpKSYGxsnKXt2NpaaCqkHNOmWLQNc5O7rK3NhA5BKzEv6jE3RESUX2msoXFwcEBISIjSsqioqHTD0DISHf0RX803kOdEotQP7NoQi7bRx9xIJGKt+zAYE/MJUqlM0BiYF/X0LTef39dERES6SGMNTbVq1bBx40YkJCQojsrcuHEDbm5uWdqOXA6t+aCsTbFoG+Ym9zG/qjEv6jE3RESUH2X7wppfq1WrFooUKYIpU6YgODgYGzduxJ07d9ClSxdN7YKIiIiIiEiJxhoaiUSCdevWITIyEl5eXjh69CjWrl0LR0dHTe2CiIiIiIhISY6GnAUFBSn97uzsjICAgBwFRERERERElFkaO0JDRERERESU19jQEBERERGRzmJDQ0REREREOosNDRERERER6Sw2NEREREREpLPY0BARERERkc5iQ0NERERERDqLDQ0REREREeksNjRERERERKSz2NAQEREREZHOYkNDREREREQ6iw0NERERERHpLDY0RERERESks9jQEBERERGRzmJDQ0REREREOosNDRERERER6Sw2NEREREREpLPY0BARERERkc5iQ0NERERERDqLDQ0REREREeksNjRERERERKSz2NAQEREREZHOYkNDREREREQ6iw0NERERERHpLDY0RERERESks9jQEBERERGRzmJDQ0REREREOosNDRERERER6Sw2NEREREREpLPY0BARERERkc5iQ0NERERERDqLDQ0REREREeksNjRERERERKSz2NAQEZFOSUxMxNSpU+Hu7g4PDw/4+/urXffPP/9Ehw4d4Orqinbt2uH8+fN5GCkREeUFNjRERKRTFi9ejHv37mHbtm2YNWsW1qxZg1OnTqVb7+HDhxg5ciQ6d+6Mw4cPo3v37hg9ejQePnwoQNRERJRbDIQOgIiIKLPi4uKwb98+bNq0CZUrV0blypURHByMnTt3omXLlkrrHj9+HHXq1EGfPn0AAM7Ozvj9999x8uRJVKhQQYjwiYgoF7ChISIinfHw4UOkpKTA1dVVsczNzQ0///wzZDIZxOIvAw86deqE5OTkdNv4+PFjnsRKRER5gw0NERHpjMjISFhbW8PQ0FCxzM7ODomJiXj37h1sbGwUy0uXLq103+DgYFy+fBndu3fXeFwymQxSaco3bhchIUECOxMRilpINL7/rLAzESEhIQFJSYmQSuWCxvI5LzC2B8ydBI0FxvaAluVFG14vgHa+ZrQhN8yLijjkQEyCLM/3y4aGiIh0Rnx8vFIzA0Dxe1JSktr7vX37FqNGjUKNGjXQpEmTLO9XJFK9XC6X4/37t4iPj81wG1FRYvSraorkFJMs71+TChiIEBr6GDJZ3n/oUCUqSgyUHw6UUf/85QmJIaBledGG1wugna8ZbcgN85KeHHKkyOS4H5UCuTy1yVP39zMjWbkfGxoiItIZRkZG6RqXz78bGxurvE9UVBT69+8PuVyOVatWKQ1LyyxbWwuVy1++fInExDhYWdnAyMgIwLcr8CdRHBJShP3wY2wghp2tqaAxpCOOB1IShI3BwBiwKSxsDF/RhtcLoJ2vGW3IDfOSnkguh1iejDpGH/Hq1Ss4OjrmyX7Z0BARkc5wcHBATEwMUlJSYGCQWsIiIyNhbGwMS0vLdOu/efNGMSnA9u3blYakZUV09EfIvxpRIpNJER39Fubm1jAxUd3wpGVgIAbEyZCLpNmKQWPEEhgaGiFFCz4oA//Pi0SUOlZFSBIRoG150YbXC6CdrxltyA3zko5cBMhQAKamYrx79w5GRuaQy7N3iEYkUv9l0tc4bTMREemMihUrwsDAAIGBgYplN27cQNWqVdMdeYmLi8OgQYMgFosREBAABweHbO9XLk//k5KS+qHB0NAo29slItJHcomh4u+kqr+fmf3JLDY0RESkM0xMTNCxY0fMnj0bd+7cwblz5+Dv7684ChMZGYmEhNShSxs2bMCzZ8+waNEixW2RkZEan+VMlN0B4kREei9vjrxyyBkREemUKVOmYPbs2ejbty/Mzc0xatQoNG/eHADg4eGBhQsXwsvLC6dPn0ZCQgK6du2qdP9OnTrB19dXiNCJiCgXsKEhIiKdYmJigkWLFimOvKQVFBSk+P+pU6fyMiwlXbq0w+vXrwCkHsExNjZGmTLl0NKrN8pWdRMsLqEtWDAbADBt2uwM1+04dCIGfd8ebT09cjcoFbp0aYcBA4agdet2eb7vFy+e49mzp2jQoEGe7zv8SQiSEhNQukIVjWzPw8Mdq1b9jBo13DNcNzg4CAkJCahatVq29jVlWHe069YP9Rq3THfbh/cxeHT/NtzrNcrWtvVBVMRrTB3eAz7rdsPOPnuTX1w4cxRnj/6K9+/ewqlEGXzffwScS5fXcKTZwyFnREREucDbexyOHDmFQ4dOYMOGX+DiUg1L503Cgzs3hA5NJ/yyeAaa1q8ldBh5ztd3Hh48uCfIvtf5zcCbV88F2ffUqRMQHv4sV7Z9MGAj7t68kivb1hU2toXgt+kAbGwLZev+t67+jT3+q9Gmax9MX7wBRZycsXzeBHx491bDkWYPGxoiIqJcYG5uDltbO9jZFUKpUmUwatQY1P2uCX7dulbo0HSCtZUFjI0MM15Rz8izcia05ncu4K5zb9+C5lRLiCUSWFnbQCzJ3kU3/zp7HHUbtkDdhs3h4OiEXoPGwMjYBLevX9ZwpNmj0SFnZ8+exciRI5WWtWjRAqtWrdLkboiIiHRS4+bt8M/UUYh49QL2RYriU+xHHAzYgMB/LyE5OQnV3Ouh+4BRMDNPP1Xp9JE/oGGL9mjWrpti2eyxA9C0TWd4NGmD0KD72L/jZ4Q/CYGFVUG07NADDVu0BwD8sib1nKH+Iycr7qtuONDkyWNRrFhxjBw5BgCwaNF8XLt2BQcOHAcAXLt2Bb6+83Dw4G/48OED1q9fjYsXLyApKREeHt9h9OgJsLS0xM2b1+HjMwd16tTD2bOn0Lt3f6X9vHv3DsOGDYCLSzVMH9oj3RV80g45GzZjMWpVq4TAB48Q+OAR7G1tMG5QT9RxVT006vZ/wVi7Yz+CHj+DSAS4Vi6PacP7wc6moMr1D53+E1sPnMDHuAT07Nlb6Ta5XI5t27bg0KH9SExMgIuLK8aOnYTChQsr8jh58nRs3/4LYmJi4OHxHSZMmApT09Trkxw7dhi7d+/Ay5cvYGZmBk/P5hgzZjwkEoliCN6jR0GIjo5CzZq1ERh4U/HTe9hEjB3yPUZO8cHuzSsR+/E96nu2RoOmbbF1jS9evXiG8pWrY/BPM2Bskrq/C2eO4tTh3Yj98A7Opcqj+0BvFHMuBSB1WFaLDt1x+cIZhIeFoHDR4ug7bAKcS5fHkpljEB35BlvXLkLQ/UCl1woAHD9+FEeOHETBgja4efNfjBs3Gc2atfxmbtKKjIzAypVLcP36v0hMTEDJkqUwZswEuLhUx8iRQ/D69Sv4+MzBrVs3MG3abDx+HILly/1w//49ODg4oGvXHvDy+nI+3O+njuDwvh2I/xSLFh26q3xeAeDo3q24/Ofp1DzfD8TC9Xs09r5r1rI97t69jVWrViA4OAjW1jbo1asPOnbsAkD1EMu077suXdrB07MZTp/+DTY2tvD336k0yciJE8dw4sQx1KxZG7t3B8DQ0BDDh3vDyMgIa9aswKdPsWjf3gvDh3sDACIiIrDKdyHu37mBpMREFHEqgR4DR6FMharphpx9KwdB9wKxda0vqrjWxtWL59G6Uy+08uoJq4Jfpr0XS1KnrE6I/6Q293lJo0doQkJC0LhxY1y8eFHxM3/+fE3ugoiISGc5OpUAALx8HgYAWL94BsLDQjFqig9+muGH18+fYusa1RMW1PTwxI3Lfyl+f/X8KSJePodr7e/w6vlTLJszFuUqumD64g1o160v9m1fj1tX/85yjLVq1cWtW1+Gxd26dRMREW8QEfEGAPDvv1dRq1YdAMDUqeMREhKExYuXY/nytQgLC4OPz2zFfV+/foWkpCRs2RKApk2/nNuQkJCASZN+QokSJTF16sxMzRS3df9vaOZRCztXzEW5kk5YuH6byiu0x36Kw7gFK1G7emXsXjkXK2eOxfNXEdh28ITK7V65dQ/L/Xfjx97fY/PmrXj48IHi/CcAOHBgL86cOYlZs+Zjw4atsLGxwdixI5CSkqJYZ9Om9RgzZgJWr/4ZoaHB8PPz+X/ubmDFCj8MHToCu3cfxPjxU/Dbb0dw8eIFxX1Pnz6BwYOHwc9vBcaNm4wqVVzQvfsP8PVdoljn1KHdGDFpAXr/OB6/nziI9YtnoFOvwRgzYzEeP3qAv8/9BgC4ff0Sjv26DT0GeGO63yaUreiCpbN/wqfYLzP7Hf11K1p26olZS7fAxNQMe/xXAwCGTZgLa9tC+L7/CHzfX/nL6c/u3r2DkiVLYcOGrahVq26mcvPZ3LkzIJXKsGHDL/D334lCheyxdGnqa93Hxw/29g7w9h6H0aPHIzExAePHj4aLS3Vs27YbI0aMwdatm3HqVOrjvHLlEgI2r0bHHgMx2WcNwkIeIjryjcqYm7f/Hu71GsG9XiNM9f0ZgObedy/CwzBy5I+oXr0G/P0DMGDAEKxZswIXLvyhcluqnD17CsuWrcXUqbNVvg/u37+Lly9fYPPm7WjatDmWLFmIffv2YNGi5Rg58ifs2rUdjx49BADMnj0dMpkMk3zWYrrfRljbFsLOjStU7jejHERHvkFychKmL9qAmh6eKFepGhwcnRS3X/3rLKIiXsHFvV6mH2tu0mhDExoainLlyqFQoUKKH1UXOiMiIsqPTM3MAACJ8XF4HhaKRw9uY6D3VJQoUwEly1bEgNHTcPv6Jbx+kf5cgloeTfAk+AFioiMBANcv/YlK1dxhZm6Bv88dh1OJsujUazAKFy2Oeo1awrNVJ5w+sifLMdaqVQchIY8QGxuL6OgofPjwHpUqVcHdu7dT93v9KmrXrouQkGAEBt7EjBnzULFiZVSqVAUzZ87DxYt/4dmzMMX2evXqi2LFnBTf2stkUsyaNQWGhoaYM2chJJkcAlPfrSraenqgWGF79OvSFm+i3iL63ft06yUmJaN/13YY0LUdHB0KoVrFsmhc1w1Pwl+o3O7Rc3+hxXd10MqzAUqVKo0pU2YqXVto164dGD58NGrUcIezcwlMmDAVHz58wJUrl9I8xn6oV88DFSpUwpgxE/D772cRGxsLExNTTJ48Aw0beqJIEUc0btwUZcuWx5MnjxX3rVChEjw8vkPFipVhbm4OAwMDmJiYwMrKSrFOmy69UaxEadTyaAILK2vU9PBEpWruKFOhKiq61MDrl6mvl9OH96C1Vy+4uNeFQ5Fi6NBjAGwLOeDqX2cV26rXqCVca3nAwdEJzdp1Q1ho6kQaZhaWEIvFMDE1h6mZucpciUQi9O07ACVKlETBggUzlRsg9ShXgwaN8NNPE+DsXAIlS5aCl1c3RR4sLa0gFothbm4Oc3NznD17CgULWmPw4GFwcioOD4/v0KdPf/z66+7U5+zoYdRt2BR1GzaHo1NJ9B0xEQUMVQ9PNDYxQQFDIxQwNIKFVUGNvu/+PHMc5cqVx9ChI1C8eAm0atUWnTt/j127tquMRZXmzVuhdOkyKFu2nMrbZTIZxoyZgGLFnNC+vRcSEhIwcOBQlClTFm3bdoC1tQ2ePg2DXC5Hw4aN0GfIaBQpWhyOTiXQuGUHxZcnaWU2By069oB9kaKwLaR8Da+7N69i67rF+L7fCDgUKZbpx5qbNDrkLDQ0FPXqaUenRkREpG3i4+IAAMamZnj14ilMzcyVvvUsUrQ4TM0t8OrFMxQuWlzpvkWKOaOocyncuHwBTdt2wfVLf6C1Vy8AwKvnz1CybEWl9UuVr4wLZ45mOcZixZzg4FAYt2/fQkJCAqpUcYGTU3HcuRMIN7daePLkMdzda+PatcswN7dA8eLOivs6O5eAhYUlwsLCYG6e+qG4cOEiStv//fdzSElJQePGTWGo5kOoKk5FvnyoMjM1AfDl4qZp2VpboU3jeth97AyCn4TjyfOXCA57DpcKZVRu98nzV+jUvJHidyurgnB0LAog9eKsERFvMGvWFKULtyYmJiqdwO7i8mVmrgoVKkIqlSI8/CkqVqwMIyMjbNmyAU+ehCI0NATPn4crjnABQJEiyvlRpZCDo+L/hoaGsC30ZUhXAUMjpCQnAwBevXiKAwEbcGjXJsXtyUlJSif62xcpqvi/iYkZpCqOpqhjbW0DIyNjAJnPDZDaCHXq1AXnzp3GvXt38PRpGIKCHqo8wgYAYWFhCA0NRrNmX2Z6k0pliub3yZPH8Gj6ZQY6cwsr2NlnnEcAGn3fvXz+FJUrKw97rFrVBUeOHMhULEDGz7+NjS1MTFJf70ZGqY122veUkZERkpOTIRKJ4OXVFQH7j+C/B3fx+sUzPH38CHIVOc4oB6amqe9du0Lphw4mxMdh6xpfNGvbFY1adsz048xtGmto5HI5njx5gosXL2LDhg2QSqVo2bIlvL29s/QHi4iISF+Fh4UCAIo6lcTzp6Eq15HJZJDJ0n9QB4Ba9Zvg5pW/ULl6TURFvEa1mqlTGqv6dloukyk+MIpEIqUTo1UNCVLaT606uHXrBpKSEuHiUg1OTs7Ytm0zbtz4FxUrVoaFhYXa2i6TSZXi//wh7DN7eweMHz8F48d7499/r6Ju3brfjOUzA4P0H1lUneodER2D/hPmoUJpZ9SqVgkdmn2Hf27cwb1Hj1Ws/Xk7ylsqUCB1X1Jp6uOYN2+RUuMGQGkEikTyJTap9HPOxbh69TKmTBmPli1bo06deujff4himNVnaY8GqfP1idxpG4i0ZFIpuvUbgYpfTQ1u/P/zeQDAwKBAhvtTJ+1zntncAKmv6Z9+GoGPHz+iSZNmqF//OyQnJ2PatAkq9yOVSuHmVhNjx05SG8vXJ/pn9nEVKKDudZuN952KbUmlsjSvgYzfdxk9/6qOYKp6/mUyGUaPHoaomPdwq9sILu51IU1JwXq/menWzWwOVP1deRz8HxITE9CuW79vxp3XNDbk7OXLl4iPj4ehoSFWrFiBSZMm4dixY1i8eHGWtiMSacePNsWibT/6lhttxbyoJnRe9DU3lDcunDsB51LlYOdQBA5FiyPuU6zSEI+X4WFIiPuEwo7FVd6/pocnHgc/wOULZ1C1Rh0Y//+b28KOTngS/EBp3dBH91H4/9/ASgwMkBAf92U/L1UPv/qsVq26CAy8ibt3b6NaNVe4uFRHaGgI/vzzPGrXTm1AihcvgdjYj0rDy548eYxPnz6l+4CblotLddSsWRvt2nXCihV+SElJ/mYsWXXh6k1YWphh6bTR+L5tM1SvVA4v30SqncGrlFNR/BfyRPF7XNwnPH+eekTDwsIC1tY2ePs2CsWKOSmOXq1btwrPnj1V3Cck5JHi/w8fPkCBAgVQvLgzjh07hDZt2mPixGlo27YjnJ1L4MWLb0+LnJnzidRxcHTCu+go2Bcpqvg5cTAAjx89yPjOqTvP9L4ymxsACAt7jMDAm1ixYh369BmAevU8EB0dBeBLY5L2cRcv7ozw8GcoUsRRse379+9i//69AIBSpUrjSchDxfoJ8XGIeK3+NZ1225p83xUp6oR79+4qrXv//h3F69/AwABxcV9Oms/ofZcTYWGPcevWTUyeuxytO/8AF7e6eB8TDSB985edHHwmFongXq+R2iF+QtHYEZqiRYvi6tWrsLKygkgkQsWKFSGTyTBhwgRMmTIl02NkbW3TzzAhFG2KRdswN7nL2tpM6BC0EvOiHnOjfT6fgyKXA+/fv8OJE0dw5eJ5jJnhByB1iEcV19rwX70QPQeNhlwux67NK1G2kguKFi+pcpu2hRxQsmxFnP9tPwZ4T1Usb9iiA86fOIBDOzehXuOWCH10H3+eOoIeA1NnPypRugL2bVuH/+7cQCE7OxzasR4FCqj/RtvNzR2zZ0+FRCJBhQqVUKBAARQr5oQ//zyPXr36AEgdXlanTj3MmzcLY8dOhFwux7Jli1G9eg2UKlUGN29e/2Z+hgwZhu7dvbBrVwD6tNLccHUrC3O8iYzGv3cewNG+EM5f+hd/XLmBiqVV57Rra0+Mmr0U1aueR3UPQ2zatAGJiQmK27//vic2blyPggVt4OxcAlu3bsbdu7dRvPgMxTqbN/+MwoWLwNDQCCtXLkHLlm1hamoKS0sr3Lt3G6GhIRCJRAgI2Iro6CgkJSWpjd/ExATPn4fj7dusX9+jWbuu2L5+Cewdi6F0+cr4++xxXL/0J1r9f4hURoyMjPH6xTN8+vgBZhYZnwOdmdwAgLm5BcRiMc6fPw0Pj4b477/78PffAABISkqCkZERjI2N8fRpGD58eI8WLVrB338j/Px80KNHb7x8+RwrVixB9+6pj6Nr1+8xcuQwlCpfFWUqueD4r9uQlJSoNk5DI2O8fPYEMdGRGn3fNWndCZN/O4ANG9aiVau2uH//Lg4e3IeffpoIAKhYsTJWr16O69evwcbGBqtWLfvm+y4nPuf4yt/nUalGHYSFBOHor1sBQDEk8bOMchB0L1DtfkqVq4wixUrkymPICY2eQ1OwYEGl30uXLo3ExES8f/8eNjY2qu/0lejoj0JOgw4g9QsKW1sLrYhF2+hjbiQSsdZ9GIyJ+aQ4ZC0U5kU9fcvN5/c1adaqVUuxatVSiEQiFCxojfLlK2DKvBUoXrayYp3+o6Zgz5ZVWDZnHMRiMarVrI9u/UZ8c7s16zXGi6eP4VLjy1At20IOGDnZB/t3bMDZY/tgY2ePrn2Hob5nKwBAnYbNEBp0D+sWT4epmQVGDBv+zYsYmpmZo0KFShCJRIoPYC4urnj//j3Kl/9yrs706XOxfPlijB49HGKxGA0aNMSoUWMzlR9LSysMHDgUP/+8Gi3cy8OhoEmm7peRJvVq4taDR5jqtx4iEVCxTEl49/0em/YeQVJyMgy/+kBZvVI5TB/ZHxt2H8HKLTvRpk0HlCnz5QTtHj16Iy4uDn5+C/Dp0ydUqFAJy5atVhpW1apVWyxYMBuxsR/RtGkLeHuPAwAMGDAUPj6zMXRoP5iZmaNu3fro2LELgoOD1Mbftm1HLFw4F2PGjMSP4+dk6bHXrO+JD+9icHSPPz68j4FjsRIYOXlBpk/cbtSiAw4EbMCbl88xbOLcDNfPTG6A1GGG48ZNxtatm7Fhw1o4OTlj9OjxmD9/FoKDg1Cligs6deqK9etXITz8GXx8/LBkySqsWrUU/fv3hKWlFTp37qaY+rt69RoY7D0Z+wI24+O2tajv2RpOJUqrjbPOd82wbvEMzB0/CMv8D2vsfWdXyAFLlqzA6tUrsGdPABwcCmPkyJ/Qpk3qdOktWrTG3bu3MWXKOJibW2DQoB/x/Hl4hnnNDnt7B0ycOAUbNm3Erzs2wMHRCd0HjIL/6oV49iQYVta2SutnJwcAcP3SH9i6dhE27s/8TG55QSTX0NWG/v77b4wfPx5//vmn4uSlY8eOYf78+bh69WqmtxMVJfwHZZEIsLOz0IpYtI0+5sbAIPXDaZtVf+P+yw+CxlLZ0RK/eTdATMwnpKQI+8GdeVFP33Lz+X1N6qn6m5ecnITo6FewtS2idkx6WgYGYgS/iUV8supx+pl1aNdmvIuORP9RU7J1f5MCEpR1MNeK9xKQmhdEBgHJcRmvnJsKmAKFymc5L+qu55NTmnq9aII2vmbyOjeq3ne6lJeIVy8wfdQPWLxxHwra2OV6LCYSGczkH2BnVxhicfaOSmWlNmnsHBpXV1cYGRlh+vTpePz4MS5cuIDFixdj0KBBmtoFERFRvvU8LBSX/jyFC6ePwKNpW6HDIcoX9OF99+5tFO4HXoOBQYFMDSXURRobcmZubo4tW7bAx8cHnTt3hpmZGbp3786GhoiISAPCQoOwx381GrXsgLIVqwodDlG+oA/vu99PHMSfZ46iTZfemTqarIs0eg5N2bJl8csvv2hyk0RERATAo0lreDRpLXQY9JWLF789+QHpNn1433n9MARePwwROoxcpbEhZ0RERERERHmNDQ0REREREeksNjRERERERKSz2NAQEREREZHOYkNDREREREQ6S6OznJF2E4tFEItFGtmWRJLzXlgmk0Mm05OrcxIRERGRINjQ5BNisQg2BY0hkmjmKbe2NsvxNuTSFLx9l8CmhoiI9IamvjyUSMQwNTLI8AvEZKkMiSquDK/OkC6NUcvDE4PGzFBafumPUzj261YsXL8nW/ESCYkNTT4hFotSm5kDg4CoR0KHA9iVg6jzZojFIjY0RESkF8RiEawKmsJAA6MYAKCKpUmG6yRLZbgRHJmlpubaxd/h0aQNKlStkZPwiLQGG5r8JuoR8Oq20FEQERHpHbFYBAOJGKP33EJIRGyu76+MvTlWdndFAYk4Sw2NrX1h7Nq8EjOXbIZBgQK5GCFR3mBDQ0RERKRBIRGxuP/yg9BhqNWx+wDs3LQCp4/uRZvOP6hcJyY6Er9uXYv/7t6EWCRGq5atMGyYNwwNDfM4WqKMcZYzIiIionykoE0htOvWDycOBCDqzat0t6ckJ2Pp7LFITEzA+DkrMHLibFy6dBHr1q0SIFqijLGhISIiIspnmrT2gkORotjjvzrdbfcCr+Hd2ygM9J6GYs6lUNnFDePHT8KhQ/sQFxcnQLRE38aGhoiIiCifEUsk6DX4J9y9eQW3rl1Uuu3182dwKFIMZuYWimUuLtUglUrx4kV4XodKlCE2NERERET5UOkKVVDfsxX2+q9BYkK8YnkBw/QTBUilMqV/ibQJGxoiIiKifMrrhyFITIzHmWO/KpY5OBbHm1fP8enjl4kN7t27A4lEgqJFiwkRJtE3saEhIiIiyqfMLazQ+YchiI54rVhWycUNdg5FsGW1D54/fYwHd25i6dLFaNasJSwsLL6xNSJhcNpmIiIiIg0qY2+uU/up79ka//x+Eu/eRgFIPb9m5KQF2LVlJRZOGQ4TE1O0btUagwcP18j+iDSNDQ0RERGRBshkcqRIZVjZ3TXP9pkslSE5C+e1bNz/R7plIpEIkxasUVpm51AE3lN9AQAmBSQo62COlBSeP0PaiQ0NERERkQbIZHK8fxcHsViU421JJGI8i45DYgZNRLJUhsRkaY73R6TL2NAQERERaYhMJodMJtfItuISUxDPZoUoQ5wUgIiIiIiIdBYbGiIiIiIi0llsaIiIiIiISGexoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiIiI8oFNy+dh0tBuSExMSHfb8rnjsWjaSMjlmplymigvsaEhIiIi0hCxWAQDA3GOfyQSMUyNDGBuXOCbP0YFJJmOrWvfYYiP+4STB3cqLb955S88enAbPwwdB5Eo5xcFJcprvLAmERERkQaIxSLYFDSGSKKZj1dVLE0yXEcqTcG/wdFIzMQFOAva2KFdt744vHsLPDxbw86hCJISE7Fv2zo0a9cNRYuX1ETYRHmODQ0RERGRBojFotRm5sAgIOpR7u/QrhwknTejgEScqYYGADxbd8Y/f5zC/h0/48fxc3Dm6B6IxBK07dIHb6MisGvzSvx35wYsrQqiXuNWaNP5B6CABCkpyVi0aCH++usPJCUloUYNd4wfPwWFCtnn8oMkyhgbGiIiIiJNinoEvLotdBQqSSQS9Bw0Gktn/YRb1y7i9JG9+HH8bBQwNMR6v5lwKlEaM/w24n3MWwRsXAaRSISuPftj3769uHXrJpYtWwtjY2MsWbIQq1Ytw7x5vkI/JCKeQ0NERESUn5SrVA21GjTFhqWz4eJWF5Wr18LDuzfxNvINfhg6DoWLFkf5KtXRpc+POP/bAQDAq1evYGRkhCJFisDZuQSmTZuNH37oJ+wDIfo/HqEhIiIiymdae/XC1b/Oom3XPgCAVy+eITb2A0b3aaNYRyaTIzkpER8/vEfHjl44c+YU2rdvAVdXN3z3XWO0bt1WqPCJlLChISIiIspnChgaKf0rk0pR2NEJIyYtSLeuqZkZSjkWxf79x3Dp0kVcuvQ3NmxYg7NnT2Ht2k2cGY0Ex4aGiIiIKJ9zcHTC26gImFtawdTMHADw4PZ1XPrjFEaMnY4TJ45DIjFAkybN4enZFPfu3cWPP/ZHTMxb2NjYChw95Xc8h4aIiIgon6tczR22hRzgv8oHz58+RvCDO9ixYSkMjYwhlkgQGxuLlSuX4vr1a3j58gXOnj0Je3sHWFkVFDp0Ih6hISIiItIou3I6tx+xRIIRkxdg95ZVWDhlOIyNTeBWtyG69BkGAOjSpRtev36NefNm4uPHDyhfviJ8fZdCIsn8hT2JcgsbGiIiIiINkMnkkEtTIOq8Oc/2KZWmIFkqy/L97OwLY+P+P5SWFXJwhPdU1dMwi8ViDB/ujeHDvbMVJ1FuYkNDREREpAEymRxv3yVALM75SfISiRjPouOQmPLtZiVZKsv0RTWJ9BUbGiIiIiINkcnkkMnkGtlWXGIK4tmsEGVILxsasViksW9HckqTf9iIiIiIiEiZ3jU0YrEIVgVNYaCBZsTa2izH20iRyvD+XRybGiIiIiKiXKCXDY2BRIzRe24hJCJW0FjK2JtjZXdXiMUiNjRERERERLlA7xqaz0IiYnH/5QehwyAiIj0nl/MLKyIi1XJ+Ckhm8MKaRERE2fD5+htJSYkCR0JEpF1E0iSIRICBQd5cp0hvj9AQERHlJrFYAhMTc8TGxgAADA2NIBKp/zZSJhMBsmSI5Fm/ZohGyWRISkqEVKodR5ZkMhEglQOyvPkmVy2pHNC2vGjD6yU1GO17zWhDbpiXdERyOcTyZMQnfkRRJweIxRLIZLkfDxsaIiKibLK0tAEARVPzLWKxGJ8+JiA5RdgPP1IDEaLkxnnyISMzxGIx8PE9IE0SNhBJIiB7rVV50YbXC6CdrxltyA3zkp4ccqTI5LgflYIGtYrg3bu4PNmvRhuaxMREzJkzB2fOnIGxsTEGDBiAAQMGaHIXRESUz2Wl1jx48ACzZs3Co0ePUKZMGcyZMwdVqlTRWCwikQhWVrawsLCGVJqidj2JRAQrK1Ms3nFdKyas2dC7Et6/jxP8m+XPecHemUDkQ0FjQaEKwPcBWpUXbXi9ANr5mtGG3DAv6cnkQEyCDKXtLTDxG0esNU2jDc3ixYtx7949bNu2DS9fvsSkSZPg6OiIli1banI3RESUj2W21sTFxWHIkCFo164dfH19sXv3bgwdOhRnz56FqampRmMSi8UQiw3V3m5gIIaxsTGi4uV48VHYCyUWtJDD2NgY8fFSpGRwFfrc9jkvSIgAYsMFjQUWNoCW5UUbXi+Adr5mtCE3zIv20NikAHFxcdi3bx+mTZuGypUro1mzZhg0aBB27typqV0QEVE+l5Vac+LECRgZGWHixIkoXbo0pk2bBjMzM5w6dUqAyImIKLdorKF5+PAhUlJS4Orqqljm5uaG27dva83YQiIi0m1ZqTW3b9+Gm5ub4kR9kUiEGjVqIDAwMC9DJiKiXKaxhiYyMhLW1tYwNPxyyN3Ozg6JiYl49+6dpnZDRET5WFZqTWRkJOzt7ZWW2dra4vXr13kRKhER5RGNnUMTHx+vVGAAKH5PSsr8zCViMaCJa5Q1r+SAykUscr6hHChq/WWMtlhbrvhT2AUooNmx49liW0bxX23JTWVHS5gY5s186eqUsjNT/J95+UIb8wLoT27y8LzNHMtKrVG3blZq0mesTblMG2oT65Ja2vg3WBtyw7yol9e1SWMNjZGRUboi8fl3Y2PjTG/HxkYzf+hHNy2nke1ogrW1WcYr5ZUOa4SOQIk25WZxl2pCh6DAvKimTXkBmBshZKXWqFs3KzXpM9amXKZFtUmb8qJNf2MA5kYd5kW9vMqNxvpJBwcHxMTEICXly7SVkZGRMDY2hqWlpaZ2Q0RE+VhWao2DgwOioqKUlkVFRaUbhkZERLpNYw1NxYoVYWBgoHSy5Y0bN1C1atXUi2YRERHlUFZqTbVq1XDr1i3I/z9WTC6X4+bNm6hWTbu+wSQiopzRWKdhYmKCjh07Yvbs2bhz5w7OnTsHf39/9OnTR1O7ICKifC6jWhMZGYmEhAQAQMuWLfHhwwcsWLAAISEhWLBgAeLj49GqVSshHwIREWmYSC7XxGmOqeLj4zF79mycOXMG5ubmGDhwIPr166epzRMREX2z1pQvXx4LFy6El5cXAODOnTuYNWsWQkNDUb58ecyZMweVKlUSMHoiItI0jTY0REREREREeYkntxARERERkc5iQ0NERERERDqLDQ0REREREeksNjRERERERKSz2NAQEREREZHOYkNDlE1xcXFCh6CVrl+/jqSkJKHD0Hrv37+HTCYDJ5okIk1hXVKPtSlzdLU2saGhTAsODsbZs2cRFxeH8PBwnXuxa1rbtm3x4MEDocPQOiNGjMDjx4+FDkMryeVyrF+/HrVr10bdunXx4sULTJgwATNnzmShJcoG1iVlrEvqsTappw+1yUDoALTN06dPce/ePSQnJ6e7rWPHjnkfkBZ4//49Ro8ejWvXrgEATp8+jQULFiA8PBwbN25E0aJFBY5QGGKxWOXrJL8rW7Ys7ty5gwoVKggditZZu3YtfvvtN/j6+uKnn34CAHTq1AkzZ87E4sWLMX36dIEjJG3EupQe65JqrEvqsTappw+1iRfWTGPz5s1YsmQJrKysYGZmpnSbSCTC+fPnBYpMWBMmTEBsbCwWLVqEhg0b4ujRozAzM8OECRNgaGiI9evXCx2iIObPn4+DBw+icePGKFq0KAwNDZVuHzlypECRCWvEiBH4/fffYWtri2LFiqXLy/bt2wWKTHhNmjSBr68vatasCVdXVxw9ehROTk64fv06Ro8ejX/++UfoEEnLsC6pxrqkGuuSeqxN6ulDbeIRmjT8/f0xYcIEDBw4UOhQtMrff/+NHTt2wNLSUrHMxsYGU6ZMQffu3QWMTFhBQUGoXLkyIiIiEBERoXSbSCQSKCrhVaxYERUrVhQ6DK0UHR0Ne3v7dMstLS059p1UYl1SjXVJNdYl9Vib1NOH2sSGJo3ExEQ0b95c6DC0UmJiYrplb9++hYFB/n0J7dixQ+gQtFLabwBjY2MhlUphZWUlYETao06dOtiyZQvmzp2rWBYbG4tly5ahdu3aAkZG2op1ST3WpfRYl9RjbVJPH2oTJwVIo127dti1a1e+P6nwa23btsWCBQsQHBwMkUiEuLg4XLlyBTNmzEDr1q2FDk9QDx48wLhx49CpUye0b99eaUx3frZt2zY0aNAANWvWRJ06dVC/fn2sWbNG6LAEN3v2bDx48AD169dHYmIihg8fjoYNG+LFixc6MUaZ8h7rkmqsS+qxLqnH2qSaPtQmnkOTxvjx43Hq1ClYW1ujWLFiKFCggNLt+XV8ZVJSEpYtW4adO3ciOTkZIpEIEokEXbp0weTJk2FsbCx0iII4e/YsfvrpJzRv3hyurq6QSqUIDAzEuXPnsGLFCjRt2lToEAWxdu1aBAQEYPTo0XB1dYVMJsPNmzexZs0a9O/fH0OGDBE6RMHExcXB1NQUly9fxuPHj5GSkoKSJUvCw8MDYjG/X6L0WJdUY11SjXVJPdYm9fShNrGhSSOjLj0/n0wHAAkJCQgPD4dUKoWTkxPMzMzw9u1b2NjYCB2aINq2bYsuXbqgX79+Ssu3bt2KQ4cO4ciRI8IEJrCGDRti1qxZ8PT0VFp+7tw5LFiwAH/88YdAkQnP09MTa9asQaVKlYQOhXQE69K3sS4pY11Sj7VJPX2oTfl3oKkK+b0wqFOxYkX8888/sLGxQdmyZRXLX7x4gbZt2+LWrVsCRiec8PBwNG7cON3yxo0bY9myZQJEpB1iY2NRokSJdMtLliyJt2/f5n1AWoRTqlJWsS6pxrqkGuuSeqxN6ulDbWJDk0Z8fDz27t2LkJAQSKVSxfKkpCQ8ePAAJ0+eFDC6vHX48GEcPHgQQOoFl0aMGJFuqENERAQKFSokRHhaoXTp0vjrr7/Qu3dvpeUXLlzIt9dAAABXV1f4+/tj7ty5ikPVUqkU/v7+cHFxETg6YTVq1Aj9+/fnlKqUaaxLX7AuZYx1ST3WJvX0oTaxoUlj+vTpuHTpEurVq4dTp06hVatWePr0Ke7evasTT6YmNWvWDM+fPwcAXLt2DdWrV093DQRTU1M0a9ZMiPC0wqhRozBq1Cjcvn0b1apVAwAEBgbi9OnTWLx4scDRCWfKlCno1asXLl26hMqVKwMA7t+/j6SkJGzevFng6ITFKVUpq1iXvmBdyhjrknqsTerpQ23iOTRp1KxZEytXrkS9evXQvn17+Pj4oEqVKvD19cWrV6+wcuVKoUMUxKFDh9CmTZt0HTsBly9fxq5duxAaGgojIyOULFkS/fr1y/ff9sTExODYsWN4/PixIi/t2rVL9+GDiL6NdUk11iX1WJfUY23SX2xo0nBxccGpU6fg6OiIcePGoWbNmujevTuePHmCH374QSeulJpb/vvvPwQHB0MmkwFIPdz/ecjDnDlzBI6OSHc8ePAAW7ZswePHjyGVSlGyZEn06tULtWrVEjo00kKsS+qxLhFpjq7XJg45S6N06dK4dOkSunTpgrJly+LGjRvo3r07Pn78qPICXvnFmjVrsGbNGtjZ2SE6OhoODg6IioqCVCrNd4f2p0yZgmnTpsHc3BxTpkz55roLFy7Mo6iE16RJE+zfvx/W1tbw9PT85iHq8+fP52Fk2iXtlKpeXl6KKVUHDBiQ76dUJdVYl1RjXfqCdUk91qbM0YfaxIYmjZEjR2L06NGQyWTo0KED2rRpgx9//BFBQUFo0KCB0OEJZu/evZgzZw6+//57eHp6Ytu2bbCyssJPP/2E4sWLCx0eaYGRI0cqDtmPGjVK4Gi018qVKzF+/HiVU6quXr1aJ4oG5S3WJdVYlygzWJsyRx9qE4ecfSU8PBwymQzOzs54+PAhjhw5Amtra/Tu3RsmJiZChyeIKlWq4MyZM3B0dMSIESPQokULtG/fHvfu3YO3tzd+//13oUMk0gnVqlXD0aNH4ezsrLT86dOnaNeuHe7cuSNQZKTNWJfSY10i0hx9qE08QvMVJycnxf8rVKiAChUqCBiNdnBwcEB4eDgcHR1RunRpPHjwAO3bt4e5uXm+n7v98uXLuHv3LpKTk/H1dwP5bQaizz58+AB/f3/cvXsXKSkp6fKSX69sDnBKVcoe1qX0WJfUY11SjbVJPX2oTWxo0rh+/Trmz5+Px48fq7zA0H///SdAVMLr2rUrxo4dCx8fHzRt2hT9+vWDvb09Ll26lK8Lq6+vL7Zv344KFSqkmyFFV6Y5zA0TJ07E3bt30a5dO5ibmwsdjlbhlKqUVaxLqrEuqca6pB5rk3r6UJs45CyNFi1aoGzZsujWrRuMjY3T3a4rMz3khsOHD8PR0RG1atXCvn37sGfPHhQsWBDTpk1DqVKlhA5PEDVr1sSMGTPQvn17oUPRKi4uLggICOAUoWpwSlXKCtYl9ViX0mNdUo+16dt0vTaxoUnD1dUVBw8eRMmSJYUOhXRAnTp1sGfPHpQoUULoULRKs2bNsHz5clSpUkXoUIh0HusSZQXrknqsTfqNDU0aM2fOhL29fb4eY6oKp4FUbfXq1QgLC8O8efNgamoqdDha4+zZs9iwYQO8vb3h7OyMAgUKKN3u6OgoUGTCi4iIwObNm/H48WMkJSWluz0/j+Em1ViXVGNdUo11ST3WJvX0oTaxoUnj2bNn6NKlC8zNzVG0aNF040114QnNDV8XjpSUFISHh+O///7DDz/8gAkTJggUmbB69+6NW7duQS6Xw9bWNt0fx/w6p/3X49c/v4/kcjlEIlG+HfMPAL169UJkZCSaN2+ucvgQP7TS11iXVGNdUo11ST3WJvX0oTZxUoA0xo8fDxsbGzRt2lTlE5pfqfuma/PmzXj06FEeR6M9vLy84OXlJXQYWic/F8yM3L9/H3v27MnXJy1T1rAuqca6pBrrknqsTerpQ21iQ5NGUFAQDh48iNKlSwsdik5o2bIl1q5dK3QYgunUqZPQIWilz1M8BgcHIywsDPXr10d0dDSKFSuW72fZqVatGp49e6bTRYPyFutS1rAusS6pw9qknj7UJjY0abi5uSE0NJSFIxPi4uLw66+/wtraWuhQBNO7d+9v/hHMr0NB3r9/j9GjR+PatWsAgNOnT2PBggUIDw/Hxo0bdWZO+9ywYMEC9OjRA7///rvK4UO6cFif8hbrUuaxLrEufQtrk3r6UJvY0KTh4eGBqVOn4syZM3BycoJEIlG6XRee0NxQoUIFlX8gjYyMMH/+fAEi0g61a9dW+v3zGO4LFy5g2LBhAkUlvPnz58PExARXrlxBw4YNAQA+Pj6YMGEC5s+fj/Xr1wscoXCWL1+OmJgYPH78GC9evFC6Lb9/Q0iqsS6pxrqkGuuSeqxN6ulDbWJDk8Yff/yBihUr4s2bN3jz5o3SbbryhOaGbdu2KT1+kUiEAgUKoEyZMvn64lTqPkgcPHgQZ86cwcCBA/M4Iu3w999/Y8eOHbC0tFQss7GxwZQpU9C9e3cBIxPe+fPn4e/vn6+vHUJZw7qkGuuSaqxL6rE2qacPtYkNTRo7duwQOgSt9PU3PvRtNWvWxJw5c4QOQ1CJiYnplr19+xYGBvn7T46joyNMTEyEDoN0COuSaqxLWcO6lIq1STV9qE35+xlU4fHjxwgKClL5ou/YsWPeByQQT0/PTH/7l19nDnn58mW6ZZ8+fcKWLVvy9Vjctm3bYsGCBZg7dy5EIhHi4uJw5coVzJo1C61btxY6PEF5e3tj8uTJ6NevH4oVK5auiNasWVOgyEibsS6lYl3KGOuSeqxN6ulDbeJ1aNLYunUrfH19YWlpme6QtUgkyld/IA8dOqT4/7Nnz7Bt2zb06NEDVatWRYECBfDgwQMEBASgb9++GD58uICRCufzGO6v30JFihSBj48P6tatK1BkwkpKSsKyZcuwc+dOJCcnQyQSQSKRoEuXLpg8eXK+nnr2WzPI5PfrIJBqrEtfsC5ljHVJPdYm9fShNrGhSaN+/foYPHgw+vXrJ3QoWsXLywuDBw9Gq1atlJafO3cOK1aswPHjxwWKTFiqTpwrUKAA7Ozs8u3Y9qioKFhbW0MikSAhIQF3797FnTt3YGxsjE6dOvHK1URZxLqkGuuSaqxLqrE26T8OOUsjISEBTZo0EToMrfPkyROUK1cu3XInJ6d0fzz13beGPBgYGMDa2hr169fHkCFDYGRklMfRCefTp08YN24cLly4gOPHj6N06dI4efIkpk2bhsKFC8PIyAj+/v7YuXMnChcuLHS4gkpISMDRo0cRGhoKqVSKUqVKoXXr1ihYsKDQoZEWYl1SjXXpC9Yl9VibMk/XaxOP0KQxd+5cGBkZYdKkSUKHolUGDRoEuVwOHx8fODg4AADCw8MxdepUWFtbY9WqVQJHmHfSDnn4mlwux8ePH7Fr1y64u7tjwYIFeRiZsHx9ffHPP/9g9uzZqFGjBuLj49GgQQOULVsWO3bsQIECBTBr1ix8+vQJS5YsETpcwTx69AiDBg2CRCJBlSpVIJVKcf/+fSQlJWHHjh0oU6aM0CGSlmFdUo116QvWJfVYmzJHH2pTvm9o0l6EKjk5Gbdu3ULhwoVRrFgxiMVipXXz6wWpIiIi4O3tjdu3b8PKygpyuRwfPnxAnTp1sHz5cp3p3vPKw4cP8cMPP+D69etCh5JnPD094ePjgzp16gAAzpw5A29vbyxduhRt2rQBANy+fRtDhw7FlStXhAxVUH379oWjoyPmzZunOOkyJSUF06dPR0REBPz9/QWOkLQB61LGWJeyJj/WJYC1KbP0oTbl+yFnX0/9WL9+fYEi0V729vbYs2cPgoODERoaCgAoW7Ysr1ytRkxMTL47uTAyMhLFixdX/H7p0iVIJBJ4eHgoltnZ2SE+Pl6I8LRGYGAgZs2apTSDjIGBAQYPHowuXboIGBlpE9aljLEuZU1+rEsAa1Nm6UNtyvcNTUZXWX779i2sra3z9cl0QGqnbmlpCRcXFwCph7GfPHmC//77L99Pd/hZWFgYfH19cfXqVfTv31/ocPKUg4MDwsPD4ejoCLlcjgsXLqBatWqwsrJSrHPr1i0UKVJEwCiFV6hQITx79gylSpVSWv7s2TOYmZkJFBVpG9alzGFdylh+rksAa1Nm6UNtyvcNTVpv3ryBr68vhgwZglKlSmHgwIG4ceMGihQpgnXr1n1zWjt9du7cOcyYMQPv3r1Ld1uhQoVYOP7P3NwcJUuWRLdu3eDp6Sl0OHmqQ4cOWLBgAUaPHo0rV67g1atXGDdunOL2hw8fYtmyZWjfvr2AUQqve/fumD59OkaPHq34EHb79m2sWrUKXbt2FTg60kasS6qxLmVOfq5LAGtTZulDbcr359CkNWzYMMTFxcHX1xd//vknli9fjk2bNuHo0aN4+PAhdu7cKXSIgmjVqhVq1qyJfv36oUePHti4cSPevXuHefPmYfjw4fDy8hI6RBJYSkoK/Pz8cPjwYYhEIvTp00dxHYhFixbhl19+QaNGjbBy5cp8N8tOWnK5HGvWrEFAQADev38PIHW4Q79+/TBgwIB050cQsS6pxrpEmcHalDn6UJvY0KTh6uqKgwcPomTJkhg4cCDs7e2xcOFChIeHo23btrh9+7bQIQqiSpUqOHHiBIoXL46BAweiR48eaNq0Kf7++28sXrwYx44dEzpE0mJBQUGQSqWoVKmS0KFolejoaBgZGaW7WCJRWqxLqrEuUU6xNqmmq7WJQ87SMDIyQmJiIt6/f4+rV69i6dKlAIDnz58rjbfMbywtLRUnzJUsWRIPHz5E06ZNUapUKTx//lzg6EjblS9fXugQtMrjx48RFBSExMTEdLd17Ngx7wMirca6pBrrEuUUa5MyXa9NbGjSaNq0KcaMGQNjY2NYWVmhUaNGOHHiBHx8fNCpUyehwxNMw4YNMWfOHMydOxe1a9fG4sWL0bhxY5w+fRr29vZCh0ekM7Zu3QpfX19YWlqm+/ZLJBLpRNGgvMW6pBrrEpHm6ENt4pCzNFJSUhAQEIAXL17g+++/R5kyZXD48GHExsaiV69e+XZGmdjYWCxYsAC1a9dGhw4dMGHCBPz2228wNTWFn59fvjzRkCg76tevj8GDB6Nfv35Ch0I6gnVJNdYlIs3Rh9rEhkaN9+/fw8LCAiKRKN8WjM+OHz+O+vXrw9raWrEsNjYWRkZGKFCggICREekWNzc3HD58GE5OTkKHQjqIdekL1iUizdGH2qT90xbkIblcjvXr16N27dqoW7cuXrx4gQkTJmDmzJlISkoSOjzBzJkzBzExMUrLzM3NWTSIsqhDhw7YtWuX0GGQDmFdUo11iUhz9KE28QhNGmvWrMFvv/2GiRMn4qeffsKxY8fw7NkzzJw5E40bN8b06dOFDlEQI0eORLly5fDjjz/C0NBQ6HCIdErv3r0V36YnJyfj1q1bKFy4MIoVK5ZuKszt27cLESJpMdYl1ViXiHJG32oTG5o0mjRpAl9fX9SsWROurq44evQonJyccP36dYwePRr//POP0CEKokePHrh16xbEYjFsbGzSzdV+/vx5gSIj0n5r1qzJ9LoZXSGe8h/WJdVYl4hyRt9qE2c5SyM6Olrl7CiWlpaIi4sTICLt0K1bN3Tr1k3oMIh0krpCEBMTA7FYnK+n3qWMsS6pxrpElDP6VpvY0KRRp04dbNmyBXPnzlUsi42NxbJly1C7dm0BIxPGixcv8Msvv2DixIkwNDRE27ZtFfP+A0DNmjXh6+srYIREukUmk2HVqlXYt28f3r59CwCwt7dHr169MGTIEIGjI23EuqSMdYlI8/ShNrGhSWP27NkYOXIk6tevj8TERAwfPhwvX76Eo6Mj1q9fL3R4eSokJATdu3eHi4sLPnz4ADs7O7x48QIjRoyAra0tXr9+jTVr1qB58+acHpMokxYuXIgzZ85g3LhxqFKlCmQyGe7evYtVq1YhKSlJJw7rU95iXfqCdYkod+hDbeI5NGnExcXB1NQUly9fxuPHj5GSkoKSJUvCw8Mj3QlS+s7b2xtmZmZYuHChYlna8dsAMGPGDLx+/RqbNm0SKkwinVKrVi2sWbMGtWrVUlp+6dIljB8/HpcuXRIoMtJWrEtfsC4R5Q59qE08QpNG27ZtsWbNGtStWxd169YVOhxBXbt2Df7+/t9cp2vXrhg8eHAeRUSk+4yNjVVOK2tpaZnvrytCqrEufcG6RJQ79KE25a+vdzIgFouRnJwsdBhaIT4+XumCZQCwbt06pZNTbWxs8vV1EIiyauLEiZg6dSr++OMPvHv3DrGxsbh+/TpmzJiBvn374uXLl4ofIoB1KS3WJaLcoQ+1iUdo0mjUqBH69++Pxo0bo2jRounmtteFMYSa4ujoiKCgIBQpUkSx7OtvB+/fvw9nZ+e8Do1IZ40fPx4AMGzYMMW3Xp9H/f73339Yvnw55HI5RCIR/vvvP8HiJO3BuvQF6xJR7tCH2sSGJo2goCBUrlwZERERiIiIULpNVw65aUqLFi2wcOFCuLu7w9zcPN3tnz59wpo1a9CxY8e8D45IR/HaGJRVrEtfsC4R5Q59qE35flKAXr16Yf369bC0tFQsS0hIgLGxsYBRCS8+Ph7du3dHTEwMBgwYgBo1aqBgwYL48OEDbt26hW3btsHOzg4BAQEwMGBfTJQV//zzD0JDQyGTyVCyZEnUq1dP5fhlyp9Yl1RjXSLKXbpcm/J9Q1OhQgX8888/sLW1VSyrUaMGjhw5opg1Jb+Ki4vDmjVrcPjwYbx9+xYikQhyuRwFCxZE586dMWrUqHxfYImy4vXr1xg+fDiePHmCkiVLQiqV4unTp3B0dMQvv/wCBwcHoUMkLcC6pB7rEpHm6UNtYkOjonB8PQ1kfieXy/Hs2TPExMTA0tISzs7OkEgkQodFpHOGDRuGlJQULFmyRHEV5piYGEyYMAGmpqZYtWqVwBGSNmBdyhjrEpHm6ENt4jFZypBIJIKzszNPtCTKoStXrmDv3r2KggEA1tbWGD9+PHr16iVgZES6hXWJSHP0oTZx2mYiojxiZWWF9+/fp1v+4cMHnRmnTERE+kUfahOP0AA4efKk0owpMpkMZ8+ehY2NjdJ6nDmFiHKiTZs2mD59OmbPno2qVasCAG7fvo25c+eidevWAkdH2oR1iYjyij7Upnx/Do2np2em1hOJRHoxrR0RCScpKQkzZ87E0aNHFXP8SyQSdO3aFZMmTeLJzASAdYmI8pY+1KZ839AQEeWFqKgoWFtbQyKR4MOHDwgLC8Nff/0Fa2trdOrUCaampkKHSERE+Yy+1CaeQ0NElIs+ffqEH3/8EQ0aNEBYWBiA1IuYde/eHQcPHkRAQADatWuH169fCxsoERHlG/pWm9jQEBHlotWrV+PFixcICAhAqVKlEBcXh/nz58PFxQWnT5/GyZMn4eHhgSVLlggdKhER5RP6VpvY0BAR5aIzZ85g2rRpcHNzg0gkwsWLF/Hp0yf07t1bMXuMl5cXLl68KHCkRESUX+hbbWJDQ0SUiyIjI1G8eHHF75cuXYJEIoGHh4dimZ2dHeLj44UIj4iI8iF9q01saIiIcpGDgwPCw8MBpF7d/MKFC6hWrZrSBcxu3bqFIkWKCBUiERHlM/pWm9jQEBHlog4dOmDBggU4f/48fHx88OrVK/Ts2VNx+8OHD7Fs2TK0bNlSwCiJiCg/0bfaxGmbiYhyUUpKCvz8/HD48GGIRCL06dMHw4cPBwAsWrQIv/zyCxo1aoSVK1fCyMhI4GiJiCg/0LfaxIaGiEggQUFBkEqlqFSpktChEBERAdDN2sSGhoiIiIiIdBbPoSEiIiIiIp3FhoaIiIiIiHQWGxoiIiIiItJZbGiIiIiIiEhnsaHRIkOGDMGUKVOUlh0/fhzly5fH6tWrlZavW7cOHTp0AACUL18eV69ezdY+5XI5du7cqfb23r17p9s3ZV9G+f4WT09PHDx4UMMRZU9OHkdmrF69Gr179wYAHDx4EJ6enhrZrkwmw9q1a9G4cWO4u7tj8ODBePr0qUa2TaSvWJv0H2tT5rA2aS82NFrE3d0dd+/eVVp29epV2NvbpysKgYGBqFWrVo73+e+//2Lu3Llqb1+9ejUGDBiQ4/1QqozyrSvy8nG0bt0a+/fv18i2tm/fjq1bt2LGjBnYs2cPJBIJBg0ahISEBI1sn0gfsTbpP9amrGNt0i5saLSIm5sbQkND8enTJ8Wyq1evYuDAgQgMDFR6Yd++fVsjRSOjWbsLFiwIMzOzHO+HUunLLOl5+TiMjY1hY2OjkW3t3bsXAwYMgKenJ8qUKYMlS5bg9evXuHnzpka2T6SPWJv0H2tT1rE2aRc2NFqkatWqKFCgAO7fvw8AeP36NV6+fImuXbvCwsJC8cJ+8uQJ3r9/D3d3d8V9r1+/jnbt2qFq1ar44Ycf8OLFC8Vt58+fR8eOHVG1alW4u7tj7Nix+PTpE54/f44+ffoAUD80IO1h/ZcvX2LAgAFwdXVF3bp1MW/ePCQnJ6e7z9GjR1G7dm2kpKQolp0+fRqNGjWCXC5HYmIi/Pz80LBhQ1SvXh0//vgjXr16BQB4/vw5ypcvj+fPnyvu+/Uh3u7du2PEiBFwc3PD0aNH0+0/Li4OM2fORO3atVG7dm3MmDEDiYmJKh9n2kPGV69ehaenJ2bNmgU3Nzds3LgRkydPxuTJk9G+fXvUrVsXYWFh+PDhAyZMmIAaNWrAw8MD8+bNUxT0z9vYtWsXGjRogOrVq2PChAlISkrKVL5TUlKwbNkyeHh4wM3NDd7e3oiJiUm3XmxsLKZMmYK6deuiSpUqaNmyJc6dO6e4/cSJE2jRogWqVq2K1q1bK922fft2NG7cGFWrVoWXlxeuX7+ebvsAkJycjOnTp6N27dpwdXXFjz/+iDdv3qh8HElJSVi4cCEaNGiAypUrw9PTE3v37lVsy9PTEzt37kS3bt1QtWpVdOjQAffu3VPcHhISgh49eqBatWro06eP0mNW9Rypyu9nR48eRdOmTVGtWjWMGzcOY8eOVbyGJ0+eDC8vL8W6JiYmMDAwQGxsrMocEBFrE8DaxNrE2qTt2NBoEUNDQ1SrVg137twBAFy5cgVVqlSBmZkZatasqfgjExgYiLJly8La2lpx33379mH69OnYv38/3r9/jyVLlgAAnj17htGjR6Nnz544efIkVqxYgUuXLuHXX39FkSJFFG+mixcvwtXV9ZvxzZs3D6ampjh8+DDWrl2L06dP49dff023XpMmTZCQkIArV64olp08eRKtWrWCSCTCrFmzcPbsWSxatAh79uxBSkoKhg8fDplMlqk83bp1C2XKlMGvv/4KDw+PdLdPnz4dN27cwLp16+Dv748bN25gxYoVmdr2ixcvkJSUhIMHD6Jt27YAgCNHjmDMmDHYsGEDSpQogWnTpuHjx4/YvXs31q1bh7t37yod4o6IiMDp06exefNmrF69GmfOnMHhw4czle+VK1fi0KFD8PHxwd69exEdHY1Zs2alW2/BggV48uQJ/P39cfz4cbi7u2PatGlISkpCdHQ0Jk6ciKFDh+LUqVPo3Lkzxo4di3fv3uHBgwdYvHgxZs2ahZMnT8Ld3R1jxoxRmfudO3fi33//hb+/P/bv349Pnz7Bx8dH5ePYuHEj/vzzT6xevRqnTp1Cx44dMW/ePERFRSm2t3r1agwZMgRHjx6FhYUF5s+fDwBISkrCkCFD4OTkhIMHD6JFixZKBedr6vILpH54mjp1KgYNGoSDBw/CxMQEJ06cUNy3YcOGcHBwUPy+ceNGGBgYoHbt2mr3R5TfsTaxNrE2sTZpOwOhAyBl7u7uiqJx9epVxYu5Vq1aOH78OADVY5SHDRumWLdLly7Ys2cPgNQTzaZPn45u3boBAIoVK4Z69eohODgYEokEVlZWAIBChQplGNuLFy9QuXJlODo6wtnZGRs3boSlpWW69czMzNC4cWOcOnUKHh4eiI+Px4ULF7Bjxw68f/8eR44cwaZNm1CnTh0AwJIlS9CoUSP8888/KFmyZIZxiEQiDBs2DMbGxulue//+PU6dOoVffvkFbm5uAIC5c+fiv//+y3C7nw0aNAjOzs6K36tWrar4FubZs2c4d+4crl27BgsLCwCpxbRjx46Kk2Y/f3tUtmxZlC9fHg0aNMDdu3fRrVu3b+ZbLpfj119/xaRJk/Ddd98BAObMmYOTJ0+mW7dmzZro378/ypUrBwAYMGAA9u3bh+joaMTExCA5ORmFCxdG0aJFMWDAAJQvXx5GRkZ48eIFRCIRHB0dUaxYMYwZMwaNGzeGTCaDWKz8/cbz589hZGSEokWLomDBgvD19cW7d+9Uvm4qVKiAOnXqoHr16gCAH3/8EWvXrkVYWBjs7OwAAJ06dULTpk0BAP3798fo0aMBAJcuXcK7d+8we/ZsmP6vvfsPifqO4zj+vLQrnYpRijJdmlppaV6lbWkS9NM7Cy/6oZmQtkVjJOWycBWL3IXm1rEf4WQuFgT9MKSoo7RMpbZ+U2ipkZZyVtRoFTr7wc72R/TF8069Ypu63g8QzrvPfe7z+R5+Xn6+9/l+ztWVoKAgLly4wB9//GH3/enp+O7duxetVktSUhIAW7Zs4cyZM3brOXDgAD/88APfffed0h8hhH2STZJNkk2STf2ZfELTz3S++PL8+fNKOERHR3Pt2jVevHjB1atXiYqKsnreBx98oNx2d3dXPsYOCAggLi6OgoICMjMzmTdvHseOHXP4jFNnH3/8MUeOHOGjjz4iMzOTu3fv4ufnZ7dsQkICJ0+e5K+//qKyshJvb2/Gjx9PU1MTHR0dTJgwQSnr6elJYGAgjY2NDrVj+PDhdgMDoLm5GYvFwrhx45T7Jk+erCwLcETXPr3//vvK7cbGRjo6OoiLi0Oj0aDRaEhKSqKjo8NqR5LOoePm5ma1xKE7jx494vHjx1ZtDw4OZvXq1TZlExMTaWpq4quvviI9PZ3k5GQALBYLoaGhTJ8+nbS0NObOncvXX3+Nn58fLi4uxMbGMnr0aObNm4der2fXrl2MGjUKZ2fbcxtLlizh999/JzY2lvT0dKqqqggKCrLb9pkzZ/L8+XNyc3NZuXKlErIWi0UpExAQYHVMXi8JaWhoICAgAFdXV+Xx8PDwHo9Vd8f3xo0bVs91dnZm/PjxNs+/c+cOOTk5bNq0iRkzZvT4WkIIySZHSDZJNkk29R2Z0PQzGo2GBw8eUFNTw4MHD5g4cSIAISEhuLu7c/HiRRoaGmzOgnU9g/FafX09Op2OhoYGJk+ejMFgQKvVvlXb5s+fT0VFBZ9//jl//vknGRkZGI1Gu2Xj4uKwWCxcvHiR0tJS4uPjARgyZIjd8haLhY6ODlQqlc1jXQfc7uoAGDx4sKPdUV63q671d/7dYrHg7u7OoUOHrH7KysoIDg5WyqnVaqs6HLlQ0d7A3Z3169eTl5eHh4cHycnJFBYWKo+pVCoKCwspLi5mzpw5VFRUoNfrqaurw8XFheLiYnbv3k10dDQlJSUsWLCA+/fv27xGSEgIp06dIj8/Hy8vL3bs2EF6errdvhiNRrKysnB2diYxMdHux/I9vTdd6+ztfezu+Do5OdnUZa+9v/32G97e3krYCiF6Jtkk2eQIySbJpr4iE5p+xtXVldDQUPbv3094eDguLi7Aq4EgKiqKkpISAgICHN5Z4/Dhw0RFRfHNN9+wdOlSIiIiaG5uVv6Q7A3S3TEajTx8+FAZpNasWUNZWZndsmq1mlmzZnHixAl+/fVXdDodAP7+/jg7O3P16lWl7KNHj2hubiYwMFAZLDrvptP5Isze+Pv74+TkRH19vXLfyZMn0ev1wKvBqHPdZrPZ4boBAgMDaW1tRaVSMXLkSEaOHMmzZ8/Yvn271cV/3enpeHt4eDBs2DCrttfV1REXF2e1i1BbWxtHjx7FaDSSkZHBrFmzePLkCfBqgGxsbCQvL4+IiAjWrl2LyWTC19eX06dPc+XKFQoLC/nwww/Jzs7m+PHjPH/+nMuXL9u059ChQ1RUVBAfH09eXh5FRUVcvnyZhw8f2vRj3759bN68mXXr1qHVann69KnSnt6EhITQ1NREa2urVb/fRnBwsHLhMrwKeXt1ubq6Kv/ICCF6J9kk2STZJNnUn8mEph+KiorCZDLZnOmKjo6mvLzc5iP9nnh6enLjxg2qq6u5ffs2ubm51NTUKAPc61C6du2ashSgO7du3WLr1q3U19dz8+ZNqqqqCAsL67Z8QkICBw8exMfHh5CQEODVGuZFixaRk5PD+fPnqa+vJysrCx8fH2JiYhgxYgS+vr78/PPPmM1mSkpKqKysdLi/bm5uJCYmYjAYqK6upqamBqPRqKyJDg8PZ8+ePTQ1NVFeXv7GXwYWFBTEtGnTWLduHdXV1Vy/fp3s7Gza29vtrtnuqrfjnZqayrfffsu5c+e4efMmBoOByMhIq2UMarUaFxcXysrKaGlp4fTp08qFny9evMDDw0O5KNRsNlNZWcmdO3cICwtj6NCh7Ny5k+LiYlpaWjCZTLS3tzNmzBibtrS2tmIwGDh79ixms5kjR47g4+PDsGHDbPrh6elJRUUFZrOZS5cusX79eqU9vZk6dSq+vr5s3LiRxsZGSkpKrC6WfBPLli3DZDJRXFzMrVu32LZtm7I2u7Pp06fLd1gI8YYkmySbJJskm/ormdD0Q5MmTaK9vd1md4vo6GiePn36Rnv8p6amEhkZyfLly1m6dCl3797ls88+o7a2Fni1tWFMTAxJSUlUVVX1WNeWLVsYMWIEqampLF68GG9vbzZu3Nht+SlTpvDee+/ZLCPYsGEDU6dOJSMjg+TkZIYMGcIvv/yCWq1m0KBByoCv1Wo5fvw4q1atcri/AF988QVjx44lLS2NTz75hClTprB27VoANm/ezOPHj0lISKCoqIiMjIw3qhtg+/bt+Pn5sXz5ctLS0ggMDGTHjh0OPbe3471y5Upmz57NmjVrSE5OxsfHh5ycHKsyarWa/Px8SktL0el05Obm8umnn+Ll5UVdXR1eXl58//33yuNbt24lMzOT2NhYQkNDMRgMFBUVER8fz48//kh+fr7d9ccpKSkkJiaSlZWFVqultraWgoICnJycbPqxbds26urq0Ol0ZGdnM3fuXCIiIhw6mzV48GAKCwt58uQJer2evXv3kpKS4tDx7Eqj0fDll1+yc+dO9Ho9bW1taDQam2UCu3btYuHChW/1GkK8qySbJJskmySb+ivVy//LtymJfqetrY2YmBiOHj2Kv79/XzdHvAOqq6txc3Nj1KhRyn06nY4VK1ZY7fEvhHh3STaJ/5pk079Ptm0W/7iXL19SWlpKWVkZGo1GAkP8Z65cucKePXvIy8vDy8sLk8nEvXv3mDZtWl83TQjRxySbRF+RbPr3yYRG/ONUKhX5+fk4OTlRUFDQ180R75CUlBRaWlpYvXo1ra2thIaG8tNPPzn0XRZCiP83ySbRVySb/n2y5EwIIYQQQggxYMmmAEIIIYQQQogBSyY0QgghhBBCiAFLJjRCCCGEEEKIAUsmNEIIIYQQQogBSyY0QgghhBBCiAFLJjRCCCGEEEKIAUsmNEIIIYQQQogBSyY0QgghhBBCiAFLJjRCCCGEEEKIAetvJ1RWBBNKcnEAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))\n", + "\n", + "_ = pd.crosstab(\n", + " w_df['What is your current class standing?'],\n", + " w_df['Do you work in a department related to your major?'],\n", + ").plot(kind='bar', stacked=True, ax=axes[0])\n", + "\n", + "_ = pd.crosstab(\n", + " w_df['What is your current class standing?'],\n", + " w_df['Do you work in a department related to your major?'],\n", + " normalize='index',\n", + ").plot(kind='bar', stacked=True, ax=axes[1])" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2024-02-24T06:19:12.117410Z", + "start_time": "2024-02-24T06:19:11.957279Z" + } + }, + "id": "101f55892c052d46", + "execution_count": 11 + }, + { + "cell_type": "markdown", + "source": [ + "Of the students who responded \"yes\" to currently working, the above graphs show the proportions of participants who work in a department related to their major.\n", + "Most students do not work in a department related to their major, indicating that they are working for money rather than job experience. \n", + "his holds true for all groups except for Graduate students, who all work in a department of their major.\n", + "\n", + "Interestingly, Juniors have a higher rate of working in their major, perhaps indicating internships or students seeking to gain major-related work experience." + ], + "metadata": { + "collapsed": false + }, + "id": "a77e6367ee785afb" + }, + { "cell_type": "markdown", "source": [ "## Hypotheses" @@ -418,10 +567,10 @@ "outputs": [ { "data": { - "text/plain": "Do you work in a department related to your major? No Yes Total\nDo you currently live in a house, apartment, or... \nApartment 22 16 38\nDorm 4 1 5\nHouse 27 7 34\nTotal 53 24 77", - "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th>Do you work in a department related to your major?</th>\n <th>No</th>\n <th>Yes</th>\n <th>Total</th>\n </tr>\n <tr>\n <th>Do you currently live in a house, apartment, or dorm?</th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>Apartment</th>\n <td>22</td>\n <td>16</td>\n <td>38</td>\n </tr>\n <tr>\n <th>Dorm</th>\n <td>4</td>\n <td>1</td>\n <td>5</td>\n </tr>\n <tr>\n <th>House</th>\n <td>27</td>\n <td>7</td>\n <td>34</td>\n </tr>\n <tr>\n <th>Total</th>\n <td>53</td>\n <td>24</td>\n <td>77</td>\n </tr>\n </tbody>\n</table>\n</div>" + "text/plain": "How many hours do you work per week on average? 0 1 - 5 10 - 20 20 - 40 \\\nWho do you live with? \nBoth 22 1 2 0 \nFamily 61 6 10 4 \nFriends 57 2 11 2 \nNeither 42 0 5 0 \nTotal 182 9 28 6 \n\nHow many hours do you work per week on average? 5 - 10 Total \nWho do you live with? \nBoth 2 27 \nFamily 13 94 \nFriends 12 84 \nNeither 7 54 \nTotal 34 259 ", + "text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th>How many hours do you work per week on average?</th>\n <th>0</th>\n <th>1 - 5</th>\n <th>10 - 20</th>\n <th>20 - 40</th>\n <th>5 - 10</th>\n <th>Total</th>\n </tr>\n <tr>\n <th>Who do you live with?</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>Both</th>\n <td>22</td>\n <td>1</td>\n <td>2</td>\n <td>0</td>\n <td>2</td>\n <td>27</td>\n </tr>\n <tr>\n <th>Family</th>\n <td>61</td>\n <td>6</td>\n <td>10</td>\n <td>4</td>\n <td>13</td>\n <td>94</td>\n </tr>\n <tr>\n <th>Friends</th>\n <td>57</td>\n <td>2</td>\n <td>11</td>\n <td>2</td>\n <td>12</td>\n <td>84</td>\n </tr>\n <tr>\n <th>Neither</th>\n <td>42</td>\n <td>0</td>\n <td>5</td>\n <td>0</td>\n <td>7</td>\n <td>54</td>\n </tr>\n <tr>\n <th>Total</th>\n <td>182</td>\n <td>9</td>\n <td>28</td>\n <td>6</td>\n <td>34</td>\n <td>259</td>\n </tr>\n </tbody>\n</table>\n</div>" }, - "execution_count": 9, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -433,12 +582,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:11.454613Z", - "start_time": "2024-02-24T05:38:11.414412Z" + "end_time": "2024-02-24T06:19:12.131263Z", + "start_time": "2024-02-24T06:19:12.118937Z" } }, "id": "24d1f01fdd4ca1d6", - "execution_count": 9 + "execution_count": 12 }, { "cell_type": "code", @@ -447,7 +596,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Chi-squared value: 4.183390044200403\n" + "Chi-squared value: 10.845786899856222\n" ] } ], @@ -469,12 +618,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:11.493183Z", - "start_time": "2024-02-24T05:38:11.468104Z" + "end_time": "2024-02-24T06:19:12.135913Z", + "start_time": "2024-02-24T06:19:12.132121Z" } }, "id": "fd3e73d9f461afd1", - "execution_count": 10 + "execution_count": 13 }, { "cell_type": "markdown", @@ -496,12 +645,12 @@ "metadata": { "collapsed": false, "ExecuteTime": { - "end_time": "2024-02-24T05:38:11.502610Z", - "start_time": "2024-02-24T05:38:11.498403Z" + "end_time": "2024-02-24T06:19:12.138622Z", + "start_time": "2024-02-24T06:19:12.136918Z" } }, "id": "b513f8e8241e86e5", - "execution_count": 10 + "execution_count": 13 } ], "metadata": { |