aboutsummaryrefslogtreecommitdiff
path: root/CS105MiniProject.ipynb
blob: c7830240d99e585b84dcfc29d3941f56e72e22c5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
{
 "cells": [
  {
   "cell_type": "markdown",
   "source": [
    "<div>\n",
    "    <h1><center>CS105 Mini-Project</center></h1>\n",
    "    <p>By: <b>NAMES HERE</b></p>\n",
    "</div>"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "845bdbd833f03cba"
  },
  {
   "cell_type": "markdown",
   "source": [
    "# Data Loading & Preprocessing"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "d720609d765d221b"
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "\n",
    "# Load dataframe from data.csv\n",
    "df = pd.read_csv(\"data.csv\")\n",
    "\n",
    "# Select relevant columns\n",
    "df = df.iloc[:, [0, 2, 7, 8, 9, 58, 59, 60, 61, 26]]\n",
    "df"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "3bea6ea662d6c063"
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Preprocessing"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "7e69a5a21a9de4ee"
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "# Fixes empty values\n",
    "df['Do you currently work?'] = df['Do you currently work?'].fillna('No')\n",
    "\n",
    "# Replaces custom text answers with appropriate values\n",
    "df['How many people live in your household?'] = (df['How many people live in your household?']\n",
    "                                                 .fillna(0)\n",
    "                                                 .replace('4 in total', '4')\n",
    "                                                 .replace('4 (Including me)', '4')\n",
    "                                                 .replace('at school 4 including me ', '4')\n",
    "                                                 .replace('3 excluding me', '4')\n",
    "                                                 .replace('5 including me', '5')\n",
    "                                                 .replace('North District 4 bed 2 bath', '4')\n",
    "                                                 .replace('3 (room), 8 (hall), ~70 (building)', '3')\n",
    "                                                 .astype(int))\n",
    "df['Who do you live with? '] = df['Who do you live with? '].replace('Family, Friends', 'Both').replace('Family, Friends, Both', 'Both')\n",
    "# Normalizes non-applicable answers\n",
    "df.loc[df['Do you currently work?'] == 'No', 'How many hours do you work per week on average?'] = 0\n",
    "df.loc[df['Do you currently work?'] == 'No', 'Do you work in a department related to your major?'] = np.nan\n",
    "\n",
    "df"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "f71f8085d5f66b0"
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "# Working DataFrame\n",
    "w_df = df[df['Do you currently work?'] == 'Yes']\n",
    "# Not working DataFrame\n",
    "nw_df = df[df['Do you currently work?'] == 'No']\n",
    "w_df"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "6c1d9ee7948e6b9a"
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "nw_df"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "34f69a756f513fb7"
  },
  {
   "cell_type": "markdown",
   "source": [
    "<div>\n",
    "    <h1>CS105 Project</h2>\n",
    "    <p>Ali Naqvi, ...</p>\n",
    "    <p>Topic: Does who a student is living with effect if and how they work jobs?</p>\n",
    "</div>\n"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "d5c1424ddd30ca97"
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Assuming 'df' is your DataFrame\n",
    "\n",
    "# Count the number of people who work and don't work\n",
    "work_counts = df['Do you currently work?'].value_counts()\n",
    "\n",
    "# Plotting a pie chart\n",
    "plt.figure(figsize=(8, 8))\n",
    "plt.pie(work_counts, labels=work_counts.index, autopct='%1.1f%%', startangle=90, colors=['lightblue', 'lightcoral'])\n",
    "plt.title('Distribution of People Who Work and Don\\'t Work')\n",
    "plt.show()\n"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "da1811cc63b41845"
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [],
   "metadata": {
    "collapsed": false
   },
   "id": "201db70188d3e778"
  },
  {
   "cell_type": "markdown",
   "source": [],
   "metadata": {
    "collapsed": false
   },
   "id": "8d65fec230193b72"
  }
 ],
 "metadata": {
  "colab": {
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}