aboutsummaryrefslogtreecommitdiff
path: root/CS105MiniProject.ipynb
blob: 2f86c4869bc7ff190c1e61a567faac361cd5e8b9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
{
 "cells": [
  {
   "cell_type": "markdown",
   "source": [
    "<div>\n",
    "    <h1><center>CS105 Mini-Project</center></h1>\n",
    "    <h2><center>Does who a student is living with effect if and how they work jobs?</center></h2>\n",
    "    <p>By: <b>NAMES HERE</b></p>\n",
    "</div>"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "845bdbd833f03cba"
  },
  {
   "cell_type": "markdown",
   "source": [
    "# Data Loading & Preprocessing"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "d720609d765d221b"
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": "              Timestamp What is your current class standing?  \\\n0     2/9/2024 20:12:14                               Senior   \n1     2/9/2024 20:16:34                               Junior   \n2     2/9/2024 20:18:55                               Junior   \n3     2/9/2024 20:24:00                               Senior   \n4     2/9/2024 20:26:16                             Graduate   \n..                  ...                                  ...   \n255  2/14/2024 19:46:28                               Junior   \n256   2/15/2024 0:28:38                                  NaN   \n257   2/15/2024 8:33:45                               Senior   \n258  2/15/2024 16:10:40                            Sophomore   \n259  2/15/2024 16:14:11                            Sophomore   \n\n    Who do you live with?   \\\n0                  Neither   \n1                     Both   \n2                  Friends   \n3                  Neither   \n4                  Neither   \n..                     ...   \n255                Friends   \n256                 Family   \n257                 Family   \n258                 Family   \n259                Friends   \n\n    Do you currently live in a house, apartnment, or dorm?   \\\n0                                                House        \n1                                            Apartment        \n2                                                House        \n3                                            Apartment        \n4                                            Apartment        \n..                                                 ...        \n255                                              House        \n256                                          Apartment        \n257                                              House        \n258                                          Apartment        \n259                                               Dorm        \n\n    How many people live in your household? Do you currently work?  \\\n0                                         6                    Yes   \n1                                         4                     No   \n2                                         4                     No   \n3                                         1                     No   \n4                                         1                    Yes   \n..                                      ...                    ...   \n255                                       5                    Yes   \n256             North District 4 bed 2 bath                     No   \n257                                       9                     No   \n258                                       4                    Yes   \n259      3 (room), 8 (hall), ~70 (building)                     No   \n\n    How many hours do you work per week on average?  \\\n0                                            5 - 10   \n1                                               NaN   \n2                                               NaN   \n3                                               NaN   \n4                                           10 - 20   \n..                                              ...   \n255                                         10 - 20   \n256                                             NaN   \n257                                           1 - 5   \n258                                          5 - 10   \n259                                             NaN   \n\n    Do you work on or off campus?  \\\n0                      Off-campus   \n1                             NaN   \n2                             NaN   \n3                             NaN   \n4                      Off-campus   \n..                            ...   \n255                     On-campus   \n256                           NaN   \n257                    Off-campus   \n258                     On-campus   \n259                           NaN   \n\n    Do you work in a department related to your major?  \\\n0                                                   No   \n1                                                  NaN   \n2                                                  NaN   \n3                                                   No   \n4                                                  Yes   \n..                                                 ...   \n255                                                 No   \n256                                                NaN   \n257                                                 No   \n258                                                 No   \n259                                                NaN   \n\n    Do you have roommates that are part of your major?  \n0                                                   No  \n1                                                  Yes  \n2                                                   No  \n3                                                   No  \n4                                                   No  \n..                                                 ...  \n255                                                 No  \n256                                                 No  \n257                                                 No  \n258                                                 No  \n259                                                Yes  \n\n[260 rows x 10 columns]",
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Timestamp</th>\n      <th>What is your current class standing?</th>\n      <th>Who do you live with?</th>\n      <th>Do you currently live in a house, apartnment, or dorm?</th>\n      <th>How many people live in your household?</th>\n      <th>Do you currently work?</th>\n      <th>How many hours do you work per week on average?</th>\n      <th>Do you work on or off campus?</th>\n      <th>Do you work in a department related to your major?</th>\n      <th>Do you have roommates that are part of your major?</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>2/9/2024 20:12:14</td>\n      <td>Senior</td>\n      <td>Neither</td>\n      <td>House</td>\n      <td>6</td>\n      <td>Yes</td>\n      <td>5 - 10</td>\n      <td>Off-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>2/9/2024 20:16:34</td>\n      <td>Junior</td>\n      <td>Both</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>No</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>Yes</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>2/9/2024 20:18:55</td>\n      <td>Junior</td>\n      <td>Friends</td>\n      <td>House</td>\n      <td>4</td>\n      <td>No</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>2/9/2024 20:24:00</td>\n      <td>Senior</td>\n      <td>Neither</td>\n      <td>Apartment</td>\n      <td>1</td>\n      <td>No</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>2/9/2024 20:26:16</td>\n      <td>Graduate</td>\n      <td>Neither</td>\n      <td>Apartment</td>\n      <td>1</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>Off-campus</td>\n      <td>Yes</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>...</th>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n    </tr>\n    <tr>\n      <th>255</th>\n      <td>2/14/2024 19:46:28</td>\n      <td>Junior</td>\n      <td>Friends</td>\n      <td>House</td>\n      <td>5</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>On-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>256</th>\n      <td>2/15/2024 0:28:38</td>\n      <td>NaN</td>\n      <td>Family</td>\n      <td>Apartment</td>\n      <td>North District 4 bed 2 bath</td>\n      <td>No</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>257</th>\n      <td>2/15/2024 8:33:45</td>\n      <td>Senior</td>\n      <td>Family</td>\n      <td>House</td>\n      <td>9</td>\n      <td>No</td>\n      <td>1 - 5</td>\n      <td>Off-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>258</th>\n      <td>2/15/2024 16:10:40</td>\n      <td>Sophomore</td>\n      <td>Family</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>Yes</td>\n      <td>5 - 10</td>\n      <td>On-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>259</th>\n      <td>2/15/2024 16:14:11</td>\n      <td>Sophomore</td>\n      <td>Friends</td>\n      <td>Dorm</td>\n      <td>3 (room), 8 (hall), ~70 (building)</td>\n      <td>No</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>Yes</td>\n    </tr>\n  </tbody>\n</table>\n<p>260 rows × 10 columns</p>\n</div>"
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "\n",
    "# Load dataframe from data.csv\n",
    "df = pd.read_csv(\"data.csv\")\n",
    "\n",
    "# Select relevant columns\n",
    "df = df.iloc[:, [0, 2, 7, 8, 9, 58, 59, 60, 61, 26]]\n",
    "df"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-02-23T01:12:49.045312Z",
     "start_time": "2024-02-23T01:12:48.152070Z"
    }
   },
   "id": "3bea6ea662d6c063",
   "execution_count": 1
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Preprocessing"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "7e69a5a21a9de4ee"
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": "              Timestamp What is your current class standing?  \\\n0     2/9/2024 20:12:14                               Senior   \n1     2/9/2024 20:16:34                               Junior   \n2     2/9/2024 20:18:55                               Junior   \n3     2/9/2024 20:24:00                               Senior   \n4     2/9/2024 20:26:16                             Graduate   \n..                  ...                                  ...   \n255  2/14/2024 19:46:28                               Junior   \n256   2/15/2024 0:28:38                                  NaN   \n257   2/15/2024 8:33:45                               Senior   \n258  2/15/2024 16:10:40                            Sophomore   \n259  2/15/2024 16:14:11                            Sophomore   \n\n    Who do you live with?   \\\n0                  Neither   \n1                     Both   \n2                  Friends   \n3                  Neither   \n4                  Neither   \n..                     ...   \n255                Friends   \n256                 Family   \n257                 Family   \n258                 Family   \n259                Friends   \n\n    Do you currently live in a house, apartnment, or dorm?   \\\n0                                                House        \n1                                            Apartment        \n2                                                House        \n3                                            Apartment        \n4                                            Apartment        \n..                                                 ...        \n255                                              House        \n256                                          Apartment        \n257                                              House        \n258                                          Apartment        \n259                                               Dorm        \n\n     How many people live in your household? Do you currently work?  \\\n0                                          6                    Yes   \n1                                          4                     No   \n2                                          4                     No   \n3                                          1                     No   \n4                                          1                    Yes   \n..                                       ...                    ...   \n255                                        5                    Yes   \n256                                        4                     No   \n257                                        9                     No   \n258                                        4                    Yes   \n259                                        3                     No   \n\n    How many hours do you work per week on average?  \\\n0                                            5 - 10   \n1                                                 0   \n2                                                 0   \n3                                                 0   \n4                                           10 - 20   \n..                                              ...   \n255                                         10 - 20   \n256                                               0   \n257                                               0   \n258                                          5 - 10   \n259                                               0   \n\n    Do you work on or off campus?  \\\n0                      Off-campus   \n1                             NaN   \n2                             NaN   \n3                             NaN   \n4                      Off-campus   \n..                            ...   \n255                     On-campus   \n256                           NaN   \n257                    Off-campus   \n258                     On-campus   \n259                           NaN   \n\n    Do you work in a department related to your major?  \\\n0                                                   No   \n1                                                  NaN   \n2                                                  NaN   \n3                                                  NaN   \n4                                                  Yes   \n..                                                 ...   \n255                                                 No   \n256                                                NaN   \n257                                                NaN   \n258                                                 No   \n259                                                NaN   \n\n    Do you have roommates that are part of your major?  \n0                                                   No  \n1                                                  Yes  \n2                                                   No  \n3                                                   No  \n4                                                   No  \n..                                                 ...  \n255                                                 No  \n256                                                 No  \n257                                                 No  \n258                                                 No  \n259                                                Yes  \n\n[260 rows x 10 columns]",
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Timestamp</th>\n      <th>What is your current class standing?</th>\n      <th>Who do you live with?</th>\n      <th>Do you currently live in a house, apartnment, or dorm?</th>\n      <th>How many people live in your household?</th>\n      <th>Do you currently work?</th>\n      <th>How many hours do you work per week on average?</th>\n      <th>Do you work on or off campus?</th>\n      <th>Do you work in a department related to your major?</th>\n      <th>Do you have roommates that are part of your major?</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>2/9/2024 20:12:14</td>\n      <td>Senior</td>\n      <td>Neither</td>\n      <td>House</td>\n      <td>6</td>\n      <td>Yes</td>\n      <td>5 - 10</td>\n      <td>Off-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>2/9/2024 20:16:34</td>\n      <td>Junior</td>\n      <td>Both</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>Yes</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>2/9/2024 20:18:55</td>\n      <td>Junior</td>\n      <td>Friends</td>\n      <td>House</td>\n      <td>4</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>2/9/2024 20:24:00</td>\n      <td>Senior</td>\n      <td>Neither</td>\n      <td>Apartment</td>\n      <td>1</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>2/9/2024 20:26:16</td>\n      <td>Graduate</td>\n      <td>Neither</td>\n      <td>Apartment</td>\n      <td>1</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>Off-campus</td>\n      <td>Yes</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>...</th>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n    </tr>\n    <tr>\n      <th>255</th>\n      <td>2/14/2024 19:46:28</td>\n      <td>Junior</td>\n      <td>Friends</td>\n      <td>House</td>\n      <td>5</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>On-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>256</th>\n      <td>2/15/2024 0:28:38</td>\n      <td>NaN</td>\n      <td>Family</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>257</th>\n      <td>2/15/2024 8:33:45</td>\n      <td>Senior</td>\n      <td>Family</td>\n      <td>House</td>\n      <td>9</td>\n      <td>No</td>\n      <td>0</td>\n      <td>Off-campus</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>258</th>\n      <td>2/15/2024 16:10:40</td>\n      <td>Sophomore</td>\n      <td>Family</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>Yes</td>\n      <td>5 - 10</td>\n      <td>On-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>259</th>\n      <td>2/15/2024 16:14:11</td>\n      <td>Sophomore</td>\n      <td>Friends</td>\n      <td>Dorm</td>\n      <td>3</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>Yes</td>\n    </tr>\n  </tbody>\n</table>\n<p>260 rows × 10 columns</p>\n</div>"
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Fixes empty values\n",
    "df['Do you currently work?'] = df['Do you currently work?'].fillna('No')\n",
    "\n",
    "# Replaces custom text answers with appropriate values\n",
    "df['How many people live in your household?'] = (df['How many people live in your household?']\n",
    "                                                 .fillna(0)\n",
    "                                                 .replace('4 in total', '4')\n",
    "                                                 .replace('4 (Including me)', '4')\n",
    "                                                 .replace('at school 4 including me ', '4')\n",
    "                                                 .replace('3 excluding me', '4')\n",
    "                                                 .replace('5 including me', '5')\n",
    "                                                 .replace('North District 4 bed 2 bath', '4')\n",
    "                                                 .replace('3 (room), 8 (hall), ~70 (building)', '3')\n",
    "                                                 .astype(int))\n",
    "df['Who do you live with? '] = df['Who do you live with? '].replace('Family, Friends', 'Both').replace('Family, Friends, Both', 'Both')\n",
    "# Normalizes non-applicable answers\n",
    "df.loc[df['Do you currently work?'] == 'No', 'How many hours do you work per week on average?'] = 0\n",
    "df.loc[df['Do you currently work?'] == 'No', 'Do you work in a department related to your major?'] = np.nan\n",
    "\n",
    "df"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-02-23T01:12:49.066644Z",
     "start_time": "2024-02-23T01:12:49.047827Z"
    }
   },
   "id": "f71f8085d5f66b0",
   "execution_count": 2
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": "              Timestamp What is your current class standing?  \\\n0     2/9/2024 20:12:14                               Senior   \n4     2/9/2024 20:26:16                             Graduate   \n8     2/9/2024 22:02:49                               Junior   \n9     2/9/2024 22:08:43                               Senior   \n13    2/9/2024 22:15:13                               Junior   \n..                  ...                                  ...   \n246  2/13/2024 19:37:02                             Graduate   \n247  2/13/2024 21:39:14                               Senior   \n252   2/14/2024 9:48:12                               Junior   \n255  2/14/2024 19:46:28                               Junior   \n258  2/15/2024 16:10:40                            Sophomore   \n\n    Who do you live with?   \\\n0                  Neither   \n4                  Neither   \n8                  Friends   \n9                   Family   \n13                  Family   \n..                     ...   \n246                 Family   \n247                Friends   \n252                 Family   \n255                Friends   \n258                 Family   \n\n    Do you currently live in a house, apartnment, or dorm?   \\\n0                                                House        \n4                                            Apartment        \n8                                                House        \n9                                                House        \n13                                           Apartment        \n..                                                 ...        \n246                                              House        \n247                                          Apartment        \n252                                              House        \n255                                              House        \n258                                          Apartment        \n\n     How many people live in your household? Do you currently work?  \\\n0                                          6                    Yes   \n4                                          1                    Yes   \n8                                          6                    Yes   \n9                                          5                    Yes   \n13                                         4                    Yes   \n..                                       ...                    ...   \n246                                        2                    Yes   \n247                                        3                    Yes   \n252                                        5                    Yes   \n255                                        5                    Yes   \n258                                        4                    Yes   \n\n    How many hours do you work per week on average?  \\\n0                                            5 - 10   \n4                                           10 - 20   \n8                                           10 - 20   \n9                                             1 - 5   \n13                                          10 - 20   \n..                                              ...   \n246                                         10 - 20   \n247                                         20 - 40   \n252                                         20 - 40   \n255                                         10 - 20   \n258                                          5 - 10   \n\n    Do you work on or off campus?  \\\n0                      Off-campus   \n4                      Off-campus   \n8                       On-campus   \n9                       On-campus   \n13                     Off-campus   \n..                            ...   \n246                     On-campus   \n247                    Off-campus   \n252                    Off-campus   \n255                     On-campus   \n258                     On-campus   \n\n    Do you work in a department related to your major?  \\\n0                                                   No   \n4                                                  Yes   \n8                                                   No   \n9                                                   No   \n13                                                  No   \n..                                                 ...   \n246                                                Yes   \n247                                                 No   \n252                                                 No   \n255                                                 No   \n258                                                 No   \n\n    Do you have roommates that are part of your major?  \n0                                                   No  \n4                                                   No  \n8                                                   No  \n9                                                   No  \n13                                                  No  \n..                                                 ...  \n246                                                 No  \n247                                                Yes  \n252                                                 No  \n255                                                 No  \n258                                                 No  \n\n[77 rows x 10 columns]",
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Timestamp</th>\n      <th>What is your current class standing?</th>\n      <th>Who do you live with?</th>\n      <th>Do you currently live in a house, apartnment, or dorm?</th>\n      <th>How many people live in your household?</th>\n      <th>Do you currently work?</th>\n      <th>How many hours do you work per week on average?</th>\n      <th>Do you work on or off campus?</th>\n      <th>Do you work in a department related to your major?</th>\n      <th>Do you have roommates that are part of your major?</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>2/9/2024 20:12:14</td>\n      <td>Senior</td>\n      <td>Neither</td>\n      <td>House</td>\n      <td>6</td>\n      <td>Yes</td>\n      <td>5 - 10</td>\n      <td>Off-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>2/9/2024 20:26:16</td>\n      <td>Graduate</td>\n      <td>Neither</td>\n      <td>Apartment</td>\n      <td>1</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>Off-campus</td>\n      <td>Yes</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>8</th>\n      <td>2/9/2024 22:02:49</td>\n      <td>Junior</td>\n      <td>Friends</td>\n      <td>House</td>\n      <td>6</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>On-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>9</th>\n      <td>2/9/2024 22:08:43</td>\n      <td>Senior</td>\n      <td>Family</td>\n      <td>House</td>\n      <td>5</td>\n      <td>Yes</td>\n      <td>1 - 5</td>\n      <td>On-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>13</th>\n      <td>2/9/2024 22:15:13</td>\n      <td>Junior</td>\n      <td>Family</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>Off-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>...</th>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n    </tr>\n    <tr>\n      <th>246</th>\n      <td>2/13/2024 19:37:02</td>\n      <td>Graduate</td>\n      <td>Family</td>\n      <td>House</td>\n      <td>2</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>On-campus</td>\n      <td>Yes</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>247</th>\n      <td>2/13/2024 21:39:14</td>\n      <td>Senior</td>\n      <td>Friends</td>\n      <td>Apartment</td>\n      <td>3</td>\n      <td>Yes</td>\n      <td>20 - 40</td>\n      <td>Off-campus</td>\n      <td>No</td>\n      <td>Yes</td>\n    </tr>\n    <tr>\n      <th>252</th>\n      <td>2/14/2024 9:48:12</td>\n      <td>Junior</td>\n      <td>Family</td>\n      <td>House</td>\n      <td>5</td>\n      <td>Yes</td>\n      <td>20 - 40</td>\n      <td>Off-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>255</th>\n      <td>2/14/2024 19:46:28</td>\n      <td>Junior</td>\n      <td>Friends</td>\n      <td>House</td>\n      <td>5</td>\n      <td>Yes</td>\n      <td>10 - 20</td>\n      <td>On-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>258</th>\n      <td>2/15/2024 16:10:40</td>\n      <td>Sophomore</td>\n      <td>Family</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>Yes</td>\n      <td>5 - 10</td>\n      <td>On-campus</td>\n      <td>No</td>\n      <td>No</td>\n    </tr>\n  </tbody>\n</table>\n<p>77 rows × 10 columns</p>\n</div>"
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Working DataFrame\n",
    "w_df = df[df['Do you currently work?'] == 'Yes']\n",
    "# Not working DataFrame\n",
    "nw_df = df[df['Do you currently work?'] == 'No']\n",
    "w_df"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-02-23T01:12:49.084475Z",
     "start_time": "2024-02-23T01:12:49.068965Z"
    }
   },
   "id": "6c1d9ee7948e6b9a",
   "execution_count": 3
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": "              Timestamp What is your current class standing?  \\\n1     2/9/2024 20:16:34                               Junior   \n2     2/9/2024 20:18:55                               Junior   \n3     2/9/2024 20:24:00                               Senior   \n5     2/9/2024 20:45:09                               Junior   \n6     2/9/2024 21:55:59                            Sophomore   \n..                  ...                                  ...   \n253  2/14/2024 13:45:45                               Senior   \n254  2/14/2024 16:26:06                               Junior   \n256   2/15/2024 0:28:38                                  NaN   \n257   2/15/2024 8:33:45                               Senior   \n259  2/15/2024 16:14:11                            Sophomore   \n\n    Who do you live with?   \\\n1                     Both   \n2                  Friends   \n3                  Neither   \n5                     Both   \n6                  Friends   \n..                     ...   \n253                 Family   \n254                 Family   \n256                 Family   \n257                 Family   \n259                Friends   \n\n    Do you currently live in a house, apartnment, or dorm?   \\\n1                                            Apartment        \n2                                                House        \n3                                            Apartment        \n5                                            Apartment        \n6                                            Apartment        \n..                                                 ...        \n253                                              House        \n254                                              House        \n256                                          Apartment        \n257                                              House        \n259                                               Dorm        \n\n     How many people live in your household? Do you currently work?  \\\n1                                          4                     No   \n2                                          4                     No   \n3                                          1                     No   \n5                                          4                     No   \n6                                          4                     No   \n..                                       ...                    ...   \n253                                        6                     No   \n254                                        5                     No   \n256                                        4                     No   \n257                                        9                     No   \n259                                        3                     No   \n\n    How many hours do you work per week on average?  \\\n1                                                 0   \n2                                                 0   \n3                                                 0   \n5                                                 0   \n6                                                 0   \n..                                              ...   \n253                                               0   \n254                                               0   \n256                                               0   \n257                                               0   \n259                                               0   \n\n    Do you work on or off campus?  \\\n1                             NaN   \n2                             NaN   \n3                             NaN   \n5                             NaN   \n6                             NaN   \n..                            ...   \n253                           NaN   \n254                           NaN   \n256                           NaN   \n257                    Off-campus   \n259                           NaN   \n\n    Do you work in a department related to your major?  \\\n1                                                  NaN   \n2                                                  NaN   \n3                                                  NaN   \n5                                                  NaN   \n6                                                  NaN   \n..                                                 ...   \n253                                                NaN   \n254                                                NaN   \n256                                                NaN   \n257                                                NaN   \n259                                                NaN   \n\n    Do you have roommates that are part of your major?  \n1                                                  Yes  \n2                                                   No  \n3                                                   No  \n5                                                   No  \n6                                                   No  \n..                                                 ...  \n253                                                 No  \n254                                                Yes  \n256                                                 No  \n257                                                 No  \n259                                                Yes  \n\n[183 rows x 10 columns]",
      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>Timestamp</th>\n      <th>What is your current class standing?</th>\n      <th>Who do you live with?</th>\n      <th>Do you currently live in a house, apartnment, or dorm?</th>\n      <th>How many people live in your household?</th>\n      <th>Do you currently work?</th>\n      <th>How many hours do you work per week on average?</th>\n      <th>Do you work on or off campus?</th>\n      <th>Do you work in a department related to your major?</th>\n      <th>Do you have roommates that are part of your major?</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>1</th>\n      <td>2/9/2024 20:16:34</td>\n      <td>Junior</td>\n      <td>Both</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>Yes</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>2/9/2024 20:18:55</td>\n      <td>Junior</td>\n      <td>Friends</td>\n      <td>House</td>\n      <td>4</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>2/9/2024 20:24:00</td>\n      <td>Senior</td>\n      <td>Neither</td>\n      <td>Apartment</td>\n      <td>1</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>5</th>\n      <td>2/9/2024 20:45:09</td>\n      <td>Junior</td>\n      <td>Both</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>6</th>\n      <td>2/9/2024 21:55:59</td>\n      <td>Sophomore</td>\n      <td>Friends</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>...</th>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n      <td>...</td>\n    </tr>\n    <tr>\n      <th>253</th>\n      <td>2/14/2024 13:45:45</td>\n      <td>Senior</td>\n      <td>Family</td>\n      <td>House</td>\n      <td>6</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>254</th>\n      <td>2/14/2024 16:26:06</td>\n      <td>Junior</td>\n      <td>Family</td>\n      <td>House</td>\n      <td>5</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>Yes</td>\n    </tr>\n    <tr>\n      <th>256</th>\n      <td>2/15/2024 0:28:38</td>\n      <td>NaN</td>\n      <td>Family</td>\n      <td>Apartment</td>\n      <td>4</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>257</th>\n      <td>2/15/2024 8:33:45</td>\n      <td>Senior</td>\n      <td>Family</td>\n      <td>House</td>\n      <td>9</td>\n      <td>No</td>\n      <td>0</td>\n      <td>Off-campus</td>\n      <td>NaN</td>\n      <td>No</td>\n    </tr>\n    <tr>\n      <th>259</th>\n      <td>2/15/2024 16:14:11</td>\n      <td>Sophomore</td>\n      <td>Friends</td>\n      <td>Dorm</td>\n      <td>3</td>\n      <td>No</td>\n      <td>0</td>\n      <td>NaN</td>\n      <td>NaN</td>\n      <td>Yes</td>\n    </tr>\n  </tbody>\n</table>\n<p>183 rows × 10 columns</p>\n</div>"
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nw_df"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-02-23T01:12:49.104996Z",
     "start_time": "2024-02-23T01:12:49.089572Z"
    }
   },
   "id": "34f69a756f513fb7",
   "execution_count": 4
  },
  {
   "cell_type": "markdown",
   "source": [
    "# Analysis"
   ],
   "metadata": {
    "collapsed": false
   },
   "id": "d5c1424ddd30ca97"
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-02-23T01:12:49.110581Z",
     "start_time": "2024-02-23T01:12:49.107274Z"
    }
   },
   "id": "39571411a9ea92e0",
   "execution_count": 5
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": "<Figure size 800x800 with 1 Axes>",
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAAKSCAYAAABIowakAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABjHklEQVR4nO3deXxU9b3/8feZmUz2nSSQAImssooiooBLRUW0bnW52k1c2v5au9hb2157u6htbavXqrW1tZtarFarVtu6gbtGBVFBWUSW7CH7PpPZz+8PSEoEspHkzJx5PR+PPCBnTmY+M5nlne9qmKZpCgAAALblsLoAAAAAjC4CHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCH3rdcMMNMgxjTG7rlFNO0SmnnNL7/csvvyzDMPToo4+Oye2vWrVKJSUlY3Jbw9XV1aWrr75a48ePl2EYuvbaa60uadjG8rk1WIZh6Ktf/arVZYy6VatWKS0tzeoyBmQYhm644Qary4gbJSUl+uQnP2l1GRhDBD6buu+++2QYRu9XUlKSCgsLtWLFCv3qV79SZ2fniNxObW2tbrjhBm3cuHFErm8kRXNtg3HzzTfrvvvu05e//GWtXr1an/vc5w55bklJSZ/fd35+vk488UT94x//GMOKx8YjjzwiwzAOet+OOuooGYahl1566YDLJk+erCVLloxFiZKkcDisjIwMnXfeeQdcdvvtt8swDF1++eUHXPbDH/5QhmHoo48+GosyY0p5eXmf53lCQoLGjRunJUuW6Hvf+54qKyvHpI5Vq1b1+YPV6/Xqhhtu0Msvvzzgz65fv16GYej2228/4LLzzjtPhmHo3nvvPeCyk046SUVFRYdTNuIcgc/mbrrpJq1evVq//e1v9bWvfU2SdO2112revHl6//33+5z7/e9/X93d3UO6/traWt14441DDlVr1qzRmjVrhvQzQ9VfbX/4wx+0ffv2Ub39w/Xiiy/q+OOP149+9CN99rOf1cKFC/s9f8GCBVq9erVWr16t6667TrW1tfrUpz6l3/3ud2NU8dhYtmyZJOn111/vc7yjo0ObN2+Wy+VSaWlpn8uqqqpUVVXV+7Njwel06vjjj9cbb7xxwGWlpaUHrbPnsvz8fM2YMWMsyoxJl112mVavXq0//elP+sEPfqApU6bojjvu0KxZs/S3v/1tzOvxer268cYbBxX4jjnmGKWkpBzw/JWkN95446DPi0AgoLfffltLly4dqZIRh1xWF4DRtXLlSh177LG9319//fV68cUX9clPflLnnnuutm3bpuTkZEmSy+WSyzW6Twmv16uUlBS53e5RvZ2BJCQkWHr7g9HQ0KDZs2cP+vyioiJ99rOf7f3+85//vKZNm6bbb79d/+///b/RKNEShYWFOuKIIw74wHzzzTdlmqYuvvjiAy7r+X4sA1/P7a1du1bbtm3TrFmzeo+Xlpbqkksu0YMPPqi6ujqNHz9ekhQKhbRu3TqdccYZh33bHo9Hqamph3090eiYY47p81yXpIqKCp1xxhm6/PLLNWvWLB111FEWVdc/l8ulxYsXHxDqtm/frqamJn36058+4Pn7zjvvyOfzjcjzt+c9GPGHFr44dOqpp+oHP/iBKioq9MADD/QeP9g4q7Vr12rZsmXKyspSWlqaZs6cqe9973uS9o67W7RokSTpiiuu6O1mue+++yTtHac3d+5cvfPOOzrppJOUkpLS+7MfH8PXIxwO63vf+57Gjx+v1NRUnXvuuaqqqupzTklJiVatWnXAz+5/nQPVdrAxfB6PR9/61rc0adIkJSYmaubMmfq///s/mabZ57yesV9PPPGE5s6dq8TERM2ZM0fPPvvswR/wj2loaNBVV12lgoICJSUl6aijjtL999/fe3nPeMaysjI99dRTvbWXl5cP6vp7jB8/XrNmzVJZWVnvsZqaGl155ZUqKCjorfvPf/7zkGuU/tO99n//93+6/fbbVVxcrOTkZJ188snavHnzoGp84IEHtHDhQiUnJysnJ0eXXnrpAb/vg1m2bJnee++9Pi3SpaWlmjNnjlauXKm33npLkUikz2WGYRy0hWQwv8f33ntPK1euVEZGhtLS0rR8+XK99dZbg6qz5/Z77N69W3V1dfrqV7+qpKSkPpdt3LhRHo+nzwf7iy++qBNPPFGpqanKysrSeeedp23btvW5nZ7X7tatW/XpT39a2dnZ/YaDjRs3Ki8vT6eccoq6uroOed7777+vVatWacqUKUpKStL48eN15ZVXqrm5+aC3v3PnTq1atUpZWVnKzMzUFVdcIa/X2+dcv9+vb37zm8rLy1N6errOPfdcVVdX9/MoDk5xcbHuu+8+BQIB3XLLLX0u2717ty6++GLl5OQoJSVFxx9/vJ566qk+5/S87h555BH99Kc/1cSJE5WUlKTly5dr586dh7zd8vJy5eXlSZJuvPHG3tdrf+MRly1bpvr6+j7XW1paqoyMDH3xi1/sDX/7X9bzcz3uvvtuzZkzR4mJiSosLNQ111yjtra2PrfT33vwwdx///1yuVz69re/fchzELsIfHGqZzxYf92qW7Zs0Sc/+Un5/X7ddNNNuu2223Tuuef2vvnMmjVLN910kyTpi1/8Ym934kknndR7Hc3NzVq5cqUWLFigO+64Q5/4xCf6reunP/2pnnrqKX33u9/V17/+da1du1annXbakLuaB1Pb/kzT1Lnnnqvbb79dZ555pn75y19q5syZ+va3v63//u//PuD8119/XV/5yld06aWX6pZbbpHP59OFF154wAfhx3V3d+uUU07R6tWr9ZnPfEa33nqrMjMztWrVKt155529ta9evVrjxo3r003b86EyWMFgUFVVVcrNzZUk1dfX6/jjj9fzzz+vr371q7rzzjs1bdo0XXXVVbrjjjuGVOP+/vKXv+hXv/qVrrnmGl1//fXavHmzTj31VNXX1/db309/+lN9/vOf1/Tp0/XLX/5S1157rV544QWddNJJB3xwfdyyZcsUDAa1bt263mOlpaVasmSJlixZovb29j6hs7S0VEceeWTvY9FjML/HLVu26MQTT9SmTZv0ne98Rz/4wQ9UVlamU045pc/tH8zxxx8vl8vVp8WmtLRUqampWrRokY499tg+ge/jH+zPP/+8VqxYoYaGBt1www367//+b73xxhtaunTpQf8AuPjii+X1enXzzTfrC1/4wkFrevvtt3Xqqafq6KOP1jPPPNPvhI61a9dq9+7duuKKK3TXXXfp0ksv1d/+9jedddZZB/whJEmXXHKJOjs79bOf/UyXXHKJ7rvvPt144419zrn66qt1xx136IwzztDPf/5zJSQk6Oyzzz70gzgEJ5xwgqZOnaq1a9f2Hquvr9eSJUv03HPP6Stf+Yp++tOfyufz6dxzzz3oONCf//zn+sc//qHrrrtO119/vd566y195jOfOeRt5uXl6be//a0k6YILLuh9vX7qU5865M8cbFhCaWmpjj/+eC1evFgJCQl9hgKUlpYqPT29t9Xyhhtu0DXXXKPCwkLddtttuvDCC3XPPffojDPOUDAY7HNbg30P/v3vf68rrrhC//M//6Nbb731kLUjhpmwpXvvvdeUZL799tuHPCczM9M8+uije7//0Y9+ZO7/lLj99ttNSWZjY+Mhr+Ptt982JZn33nvvAZedfPLJpiTzd7/73UEvO/nkk3u/f+mll0xJZlFRkdnR0dF7/JFHHjElmXfeeWfvseLiYvPyyy8f8Dr7q+3yyy83i4uLe79/4oknTEnmT37ykz7nXXTRRaZhGObOnTt7j0ky3W53n2ObNm0yJZl33XXXAbe1vzvuuMOUZD7wwAO9xwKBgHnCCSeYaWlpfe57cXGxefbZZ/d7ffufe8YZZ5iNjY1mY2OjuWnTJvPSSy81JZlf+9rXTNM0zauuusqcMGGC2dTU1OdnL730UjMzM9P0er1DqrGsrMyUZCYnJ5vV1dW9565bt86UZH7zm9/sPfbx51Z5ebnpdDrNn/70p31q+eCDD0yXy3XA8Y/bsmWLKcn88Y9/bJqmaQaDQTM1NdW8//77TdM0zYKCAvM3v/mNaZqm2dHRYTqdTvMLX/hCn+sY7O/x/PPPN91ut7lr167eY7W1tWZ6erp50kkn9VunaZrmokWLzKlTp/Z+/6Uvfcn8xCc+YZqmaX7nO98xFy1a1HvZRRddZKakpJjBYNA0TdNcsGCBmZ+fbzY3N/ep0eFwmJ///Od7j/U8vpdddtkBt3/55Zebqamppmma5uuvv25mZGSYZ599tunz+Qasvec5sb+HHnrIlGS++uqrB9z+lVde2efcCy64wMzNze39fuPGjaYk8ytf+Uqf8z796U+bkswf/ehH/dbT85y79dZbD3nOeeedZ0oy29vbTdM0zWuvvdaUZL722mu953R2dppHHHGEWVJSYobDYdM0//MeNGvWLNPv9/eee+edd5qSzA8++OCQt9nY2Dio+nv0PCevuuqq3mMzZ840b7zxRtM0TfO4444zv/3tb/delpeXZ55++ummaZpmQ0OD6Xa7zTPOOKO3dtM0zV//+temJPPPf/5z77H+3oP3f3+58847TcMwel9PsCda+OJYWlpav7N1s7KyJElPPvlkn+6xoUhMTNQVV1wx6PM///nPKz09vff7iy66SBMmTNDTTz89rNsfrKefflpOp1Nf//rX+xz/1re+JdM09cwzz/Q5ftppp2nq1Km938+fP18ZGRnavXv3gLczfvx4XXbZZb3HEhIS9PWvf11dXV165ZVXhn0f1qxZo7y8POXl5emoo47S3//+d33uc5/TL37xC5mmqccee0znnHOOTNNUU1NT79eKFSvU3t6ud999d1g1nn/++X1mDx533HFavHhxv7+zxx9/XJFIRJdcckmfWsaPH6/p06cfdJbt/mbNmqXc3NzeFpJNmzbJ4/H0zsJdsmRJb2vZm2++qXA4fNAuzoF+j+FwWGvWrNH555+vKVOm9J43YcKE3rFWHR0d/da6bNky7dq1S3V1dZL+0xIpSUuXLtV7773X2+1ZWlqqxYsXy+Vyac+ePdq4caNWrVqlnJycPjWefvrpB318+xur+dJLL2nFihVavny5Hn/8cSUmJvZbt6Te8b2S5PP51NTUpOOPP16Sep8v/d3+iSeeqObm5t7HqKfmj7/ORnLJoZ4Wy573tqefflrHHXdcn99/WlqavvjFL6q8vFxbt27t8/NXXHFFnzHGJ554oiQN+NoeivT0dM2fP7/3+dvU1KTt27f3eV70PH8/+ugjNTY29mn1DQQCuvbaa+Vw/Ocj/Atf+IIyMjIO6Koe6D34lltu0Te+8Q394he/0Pe///0Ru4+IPgS+ONbV1dUnXH3cf/3Xf2np0qW6+uqrVVBQoEsvvVSPPPLIkMJfUVHRkCZoTJ8+vc/3hmFo2rRpQx6/NlQVFRUqLCw84PHoGWhfUVHR5/jkyZMPuI7s7Gy1trYOeDvTp0/v80bd3+0MxeLFi7V27Vo9//zzeuONN9TU1KS//OUvSk5OVmNjo9ra2vT73/++NxT2fPV8GDQ0NAyrxo//ziRpxowZ/f7OduzYIdM0NX369APq2bZtW28th2IYhpYsWdI7Vq9nZuu0adMk9Q18Bxv/1GOg32NjY6O8Xq9mzpx5wHmzZs1SJBIZcMzh/uP42tratGXLlt6xhEuWLFEoFNL69etVVlamPXv29J7f8zgf6rabmprk8Xj6HD/iiCMOWoPP59PZZ5+to48+Wo888sigX5MtLS36xje+oYKCAiUnJysvL6/3Ntrb2w84/+OPZ3Z2tiT1Pp4VFRVyOBx9Qvah7uNw9YxJ7HktV1RUHPIx7Ll8fwPdh5GybNmy3rF6b7zxRu+sbmnv8+Kdd96R3+8/4Pl7qOeF2+3WlClTDrg//b0Hv/LKK/rud7+r7373u4zbiwPM0o1T1dXVam9v7/2APJjk5GS9+uqreumll/TUU0/p2Wef1cMPP6xTTz1Va9askdPpHPB29m8hGCmHWsA3HA4PqqaRcKjbMQ8yrmmsjBs3TqeddtpBL+sJ6Z/97GcPuvabtLflaKxEIhEZhqFnnnnmoI/lYBYKXrZsmf71r3/pgw8+6NNqJu39wPz2t7+tmpoavf766yosLOzTQtdjLH6P+4/X6pkdecIJJ0ja+zubPn26Xn/99d7geDgzMQ/1ektMTNRZZ52lJ598Us8+++ygF9y95JJL9MYbb+jb3/62FixYoLS0NEUiEZ155pkH/cMvGl4XmzdvVn5+vjIyMob182N1H5YtW6a77rpLpaWleuONNzRv3rze5/2SJUvk9/v19ttv6/XXX5fL5eoNg0PV33vwnDlz1NbWptWrV+tLX/rSIf9ggD0Q+OLU6tWrJUkrVqzo9zyHw6Hly5dr+fLl+uUvf6mbb75Z//u//6uXXnpJp5122ojvnrBjx44+35umqZ07d/YJI9nZ2Qcd1F9RUdHnQ30otRUXF+v5559XZ2dnn1a+Dz/8sPfykVBcXKz3339fkUikTwvaSN/Ox/XMiAyHw4cMhcOt8eO/M2lvN1R/O5lMnTpVpmnqiCOOGPZ6c/sHqdLS0j7dggsXLlRiYqJefvllrVu3TmedddawbiMvL08pKSkHXbPxww8/lMPh0KRJk/q9jvz8/N5Ql5qaqtmzZ/cOl5D+0xpZXV0tp9PZGwZ7HudD3fa4ceMGveyKYRj661//qvPOO08XX3yxnnnmmYPOkt9fa2urXnjhBd1444364Q9/2Hv8YL/vwSouLlYkEtGuXbv6tFCN1JqYb775pnbt2tVnyZbi4uJDPoY9lx+u4bwP7v/8ffPNN/vMIC8sLFRxcbFKS0tVWlqqo48+uvePhf2fF/u/3wUCAZWVlQ34+t7fuHHj9Oijj2rZsmVavnx57x9HsCe6dOPQiy++qB//+Mc64ogj+p191tLScsCxBQsWSNq7tIKk3g+cgWZVDtZf/vKXPuMKH330Ue3Zs0crV67sPTZ16lS99dZbCgQCvcf+/e9/H9C1NpTazjrrLIXDYf3617/uc7xnR4T9b/9wnHXWWaqrq9PDDz/ceywUCumuu+5SWlqaTj755BG5nY9zOp268MIL9dhjjx10yZTGxsZh1/jEE0+opqam9/v169dr3bp1/T5mn/rUp+R0OnXjjTce0HJimuaAs50l6dhjj1VSUpL++te/qqampk8LX2Jioo455hj95je/OWCZk6FwOp0644wz9OSTT/bpoq6vr9eDDz6oZcuWDaoladmyZdq4caPWrFlzwG4fS5Ys0ZtvvqnXXntN8+fP7/2DY8KECVqwYIHuv//+Ps/hzZs3a82aNUMOsW63W48//rgWLVqkc845R+vXr+/3/J6Wro//fvaf0T1UPc+JX/3qVyN2nT0qKiq0atUqud3uPt2TZ511ltavX68333yz95jH49Hvf/97lZSUDGmty0PpCWNDeR/sWU/yhRde0IYNGw76vHjiiSe0ffv2Ps/f0047TW63W7/61a/6/G7+9Kc/qb29fcgznidOnKjnn39e3d3dOv300wf12kNsooXP5p555hl9+OGHCoVCqq+v14svvqi1a9equLhY//znP5WUlHTIn73pppv06quv6uyzz1ZxcbEaGhp09913a+LEib1vQFOnTlVWVpZ+97vfKT09XampqVq8ePGwuwZycnK0bNkyXXHFFaqvr9cdd9yhadOm9Vli4uqrr9ajjz6qM888U5dccol27dqlBx544IBxQUOp7ZxzztEnPvEJ/e///q/Ky8t11FFHac2aNXryySd17bXXHnDdw/XFL35R99xzj1atWqV33nlHJSUlevTRR1VaWqo77rij3zGVh+vnP/+5XnrpJS1evFhf+MIXNHv2bLW0tOjdd9/V888/3xvwh1rjtGnTtGzZMn35y1+W3+/XHXfcodzcXH3nO985ZC1Tp07VT37yE11//fUqLy/X+eefr/T0dJWVlekf//iHvvjFL+q6667r9/643W4tWrRIr732mhITEw/YiWTJkiW67bbbJB1eN+lPfvKT3vUov/KVr8jlcumee+6R3+8/YL23Q1m2bJnuvfdevf3227rmmmsOqLO9vV3t7e29u+H0uPXWW7Vy5UqdcMIJuuqqq9Td3a277rpLmZmZw9p3Njk5Wf/+97916qmnauXKlXrllVc0d+7cg56bkZGhk046SbfccouCwaCKioq0Zs2aPus6DtWCBQt02WWX6e6771Z7e7uWLFmiF154od917g7m3Xff1QMPPKBIJKK2tja9/fbbeuyxx2QYhlavXt2nR+B//ud/9NBDD2nlypX6+te/rpycHN1///0qKyvTY489dsBY1eFITk7W7Nmz9fDDD2vGjBnKycnR3LlzD/nY9li2bFlvb8vH14hcsmSJHnrood7zeuTl5en666/XjTfeqDPPPFPnnnuutm/frrvvvluLFi06YEHqwZg2bZrWrFmjU045RStWrNCLL7447C5xRDErpgZj9PUsy9Lz5Xa7zfHjx5unn366eeedd/ZZ/qPHx5fOeOGFF8zzzjvPLCwsNN1ut1lYWGhedtll5kcffdTn55588klz9uzZpsvl6rMMysknn2zOmTPnoPUdalmWhx56yLz++uvN/Px8Mzk52Tz77LPNioqKA37+tttuM4uKiszExERz6dKl5oYNGw64zv5q+/iyLKa5d6mGb37zm2ZhYaGZkJBgTp8+3bz11lvNSCTS5zxJ5jXXXHNATYdaLubj6uvrzSuuuMIcN26c6Xa7zXnz5h106ZihLssymHPr6+vNa665xpw0aZKZkJBgjh8/3ly+fLn5+9//fsg17r9Exm233WZOmjTJTExMNE888URz06ZNfc79+HOrx2OPPWYuW7bMTE1NNVNTU80jjzzSvOaaa8zt27cP6n5ff/31piRzyZIlB1z2+OOPm5LM9PR0MxQKHXD5UH6P7777rrlixQozLS3NTElJMT/xiU+Yb7zxxqBqNE3T3L59e+9r8eOvn0gkYmZlZZmSzIcffviAn33++efNpUuXmsnJyWZGRoZ5zjnnmFu3bu1zTs/je7AllPZflqVHU1OTOXv2bHP8+PHmjh07Dll3dXW1ecEFF5hZWVlmZmamefHFF5u1tbUHLEFyqNvveR8qKyvrPdbd3W1+/etfN3Nzc83U1FTznHPOMauqqoa0LEvPl8vlMnNycszFixeb119//UHfK0zTNHft2mVedNFFZlZWlpmUlGQed9xx5r///e8+5/S8B/39738/6G0e7DW6vzfeeMNcuHCh6Xa7B71Eyz333NO7HNXHvfvuu733s76+/oDLf/3rX5tHHnmkmZCQYBYUFJhf/vKXzdbW1j7n9PcefLD3jHXr1vUuN3SwJXkQ2wzTtHCUOYCYVV5eriOOOEK33nrrgK1xAABrMYYPAADA5gh8AAAANkfgAwAAsDnG8AEAANgcLXwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmCHwAAAA2R+ADAACwOQIfAACAzRH4AAAAbI7ABwAAYHMEPgAAAJsj8AEAANgcgQ8AAMDmXFYXAACHIxwxFYhEFAxHFAibCkYiMk3JlLnvX8k0zb3/SjJNqWjXNsnhkAzjP1/7vjecThlJSTISE6XExN7/G06nxfcUAIaPwAcgKpimqe5QRP7wvvAWiSgQjigYNhXY931PqPvP96bCpjnk28r597+HXqDL9Z/w1xMIe75PTJSRnCxHerocmZkyMjP3/uviLRZAdODdCMCYiZimPIGwuoIheYJhdQX2/uvZ9+/Qo9sYCoVkdnXJ7Ooa9I8Yqan/CYAZGXL0BMGef1NTZRjGKBYNAHsR+ACMqFDElCcQ2i/UheUJhuQJhOUNha0ub0yZHo/CHo9UW3vwE5zOvSFw3Dg58/PlKCiQs6BAjtxcGQ6GWAMYOQQ+AMPmCYbU2h1Uq2/vV2cgJH84YnVZsSMcVqSlRZGWFoU++ug/x53OvSGwoOA/QTA/X46MDOtqBRDTCHwABsUfjqjVF+gT8Ah3oyQcVqS+XpH6egX3O2wkJfWGP2dBgZxFRXIUFNAtDGBABD4ABwhHTLX5gmrxBXrDnScYX92x0cj0+RSuqFC4ouI/BxMT5Zo0Sc7Jk+WaPFnOoiImiwA4AO8KANQVCKnJG1CLL6hWX0Ad/lB0T6DAf/j9Cu3cqdDOnfJLktMpZ2Hh3vC3LwQaSUlWVwnAYgQ+IA6FIqYavX7Ve/Z+0XpnI+GwwlVVCldVSaWlkmHIkZ+/txWwuFiuyZMZCwjEIQIfECc6/SHVeXyq9/jV1B1QhCa8+GCaitTXK1BfL23YIEly5OcrYcYMuWbMkHPiRMYAAnGAwAfYVCgSUYM3oPouv+q9fnlpxcM+kYYG+Rsa5H/9dRkpKXJNn743AE6dundBaQC2Q+ADbKTdH+ztpm2mFQ+DYHq9Cm7apOCmTZLTKVdxsVwzZihh5kw5srKsLg/ACDFMcxj7EgGICqZpqrk7qKrObtV1+dQdYpmUwVj+t99bXUJMcOTl/afrd9Ikun6BGEYLHxCDOv0hVXZ0q6qzm65ajJpIY6P8jY3yl5bKSE1Vwty5cs+fL2dhodWlARgiAh8QI3yhsKo7fKrs6FabPzjwDwAjyPR4FFi3ToF16+QYN04J8+fLPX++HJmZVpcGYBDo0gWiWCgSUW2nT5UdPjV6/ayNN0Lo0h05zpISuefPV8Ls2Uz4AKIYgQ+IMqZpqt7rV1V7t2q7/ArzEh1xBL5R4HIpYeZMJcyfL9e0aTIcDqsrArAfunSBKNHqC6iyo1vVHT72qEXsCYUU3LJFwS1b9o73mzNHCUcdJRfj/YCoQOADLBSOmKrs6NauVo86AiGrywFGhOnxKLB+vQLr18s5YYLcixcrYe5cGU6n1aUBcYsuXcACvlBYu9q8Km/z0ppnAbp0x56Rmir3woVyH3usHOnpVpcDxB0CHzCG2nxB7Wz1qLqzm0WRLUTgs5DDoYQ5c+RevFiuoiKrqwHiBl26wCgzTVN7uvza2epRU3fA6nIAa0UiCn7wgYIffCBnUdHe7t7Zs+nuBUYZLXzAKAlGIqpo3zs+z8PiyFGFFr7oYqSlyX3ssXu7e1NTrS4HsCUCHzDCPMGQdrV6Vd7uVYh+26hE4ItSTqcS5s5V4gknyFlQYHU1gK3QpQuMkCZvQDtbPdrT5WOBZGA4wmEFN21ScNMmuY48UkknnSTnhAlWVwXYAoEPOEzN3QFtaexkfB4wgkIffqiuDz+Ua8YMJZ50EhM8gMNE4AOGqd0f1JbGTtV5/FaXAthW6KOPFProI7mmTlXiySfLNWmS1SUBMYnABwxRVyCkrU2dqu70WV0KEDdCu3YptGvX3uB36qns4AEMEYEPGKTuYFjbmrtU0e5ljB5gkd7gN3Omkj7xCSZ3AINE4AMG4A9H9FFzl3a1eVgsGYgSoe3b1bV9uxLmzFHiKafIOW6c1SUBUY3ABxxCMBLRzhaPdrR6WF4FiFLBLVsU3LpV7qOPVuLy5XKkpFhdEhCVCHzAx4Qjpna3ebS9xaMA+9wC0c80FXj3XQW2blXSSSfJfdxx7NwBfAyBD9jHNE2Vt3frw+ZOdYcIekDM8fnkW7NGgXfeUdKKFUqYPt3qioCoQeADtHfR5E0N7Wr3h6wuBcBhijQ3y/vgg3JNm6akFSsY3weIwIc45wuFtbmxU5Ud3VaXAmCEhXbuVNfu3XIvWqSkU06RkZRkdUmAZQh8iEumaWpXm1fbmjoVZEIGYF+RiALr1in4wQdK/MQn5F64UIZhWF0VMOYIfIg7zd6ANtJ9C8QV0+uV76mnFNiwQclnnilXSYnVJQFjisCHuOEPR/RBQwfdt0Aci9TXy3P//UqYO1dJZ54pR2qq1SUBY4LAh7hQ2e7VB42d8rPMCgBJwc2bFdq9W0krV8o9d67V5QCjjsAHW/MEQnqvvl0N3oDVpQCIMqbXq+7HHlNwyxYln3WWHOnpVpcEjBoCH2wpYpra2eLRtuYuhU0mZQA4tNCHH6qrvFxJK1bIvWCB1eUAo4LAB9tp9QX1bl0bkzIADJrp86n7ySf3tvZ98pNyZGZaXRIwohxWFwCMFNM09WFzp16uaCLsARiW0M6d6vztb+XfsEEmvQOwEQIfbMEbDOu1qhZtbeoSb9EADovfL99TT8mzerUira1WVwOMCAIfYl51Z7deKG9UUzcTMwCMnHBZ2d7WvnXraO1DzCPwIWaFIhG9s6dN62vb2C0DwOgIBuV79ll5/vIXRTo7ra4GGDYCH2JSqy+gF8ubVMEiygDGQLi8XF333KPgrl1WlwIMC4EPMcU0TW1v7tLLFc3qCoatLgdAHDE9HnkfeEC+F16QGWERd8QWlmVBzOgOhbVhT5saWUQZgIX8r7+uUGWlUi68UI6MDKvLAQaFFj7EhNpOn14obyTsAYgK4cpKdf3udwru2GF1KcCgEPgQ1UIRU+/Vteut2lYFwkzMABA9zO5ueR98UN1r1sgMM8QE0Y0uXUStNl9Qb+9pU2eARZQBRK/Am28qXFW1t4s3K8vqcoCDooUPUam6s1uvVDYT9gDEhHB19d5ZvB9+aHUpwEER+BBVTNPU1qZOra9tU5iFTgHEENPnk/fhh9X9zDPM4kXUIfAhaoQiptbVtunD5i6rSwGAYQusXy/PAw/I7GadUEQPAh+igjcY1iuVTart8lldCgActnBZmbr+9CeFm5utLgWQROBDFGjuDuiliia1+xmvB8A+Is3N8vzxjwqVlVldCkDgg7Uq2r16rapZ/jDjXQDYj+nzyfPAA/Jv2GB1KYhzBD5YwjRNfdDQoXfq2hVhbgYAO4tE5HvqKXU/+yyTOWAZAh/GXDAS0Zs1rdrR6rG6FAAYM4F16+R96CGZfr/VpSAOEfgwpjyBkF6paFadhzc8APEntHOnuv70J0VaW60uBXGGwIcx0+j166XKJnWwmDKAOBZpbFTXH/+oUGWl1aUgjhD4MCbK2rx6vaqF/XABQJLp9crzl78osHGj1aUgThD4MOo+au7Se/XtIuoBwH7CYXU/+aT8paVWV4I4QODDqNrS1KnNTZ1WlwEAUcv3/PPyvfii1WXA5gh8GDXvN3RoO9ukAcCA/K+9tncPXvYQxygh8GHEmaapd+vatJNlVwBg0ALr16v7n/9krT6MCgIfRlTENLVhT5vK29k0HACGKrhxo7yPPSYzHLa6FNgMgQ8jJhwxta62VVWdPqtLAYCYFdq6de8CzcGg1aXARgh8GBGhiKk3a1q0p4sFlQHgcIV27ZLngQfYlQMjhsCHwxYMR1Ra3aIGb8DqUgDANsKVlfLcf78iXq/VpcAGCHw4LIFwRK9Vt6i5m7AHACMtvGePPPfeq0gny1vh8BD4MGy+UFivVjarzcc4EwAYLZGmJnX9+c+KtLVZXQpiGIEPw+IN7g177IsLAKPPbGuT5y9/oaUPw0bgw5D1hL2uIMsGAMBYibS2yrN6NWP6MCwEPgyJPxRRaXWzvCHCHgCMtUhjo7x//SuzdzFkBD4MWigS0Rs1LeoMEPYAwCrh2lp5HnyQdfowJAQ+DErENPVWTatamaABAJYLV1bK+8gj7MiBQSPwYUCmaertPW2sswcAUSS0c6e8jz/O3rsYFAIfBrSpoUM1bJcGAFEntHWruv/1L5mmaXUpfZimqdNOO00rVqw44LK7775bWVlZqq6utqCy+EXgQ7+2NnVqdxszwgAgWgU3bpTv2WetLqMPwzB07733at26dbrnnnt6j5eVlek73/mO7rrrLk2cONHCCuMPgQ+HtKvVow+bu6wuAwAwgMD69fK98ILVZfQxadIk3XnnnbruuutUVlYm0zR11VVX6YwzztDRRx+tlStXKi0tTQUFBfrc5z6npqam3p999NFHNW/ePCUnJys3N1ennXaaPB6Phfcm9hH4cFDVHd3a1NBhdRkAgEHyv/66/KWlVpfRx+WXX67ly5fryiuv1K9//Wtt3rxZ99xzj0499VQdffTR2rBhg5599lnV19frkksukSTt2bNHl112ma688kpt27ZNL7/8sj71qU9FXbd1rDFMHkF8TL3HrzdrWhThmQGbWv6331tdAjBqks8/X+6jjrK6jF4NDQ2aM2eOWlpa9Nhjj2nz5s167bXX9Nxzz/WeU11drUmTJmn79u3q6urSwoULVV5eruLiYgsrtxda+NBHS3dA62paCXsAEKO6//UvhSorrS6jV35+vr70pS9p1qxZOv/887Vp0ya99NJLSktL6/068sgjJUm7du3SUUcdpeXLl2vevHm6+OKL9Yc//EGtra0W34vYR+BDr05/SG/UtChEoy8AxK5wWN6HH1akrc3qSnq5XC65XC5JUldXl8455xxt3Lixz9eOHTt00kknyel0au3atXrmmWc0e/Zs3XXXXZo5c6bKysosvhexjcAHSXv3x329ulmBMGEPAGKd6fXK89BDUbkF2zHHHKMtW7aopKRE06ZN6/OVmpoqae8s36VLl+rGG2/Ue++9J7fbrX/84x8WVx7bCHxQOGLqzZoWdYdYvBMA7CLS0CDvY49F3cLM11xzjVpaWnTZZZfp7bff1q5du/Tcc8/piiuuUDgc1rp163TzzTdrw4YNqqys1OOPP67GxkbNmjXL6tJjGoEPere+Xe3+kNVlAABGWGjHDvnWrLG6jD4KCwtVWlqqcDisM844Q/PmzdO1116rrKwsORwOZWRk6NVXX9VZZ52lGTNm6Pvf/75uu+02rVy50urSYxqzdOPczlaP3mf5FcQZZuki3iR/8pNyL1xodRmwEC18cazR69cHhD0AsL3up59WiEkPcY3AF6e8wbDW17aJ5l0AiAORiLyPPKJwc7PVlcAiBL44FI6Yequ2Vf5wdA3kBQCMHtPnk/fBB2V2d1tdCixA4ItD79W3q80XtLoMAMAYi7S0yPP3v0fdzF2MPgJfnNnV6lFlB3/dAUC8CpeVRd3MXYw+Al8cafIGmJELAFBg3ToFt261ugyMIQJfnOgOhrWutpVJGgAASZL3n/9UuKXF6jIwRgh8cSBiMkkDAPAxfr+8jzwiM8TC+/GAwBcHNta3q5VJGgCAj4nU16v76aetLgNjgMBnc7vbPCpvZ5IGAODggu+9p8CmTVaXgVFG4LOxNl+QSRoAgAF1P/WUwk1NVpeBUUTgs6lwxNSGPW2KMEsDADCQYFDexx5jPJ+NEfhsamtTpzoCvHABAIMTqauTb+1aq8vAKCHw2VCT168drR6rywAAxJjA+vUKbt9udRkYBQQ+mwlGItpQ1251GQCAGNX95JOKdDD+224IfDbzfkOHvMGw1WUAAGKU2d0t7z/+IdNkELidEPhspLbLpwqWYAEAHKZwebkCb79tdRkYQQQ+m/CHwnqPrlwAwAjxPf+8Im1tVpeBEULgs4n36tvZOg0AMHKCQXn/+U+rq8AIIfDZQEW7V7VdfqvLAADYTLisTIF33rG6DIwAAl+M8wbD2sRuGgCAUdK9di2zdm2AwBfDTNPUO3VtCrGdBgBgtPj96v7Xv6yuAoeJwBfDdrV61egNWF0GAMDmQjt3KrBxo9Vl4DAQ+GJUhz+ozU00sQMAxobvuecU6ey0ugwME4EvBpmmqXfr2kVPLgBgrJg+n7qfesrqMjBMBL4YVNHRrRZf0OoyAABxJrR9uwKbN1tdBoaBwBdjguGItjTSpA4AsIbvmWcU8XisLgNDROCLMVubO1lgGQBgGdPrle/ZZ60uA0NE4Ish7f6gdrd6rS4DABDngps3K1RebnUZGAICXwzZVN8h5mkAAKJB93PPyTT5VIoVBL4YUd3RraZu1twDAESHSF2dgu++a3UZGCQCXwwIRSL6oJE19wAA0cX34osyfT6ry8AgEPhiwIfNXeoOMVEDABBdTK9XvldesboMDAKBL8p1BULa2cr0dwBAdAqsX69wU5PVZWAABL4ot6mhgx01AADRKxKR77nnrK4CAyDwRbE9XT7Ve/xWlwEAQL9CO3cquGOH1WWgHwS+KBWOmHq/gYkaAIDY4HvuOZnhsNVl4BAIfFFqR2uXPEFeOACA2BBpblZg/Xqry8AhEPiikDcY1vZmJmoAAGKL75VX2Gc3ShH4otC2pk6FWb0cABBr/H75XnzR6ipwEAS+KNMZCKmyo9vqMgAAGJbge+8p3NxsdRn4GAJflNnW1Ml+uQCA2GWa8rMYc9Qh8EWRdn9Q1Z1sUQMAiG3BzZtZjDnKEPiiyNamTqtLAADg8Jmm/K++anUV2A+BL0q0+gLa08UiywAAewhu3qxwY6PVZWAfAl+U2NLYZXUJAACMHFr5ogqBLwo0dwfU4KV1DwBgL8EtW2jlixIEviiwrYnWPQCADTFjN2oQ+CzWQuseAMDGglu3KtzQYHUZcY/AZ7EPm2ndAwDYGGP5ogKBz0JtvqDqPLTuAQDsLbhlC618FiPwWYjWPQBAvPAxls9SBD6LdPiDqu1iVw0AQHwIbd2qcH291WXELQKfRWjdAwDEG/9bb1ldQtwi8FnAGwyphj1zAQBxJvjBB4p4PFaXEZcIfBbY3eaVaXURAACMtXBYgXfesbqKuETgG2PhiKny9m6rywAAwBKBDRtkhsNWlxF3CHxjrKazW4FwxOoyAACwhNnZqeDWrVaXEXcIfGNsV5vX6hIAALBUYN06q0uIOwS+MdTqC6rVF7S6DAAALBWuqVGopsbqMuIKgW8M7W5lZhIAABKtfGONwDdGAuGIqjuZrAEAgLR3u7VIZ6fVZcQNAt8YKW/3KsxaLAAA7BWJKLBhg9VVxA2X1QXEA9M0VcZkDQDo45evvaZ/bdumHU1NSnK5dNykSbrx9NM1fdy43nPKWlr0/TVr9FZlpQKhkJZPm6ZbzjpL+Wlp/V53bUeHbli7Vmt37lR3MKgpOTn6zXnn6eiiIknSXaWlurO0VJL0jWXL9LUlS3p/dkN1tb711FN64eqr5XI6R+Geo0fgnXeUeOKJMlzEkdFGC98YqPf45Qmy5hAA7K+0vFxXL1qktVdfrX98/vMKRSK6YPVqeQIBSZInENAFq1fLkPTPyy/Xs1ddpUA4rEsffFCRyKGXt2rr7taKP/1JLqdTj37mM3rrmmv0kzPOUFZysiRpc12dbn7pJf3poov0p4su0k9ffFFb9u3xGgqH9c1//1u3f/KThL0xYHo8Cm7ebHUZcYFIPQZYigUADvTY5z7X5/u7zz9f0269VRtra7W0pETrKitV2damV7/0JWUkJUmSfnvBBSr5+c/1almZTpk69aDXe8frr2tiZqbuPv/83mMl2dm9/9/R1KQ5BQU6ecoUSdKcgoLeY7964w0tKS7WMftaAjH6/OvWyb1ggdVl2B4tfKPMEwip3uO3ugwAiHodvr17jGfva4nzh8MyJCXu192X5HLJYRh6s7LykNfzzPbtWlBYqMsfeUTTbrlFJ/7ud7p/v+28ZhcUaGdzs6ra2lTZ1qadzc2alZ+vspYW/fW99/T9U08dnTuIg4rU1Sm8Z4/VZdgegW+U7aZ1DwAGFIlEdP2zz+r4SZM0u6BAkrRo4kSlut360dq18gYC8gQC+v6aNQqbpuq7ug55XeWtrfrz229rak6OHvvc53TVscfqu888owc3bpQkzczL0w+XL9cFq1frU6tX60fLl2tmXp6u/de/dOPpp+vFnTt1wm9+oxN/9zuVlpePwb1HYNMmq0uwPbp0R1E4YqqincAHAAO57umntbWhQc9eeWXvsXGpqbrv4ov13089pXvWrZPDMHThvHk6asIEOQzjkNcVMU0dXVioH552miTpqAkTtLWhQfdu2KBP7+s6vHLRIl25aFHvzzy4caPSEhN13KRJOvauu/TSF7+omo4OXfXoo9p07bV9Whkx8oKbNyvpjDNkOGiHGi08g0dRVWe3AhHWYgGA/nz7qaf03Ecf6akrrlBRZmafy06dNk0bv/ENNXs8cjocykpO1oxbb1XJ3LmHvL6C9HTNzMvrc2xmXp7+tW3bQc9v9nj0i5df1tNXXKEN1dWalpurqfu+gpGIdjY3a86+VkeMDtPjUWjXLiVMn251KbZFlB5Fle0stAwAh2Kapr791FP694cf6p+XX95nYsXH5aamKis5Wa/s3q1Gj0crZ8485LnHT5qknc3NfY7tbG7WpI+FyR7XP/ecvnLCCSrKzFTYNBXcbwZwKBJRuJ8ZwRg5wffft7oEWyPwjZLuUFhN3QGrywCAqHXdU0/p4fff1x8uvFBpbrfqOztV39mp7uB/9hx/4L339HZVlcpaWvTwpk1a9fe/6ysnnNBnrb5z779fv99vm66vnHCC3q6u1m2vvqrdzc36+/vv6/533tHVxx13QA0v7dqlXc3N+sK+7t1jCgu1o6lJa3fs0H0bNshpGH1uC6Mn+OGHMv1MchwtdOmOktpOn9UlAEBU+9O+XRY+ed99fY7/5rzz9Jmjj5Yk7Wxq0k3PP6/W7m5NzsrSt048UdeccEKf88taWtTs/c946WOKivTAf/2XbnrhBd3yyisqzs7Wz848U5fMn9/n57qDQX376af154sukmPf2LGizEzdsnKlrnniCbldLv32gguUnJAw0ncdBxMKKbh1q9z7fvcYWYZpmgwyGwWvVDapuTs48IkAxtzyv/3e6hIAHISzpERpl19udRm2RJfuKPAGw4Q9AACGKFxerkh7u9Vl2BKBbxTUdDJZAwCA4QgweWNUEPhGQTXj9wAAGBZm644OAt8I8wRDavXRnQsAwHBEmpoUqqmxugzbIfCNsJoOWvcAADgctPKNPALfCKM7FwCAwxPcskUsIjKyCHwjqCsQUpuf7lwAAA6H6fEoXF1tdRm2QuAbQbTuAQAwMkIffWR1CbZC4BtBLMcCAMDICBL4RhSBb4R0BkJq94esLgMAAFuINDQo0tZmdRm2QeAbIdUdtO4BADCSaOUbOQS+EVLD+D0AAEYU4/hGDoFvBHgCIXUE6M4FAGAkhcrLZfr9VpdhCwS+EdDgDVhdAgAA9hMOK7Rrl9VV2AKBbwQ0ePnrAwCA0cA4vpFB4DtMpmmqkRY+AABGRWjHDnbdGAEEvsPU7g8pEI5YXQYAALZker3sujECCHyHqZHuXAAARhWzdQ8fge8wMWEDAIDRxTi+w0fgOwwR01QTgQ8AgFEVaWhQpLPT6jJiGoHvMLR0BxRmICkAAKMuXFlpdQkxjcB3GOjOBQBgbIQIfIeFwHcYGjxM2AAAYCwQ+A4PgW+YgpGIWn1Bq8sAACAuROrrZfrYt364CHzD1OQNiNF7AACMEdNUqKrK6ipiFoFvmNhdAwCAscXEjeEj8A0T4/cAABhbjOMbPgLfMPhCYXUEQlaXAQBAXAnX1MgM8fk7HAS+YWCxZQAALBAOK1xba3UVMYnANwxtfmbnAgBghVBFhdUlxCQC3zC0sRwLAACWYOLG8BD4hqHNz/gBAACsEKqqksm2pkNG4BsibzCsQDhidRkAAMQnv1+R+nqrq4g5BL4hamf8HgAAlgrX1FhdQswh8A0R4/cAALBWuK7O6hJiDoFviJihCwCAtQh8Q0fgG6J2HxM2AACwUrihgYkbQ0TgG4JAOCJvKGx1GQAAxLdAQJGWFquriCkEviFg/B4AANGBbt2hIfANATN0AQCIDhEC35AQ+IaABZcBAIgO4YYGq0uIKQS+IWinSxcAgKhA4BsaAt8ghSOmOgO08AEAEA3MtjaZQRpiBovAN0jt/qCYAA4AQPSINDZaXULMIPANEgsuAwAQXcIEvkEj8A1SJxM2AACIKozjGzwC3yCx4DIAANGFLt3BI/ANkjdI4AMAIJpEmputLiFmEPgGicAHAEB0iXR0WF1CzCDwDUIoElEwwhxdAACiSiikiMdjdRUxgcA3CLTuAQAQnSLt7VaXEBMIfINA4AMAIDqZBL5BIfANAoEPAIDoRAvf4BD4BoElWQAAiE4EvsEh8A0CLXwAAEQnAt/gEPgGgcAHAEB0Ygzf4BD4BoEuXQAAohMtfIND4BtAxDTlC0WsLgMAAByE6fHIDLHf/UAIfAPopjsXAICoRivfwAh8A6A7FwCA6MY4voER+AbAhA0AAKIbLXwDI/ANgMAHAEB0i3R2Wl1C1CPwDcAfZsIGAADRzPT5rC4h6hH4BhCKmFaXAAAA+kHgGxiBbwChCC18AABENb/f6gqiHoFvALTwAQAQ3UwC34AIfAMIEvgAAIhqdOkOjMA3AFr4AACIbrTwDYzANwDG8AEAEN1o4RsYgW8AtPABABDdaOEbGIFvAAQ+AACiXDAokx65fhH4+hGOmCLuAQAQ/ejW7R+Brx9B/loAACA20K3bLwJfP+jOBQAgNtDC1z8CXz8IfAAAxAYmbvSPwNcPAh8AALGBFr7+Efj6wRp8AADECD6z+0Xg6wctfAAAwA4IfP1gH10AAGAHBL5+sAofAACwAwJfPxwyrC4BAADgsBH4+mGQ9wAAgA0Q+PrhIPEBAAAbIPD1g7wH2NOm8y5Ty5KTFJk8WXLwNgjA/lxWFxDNDMbwAbbUlJyupslHSpOPVFIooCNa6jSutkLuinKpu9vq8gBgxBH4+uEg7wG253O5tS1/spQ/Wcb8pZrU1awJddVKqyyTmpqsLg8ARgSBrx+M4QPii+lwqDIjT5UZedKMo5Xj82hyY7WyqivkrK6SwmGrSwRwKCZLqfWHwNcP4h4Q31qSUtUyaaY0aaYSw0GVtNQrv7ZC7ooyyeu1ujwAGDQCXz/o0gXQw+9M0Pa8idqeN1Gav0QTO1tUVF+l1MpyGY0NVpcHAP0i8PXDoEsXwMEYhqozclWdkStNX6BMv1cljTXKrqmQs7KCrl8AUYfA1w/iHoDBaE9M0aaJ06WJ05VwbEglbfXKr61SUsVuqavL6vKA+OAi0vSHR6cfTNoAMFRBp0s7cou0I7dImrtYhZ42TayrUlpVuYz6OqvLA2zLSEy0uoSoRuDrB2P4ABwWw1BtWrZqp2VL0+YrI9Ct4sYa5dRUylVZLoVCVlcI2IaRlGR1CVGNwNcPxvABGEkd7mR9UDRNKpqmhIUhTW5r0Pi6KiWV75Y6O60uD4hptPD1j8DXDzZcAjBagk6XduUWalduoTRnscZ72jSxvloZVWUy9uyxujwg9hD4+kXg6wctfADGSl1qluqmZElT5iot4FNJU61ya/d1/QYCVpcHRD26dPtH4OuHi0F8ACzQ5U7S5sIpUuEUOY8Jq7itQePrqpVcsVtqb7e6PCD6JCTIcNAv1x8CXz8SHIYMSWzWAsAqYYdTu3MmaHfOBGn2IhV42jWxsVqZleUy9tSynRQgxu8NBoGvH4ZhKMHpUCAcsboUAJAk1admqj41UyqZo5SgX0c071FuTYUSKsslv9/q8gBLEPgGRuAbgNtpKMCi+QCikDchUVvGl0jjS+Q4+kQVdzRqfF21Usp3S22tVpcHjBnG7w2MwDeARKdDXSLxAYhuEYdDZVkFKssqkI5cqHHdHZrcUKPMqnI5amukCD0VsC9a+AZG4BuA28kgUACxpyk5Q03FGVLxLCWHAipp3qO82kolVJRJPp/V5QEji8A3IALfAAh8AGJdt8utbQXF2lZQLMdRSzWps1kT6qqUWlEmtTRbXR5w2GjhGxiBbwBupnkDsJGIw6GKzDxVZOZJM49RTneXihtrlFVdLkd1FV2/iEmM4RsYgW8AiS4CHwD7aklOU8vkmdLkmUoKBVTSUqe8PZVyV5RLXq/V5QGDYiQnW11C1CPwDSCJLl0AccLncuvD/Mn6MH+yNH+pJnU0q7C+WmlVZVJjo9XlAYfkyMiwuoSoR+AbQJLLaXUJADD2DENVmeNUlTlOmrFA2X6PJjfWKLu6Qs6qSinM6gWIHo7MTKtLiHoEvgEk0aULAGpNTFXrxBnSxBlyHxvSEW11yqutVGJFmeTxWF0e4pxB4BsQgW8AtPABQF8Bl0vbx03U9nETpXknqKirRUX11UqrLJfRUG91eYhDdOkOjMA3ALfTIachhdmuEgAOZBiqSc9VTXquNO0oZfq9Km6qVU5NhZyVFVIoZHWFsDkjNVWGizgzEB6hQUhyOeUJMl4FAAbSnpii94umSUXTlLAwpOK2BhXsqVRSeZnU1Wl1ebAhxu8NDoFvEJJcDgIfAAxR0OnSztxC7cwtlOYs1gRPmybWVyu9qkxGXZ3V5cEmGL83OAS+Qdg7ji9odRkAELsMQ3vSsrUnLVuaOk/pgW6VNNUqp6ZSrspyKch7LIaH8XuDQ+AbhNQEJm4AwEjqdCfrg8KpUuFUuRaGVNzWqII9lUquKJM6OqwuDzGELt3BIfANQpqbhwkARkvI4dKunAnalTNBmrNY4/d1/WZUl8vYs0cymTWHQyPwDQ5JZhDSCXwAMGbqUrNUNyVLmjJXaUG/iptqNa62Qq6KcikQsLo8RBnG8A0OSWYQCHwAYI2uhERtmXCENOEIOY8Oq7i9UQV1VUqpKJPa2qwuD1GAFr7BIckMgtvpUKLTIX84YnUpABC3wg6ndmeP1+7s8dKsRcrzdmhyQ7UyqsrlqK2h6zceOZ0yUlOtriImEPgGKd3tkr+brgQAiBaNKRlqLJktlcxWSsivkqY9GldbqYSKMsnvt7o8jAFHZqYMw7C6jJhA4BukdLdLTQQ+AIhKXleito4vkcaXyLFgmSZ1NKmwp+u3tcXq8jBKHPn5VpcQMwh8g5SeyEMFALEg4nCoIitfFVn50pELNa67U5Maa5RVVS5HTbUUYXiOXTgJfINGihkkJm4AQGxqSk5X0+QjpclHKikU0BEtdRpXWyF3RbnU3W11eTgMBL7BI8UMEoEPAGKfz+XWtvzJUv5kGfOXalJnswrrq5VasVtqbra6PAyRo6DA6hJiBilmkJJdDjkNQ2FmgQGALZgOhyoz81SZmSfNOFo5Po8mN1Qrq6ZCzuoqKcwe6lHN5ZIjJ8fqKmIGgW+QDMNQutupNn/I6lIAAKOgJSlVLZNnSpNnKjEcVElLnfJrK+WuKJO8XqvLw8c4xo2T4XBYXUbMIPANQbrbReADgDjgdyZoe94kbc+bJM1foomdLSqqr1Za5W6psdHq8iDG7w0VgW8I0hNdUqfVVQAAxpRhqDojV9UZudL0o5Tp96qksUbZ1eVyVlXS9WsRAt/QEPiGgIkbAID2xBRtmjhdmjhdCYtCOqK1Tnl7qpRUXiZ5uqwuL24wYWNoSDBDQOADAOwv6HTpo3ET9dG4idLc41XoadXEumqlVZXLqK+zujxbo4VvaEgwQ5DmdsmQxDxdAMABDEO1aTmqnZYjTZuvjIBXxY17lFtTLmdlhRRiDPhIMZKS5MjIsLqMmELgGwKHYSgj0aV2Jm4AAAbQ4U7RB0VTpaKpSlgYUnFbgwr2VCmpYrfUyYDww0F37tAR+IYoN9lN4AMADEnQ6dLO3ELtzC2U5i7W+K5WTWyoUUZVmYw9e6wuL+bQnTt0BL4hyk12a3cb6zEBAIavLi1bdWnZ0pS5Sgv4VNJcq9zqCrkqy6Vg0Oryop6TFr4hI/ANUW5ygtUlAABspMudpM0TpkgTpsi5MKzitkaNr6tUckWZ1N5udXlRyTlxotUlxBwC3xClJLiU5HLIF4pYXQoAwGbCDqd254zX7pzx0uzjVOBp18SGamVWl8uorZXY3nPvhA26dIeMwDcMuclu1XT6rC4DAGBz9amZqj8iUzpijlKCfh3RvEe5NRVKqCyX/H6ry7OEc9IkGYZhdRkxxzBN/lwYqp2tHr3f0GF1GQCAOOWIRFTc0ajxe6qUUlEmtbVaXdKYSVy+XEnLllldRsyhhW8YcpPdVpcAAIhjEYdDZVkFKssqkGYdq7zuDk2qr1FmdbkcNdW27vp1TZ5sdQkxicA3DJmJLjkNQ2Ebv6AAALGjMTlDjSUZUsksJYcCKmneo7zaSiVUlEk+Gw1BcrnkLCqyuoqYRJfuML1W1axGb8DqMgAAOCRHJKJJnc2aUFep1IpyqaXZ6pIOi3PyZKVdcYXVZcQkWviGKTfZTeADAES1iMOhisw8VWTmSTMXKqe7S8WNNcqqLpejukqKxNaKE3TnDh+Bb5gYxwcAiDUtyWlqmTxTmjxTSaGASlrqlLenUu7yMqm72+ryBuQk8A0bgW+YcpJYgBkAELt8Lrc+zJ+sD/MnS/OXalJHswrrq5VWuVtqarK6vAMZhlyTJlldRcwi8A1TgtOhzEQX++oCAGKfYagqc5yqMsdJMxYo2+fZ2/VbUyFnVaUUDltdoRz5+TKSkqwuI2YR+A5DTrKbwAcAsJ3WpFS1TpohTZoh97EhHdG6R3l7qpRYUSZ5PJbUROve4WGW7mGo7OjWhj1tVpcBAMDYME0VdbWoqL5aaZVlMhoaxuymkz/1KbnnzRuz27MbWvgOwzgmbgAA4olhqCY9VzXpudK0o5Tp96q4sUY5PV2/odHr9XIVF4/adccDAt9hSElwKsPtUkeAbl0AQPxpT0zR+xOnSxOnK+HYkEpa65VfV6Wk8t1SV9eI3Y4jP1+OjIwRu754RJfuYdrS2KHtLdaMZwAAICqZpgo9rSqqr1F6VZmMurrDujr3kiVKPv30ESouPtHCd5gmpCUR+AAA2J9hqDYtR7VpOdLUeUoPdKukqVY5NRVyVVZIweCQri5h+vRRKjR+EPgOU3ZSghKdDvnDsbVaOQAAY6XTnawPCqdKhVPlWhhScVujCvZUKrmiTOro6P+HExNZcHkE0KU7At6pa1NFe/SvUA4AQLQZ72nTxPoaZVSVyajbI30slrhmzVLqJZdYVJ190MI3AiakJRH4AAAYhrrULNVNyZKmzFFa0K/iplqNq6mQq7JcCgSUMG2a1SXaAi18IyAcMfXvnXUK80gCADAinJGwitubNHfedLlSU60uJ+Y5rC7ADpwOQ3kpiVaXAQCAbYQdTrVOmEjYGyEEvhEyIY39/QAAGEl8to4cAt8ImZBGCx8AACOpkM/WEUPgGyFJLqeykxKsLgMAAFtIS3AqI5HP1ZFC4BtBtPIBADAy6M4dWQS+EcSTEwCAkVHIZ+qIIvCNoMzEBKUkOK0uAwCAmJbodCgnme7ckUTgG2ETUunWBQDgcExIS5RhGFaXYSsEvhFGty4AAIdnckay1SXYDoFvhOWluJXs4mEFAGA4UhOcyk12W12G7ZBMRphhGPxlAgDAME3OSKY7dxQQ+EZBcWaK1SUAABCT+AwdHQS+UZDmdtEcbYH/d+pxuvDIwgO+/nDT9ZKkgN+nP9x0vS5fPEefOWaabvna1Wprahz09d/zo+/qwiML9e/7/9B7LBjw687vfE2fXThDX12xTJveeLXPzzzxp7v1xx//78jcQQCwubwUN6tdjBKX1QXYVXFmspq7A1aXEVd+8egzioTDvd9X7vhQN115qU5YcY4k6d6f3aB3X3le1915j1LSMvTHH/+vbvnaVbr5oX8OeN3r1j6jjza9o5z88X2Or334Ae3e8r5u/tu/9N6rL+qO667Rn0vfl2EYqq+u1POPPKhbHntmZO8oANhUMUOiRg0tfKNkYnqSXIxBGFOZObnKzsvv/Xrn5ec1fnKJ5hx3gjydHXrxsYe06rs3aN7xyzR17nxd87Nfavt7G/TRxnf6vd7m+j3640++r2/c+hs5XX3/RqrevVPHnnqGJk+fqTM/s0odLc3qaG2RJP3+hv/R5677X6WkpY/afQYAu3A5DBWmE/hGC4FvlLgcDhWls0SLVYKBgF7952M69VOXyjAM7d7yvkLBoOYvObH3nIlTpmtcYZG29xP4IpGIfvWdr+u8q76sydNnHnB5yczZ+vCd9fL7urXx9ZeVnVegjOwcvfqvx5WQmKjFp68clfsHAHZTlJ4kl4OGktFCl+4oKs5MUUVHt9VlxKX1LzwrT2eHPnHBJZKktsYGuRLcSs3I7HNeVm6e2poaDnk9T/zhN3I6nTr7c1cd9PJTL7xUFR9t1bVnn6L07Bx9647fqau9TX/71a266S+P6sE7fqHSp59UwaRiXXPzL5VbMGHk7iQA2EhxBpM1RhOBbxSNS3ErLcGprmB44JMxol549CEdfeInlFMwfuCTD2HX5vf11Oo/6tbHnjvkEgGuhAR94Yc/63Ps19dfq7M+d5XKtm3W+hee1W1PPK8n/vgb/eknP9B37vrjsOsBALtKTXBqXAqTHUcTXbqjjOnlY6+hplofvPmaTrv4073HsvLyFQoG5Olo73NuW3OjssblH/R6tr2zTu3NTfrSqYt08ZxJunjOJDXWVuv+X9yo/3fqcQf9mQ/eKlXVzo+08jNXaPO6N3XMSacqKSVFS1aeqy3r3xy5OwkANlKcydi90UYL3yibnJmsrU2dMq0uJI689PjflJE7TgtPPq332JQ58+VKSND7b76uE1acLUmq2b1TTbU1mrlg4UGv5+RzL9T8E07sc+zHV39aJ513oU694L8OOD/g9+mPP/6evnHrr+V0OhWJhKXQ3t98OBTc+z0A4ACT6c4ddbTwjbJkl1P5qYlWlxE3IpGIXvzHwzrl/Iv7zKhNTc/QqRdepvt+cYM+eKtUuza/r99875uauWChZuwX+L628kStW7t3GZX07BxNnnFkny+ny6XscfkqmjLtgNv++9136JiTTtWU2fMkSUces0hvrX1a5du36pm/3qsjj1k0yvceAGJPPmvvjQla+MZASWay6j1+q8uIC++/8aqaamu0/FOXHnDZFdffIIfD0P994wsKBvxasOyUA8bf1ZbtkqezY8i3W/nRh3rj2X/ptn+s7T12wopPasv6N/WDz1ygwiOm6tr/+83Q7xAA2Nxkhj6NCcM0TXobR1nENPX0rnoFwjzUAAD0SHAYOmtqgZwsxzLq6NIdAw7D0CQWkwQAoI+J6cmEvTFC4BsjJTRZAwDQx7TsVKtLiBsEvjGSmZSgPNYYAgBAkjQ+NVHpiUwlGCsEvjE0IyfN6hIAAIgKfCaOLQLfGCpITVQmf80AAOJcdlICO2uMMQLfGOMvGgBAvJuRw9i9sUbgG2MT05NYYBIAELdSE5wqTEuyuoy4Q+AbY4ZhaDqzkgAAcWpadqoMg6VYxhqBzwLFmSlyO3myAwDii9vpYJkyixD4LOByGJqSRSsfACC+TMlKYaFlixD4LDI1K1VOmrQBAHHCaez97IM1CHwWSXQ5VJzJdmsAgPgwOTNFiS5ih1V45C00PTtVtPEBAOIBExatReCzUKrbpaJ0pqYDAOytMC1JaW42HrASgc9iLMQMALA7Flq2HoHPYllJCcpnexkAgE3lJicoJ5nPOasR+KLAdFr5AAA2NSs33eoSIAJfVChITVRucoLVZQAAMKLyU9zKT020ugyIwBc15uVlWF0CAAAjai6fbVGDwBclcpLdKmIzaQCATUzKSFZWEr1X0YLAF0Xm5KWzLh8AIOY5DGnOOManRxMCXxRJc7s0JYtNpQEAsW1KVqpSElh3L5oQ+KLMkbnpcrGxNAAgRiU4DB2ZS+tetCHwRZlEl0MzWaYFABCjZuSkye0kXkQbfiNRaFp2qpLZYBoAEGOSXQ5NY8/cqESqiEJOh6HZ41ioEgAQW2aNS5eTYUlRicAXpSZnJCszkQGvAIDYkOF2qTgj2eoycAgEvihlGAYLVgIAYsacvHQZBq170YrAF8UKUhOVn8KG0wCA6DYu2a0JbB4Q1Qh8UY5WPgBAtJubx7jzaEfgi3JZSQmazJgIAECUKkpPUk4yvVHRjsAXA2aPSxeTngAA0cZpGJpH615MIPDFgJQEJ6uWAwCizpxx6WyhFiMIfDFiRk6aMty8qAAA0SE7KUFTs9n/PVYQ+GKEwzB0zPhMq8sAAECGpGMKMlmGJYYQ+GJITrKbLWsAAJabnpOqzKQEq8vAEBD4YszscelKSXBaXQYAIE6lJjg1K5eJGrGGwBdjXA5DRxfQtQsAsMbRBZnslxuDCHwxqCA1kbX5AABjbnJGsvJTE60uA8NA4ItR8/MzlOjk1wcAGBuJTofm57P7U6wiMcQoNy88AMAYmp+fITcNDTGL31wMm5SRrPE0rQMARllBaqImMZQophH4YtyCgky5GDwLABglTsPQ0QX0KMU6Al+MS0lwas44pscDAEbH7HFpbJ9mAwQ+G5iSlaLcZBbABACMrKykBBb8twkCnw0Yxt61+ejZBQCMFIchLWT7NNsg8NlERmICK58DAEbMvLwMtk+zEQKfjczISVVeitvqMgAAMa4wLUlT6cq1FQKfjRiGoWMnZLFOEgBg2FJcTh0zni087YZkYDPJLqcW8kIFAAyDIWlRIQ0HdsRv1IYmpCVpanaK1WUAAGLM7HHpyk1maJAdEfhsal5ehjITWTcJADA4+Sluzchh3J5dEfhsymEYOq4wW06m0wMABpDodOjYCVkswWJjBD4bS3e7tIDtcAAAA1g0IUtJLqfVZWAUEfhsrjgzRSWZbHgNADi4mTmpyk9NtLoMjDICXxw4Kj+T8XwAgAPkJidoNvuxxwUCXxxwOgwtLsxWAnuvAQD2cTsMLZqQzbi9OEHgixNpbpeOGZ9ldRkAgChxzPgspSQwbi9eEPjiSFF6kqaxVQ4AxL2pWSkqTE+yugyMIQJfnJmbl64cNsMGgLg1Ltmtefms4BBvCHxxxmEYOr4oW8lMvweAuJOW4NTxRdlyMG4v7hD44lCSy6klE7PlYhIHAMQNt8PQCRNz2Cc3TvFbH0GrVq2SYRj6+c9/3uf4E088EXWzoDITE7S4MFvRVRUAYDQYkhYXZSvdzRJd8YrAN8KSkpL0i1/8Qq2trVaXMqCC1EQdxU4cAGB7x4zPVF4KiyvHMwLfCDvttNM0fvx4/exnPzvkOY899pjmzJmjxMRElZSU6LbbbhvDCvuakpWq6czcBQDbmpGTquLMFKvLgMUIfCPM6XTq5ptv1l133aXq6uoDLn/nnXd0ySWX6NJLL9UHH3ygG264QT/4wQ903333jX2x+8zNS1dhGtPzAcBuCtOSNIedNCAC36i44IILtGDBAv3oRz864LJf/vKXWr58uX7wgx9oxowZWrVqlb761a/q1ltvtaDSvQzD0KIJWcpmuRYAsI3spAQtmpAVdWPIYQ0C3yj5xS9+ofvvv1/btm3rc3zbtm1aunRpn2NLly7Vjh07FA6Hx7LEPpwOQycUZSuF5VoAIOYluxw6oShbTlZjwD4EvlFy0kknacWKFbr++uutLmXQepZrYc9dAIhdLoehJUU5SuIPeOyH+dmj6Oc//7kWLFigmTNn9h6bNWuWSktL+5xXWlqqGTNmyOm0/sWZsW+5ltLqFplWFwMAGBJD0nETspTJEB18DC18o2jevHn6zGc+o1/96le9x771rW/phRde0I9//GN99NFHuv/++/XrX/9a1113nYWV9pWfmqgFBZlWlwEAGKJ5+RkazyQ8HASBb5TddNNNikQivd8fc8wxeuSRR/S3v/1Nc+fO1Q9/+EPddNNNWrVqlXVFHsQRWSmakcNyLQAQK6ZkpWgay2zhEAzTNOm5w0GZpqn1e9pU0+mzuhQAQD8mpicxIxf9ooUPh2QYho4dn6WCVFZnB4BoVZSWpGMJexgAgQ/9cjoMHV+YrfwUt9WlAAA+ZkJaohYVZslB2MMACHwY0N41+nKUR+gDgKhRkJqoxYXZhD0MCoEPg+Lct64ToQ8ArJef4tbxhD0MAYEPg9bT0jcumdAHAFbJS3HrhKIcdtHAkBD4MCQuh6ElE7OVm8yingAw1nKT3WyZhmEh8GHIXA6Hlk7MUQ4ruQPAmMlJStDSidlyOfjoxtDxrMGw9IS+bEIfAIy67KQELZ2YQ9jDsPHMwbAlOB1aRugDgFGVmejS0ok5SnDykY3h49mDw5Lg3NvSl5VI6AOAkZbhdmnZpFy5CXs4TDyDcNjcToeWTcpRZqLL6lIAwDbS3S6dOClHiYQ9jACeRRgRbqdDJ07KJfQBwAjITNwX9lxOq0uBTRimaZpWFwH7CIQjerOmRc3dQatLAYCYNG7f0iuM2cNIIvBhxIUjpt7e06baLp/VpQBATClMS9SiCayzh5FH4MOoME1T7zd2aFer1+pSACAmlGQm6+iCTBlsl4ZRQODDqNrR0qUPGjutLgMAotrMnFTNycuwugzYGIEPo666o1sb6toU4ZkGAAeYn5+hadmpVpcBmyPwYUw0eQN6s6ZFQVIfAEiSHIZ07IQsTUxPtroUxAECH8ZMhz+oN6pb5Q2FrS4FACzldjp0QlG2cpPdVpeCOEHgw5jqDoX1RnWL2v0hq0sBAEukJji1dGKO0tysW4qxQ+DDmAtFInqrpk0NXr/VpQDAmMpJStAJRTlKdLHGHsYWgQ+WiJim3qtrV0VHt9WlAMCYKEpL0rETslhjD5Yg8MFSW5s69WFzl9VlAMCompGTqjnj0lljD5Yh8MFyFe1ebaxvV5hnIgCbcTkMLRyfqSJm4sJiBD5EhXZfUOtqW9UVZAYvAHvIcLu0uChb6UzOQBQg8CFqBMMRvVPXzh68AGLepPQkHT0+Uy4HkzMQHQh8iDo7Wrq0ubFTPDEBxBqHIc3Ly9BUds5AlCHwISo1dwe0rrZVvlDE6lIAYFCSXQ4tLsxWDospIwoR+BC1/KGw3t7TpgZvwOpSAKBf+SluLZqQzfp6iFoEPkQ10zS1rbmLpVsARK2ZOWmaPS6NJVcQ1Qh8iAl1Hp827GlTgLVbAESJBIehYydkaUJaktWlAAMi8CFmeINhrattVasvaHUpAOJcZqJLxxdmK5UlVxAjCHyIKRHT1PsNHdrd5rW6FABxqjgzWQvyM9kiDTGFwIeYVN3Rrffq2xWM8PQFMDbcTocW5GdoYga7ZiD2EPgQs7qDYb1b3656j9/qUgDYXFFakhYUZCjR5bS6FGBYCHyIeRXtXr3f0EFrH4AR53YaWpCfSaseYh6BD7bQHQrrvbp21dHaB2CEFO5r1UuiVQ82QOCDrVR2dOv9+nYFaO0DMExup6Gj8jM1iVY92AiBD7bjC4W1sb5dtV209gEYmglpiTq6IJNWPdgOgQ+2VdXRrU0NHQqE2Y8XQP/cDkNHFdCqB/si8MHWfKGwNtV3qKbLZ3UpAKIUrXqIBwQ+xIXqzm5tqu+Qn9Y+APskOAwdlZ+hyZkpVpcCjDoCH+KGPxTRpoZ2VXfS2gfEu6L0JM3Pz1AyrXqIEwQ+xJ16j18fNHSoIxCyuhQAYywr0aX5+Zkal+K2uhRgTBH4EJdM01RZm1dbm7uY1AHEgUSnQ3Py0lWckSzDYA9cxB8CH+JaMBzRh81d2tXmEUv3AfbjMKRp2amamZumBIfD6nIAyxD4AEldgZA2N3awdh9gI4VpSZqXl65Ut8vqUgDLEfiA/TR6/Xq/oUPtfsb3AbEqM9Gl+fkZyktJtLoUIGoQ+ICPMU1TFR3d2trYKR/j+4CYkeh0aPa4dJVkMk4P+DgCH3AIoUhE25s92tHaxfg+IIo5DGlqVqqOzE1TgpNxesDBEPiAAXiDYW1u7GD9PiAKTUhL1Ly8DKUxTg/oF4EPGKTm7oC2NXWqwRuwuhQg7k1IS9TMnDTlJLOeHjAYBD5giFq6A9re0qU9zOgFxlxRepKOzElTZlKC1aUAMYXABwxTuz+oj5q7VN3pEy8iYPQYkiZlJGtmbprS6boFhoXABxymrkBIH7V0qbKjm8kdwAhyGNLkjGTNzEljLT3gMBH4gBHiDYa1o7VL5W3dCvOyAobNaUglmSmanpOmlASn1eUAtkDgA0aYPxTWzlaPdrd5FaTJDxg0l2HoiKwUTc9JVZKLoAeMJAIfMEqC4Yh2tXm0s9WrAAs4A4eU4DA0NTtV07JT5WYdPWBUEPiAURaKmCpv82pHa5e6QwQ/oEdaglNHZKWoJDOFBZOBUUbgA8aIaZra0+XX7javGrws6YL45DCkwrQkHZGVwl63wBgi8AEW6AqEVNbmVUWHV4EwL0HYX2qCUyWZKSrOTGZ8HmABAh9goXDEVE1nt3a3edXiC1pdDjCiDEkT9rXm5ae4ZRiG1SUBcYvAB0SJdn9QFe3dqurolp9JHohhKfta80pozQOiBoEPiDIR09SeLp/K27vV4PGziwdigiFpfFqijshKUUFKIq15QJQh8AFRrDsUVmV7tyraveoKhq0uBzhAWoJTkzKSVZKVomRa84CoReADYkRLd0C1XT7VdvoIf7BUhtulovQkFaUnKSMxwepyAAwCgQ+IQe3+oGo7fart8qndH7K6HMSBrKQEFaXtDXlp7GsLxBwCHxDjPMFQb/hr7mamL0ZObnKCCveFvJQEQh4Qywh8gI34QmHt6fKrptOnRi8TPjA0hqRxKW4VpiWpMD2JMXmAjRD4AJsKhiPa4/GrttOneo9fYV7qOAiHIeWlJKooLUkT0pKU6GKLM8COCHxAHAhHTDV4/WryBtTUHVCbL0jrX5xyGFJ2klt5KW6NS3YrN9ktp4MlVAC7I/ABcSgUiai5O6gmr19N3QG1+oKK8E5gSw5Dyklya1zK3pCXk0TAA+IRgQ+AwhFTLb5AbwtgS3eQLuAYRcADcDAEPgAHiJimWn3B3gDY3B1QiCbAqETAAzAYBD4AAzJNU23+kFp9AXX4Q3u/AiEF2PN3TLkMQ5lJLmUmJigrMUGZSQnKcLsIeAAGROADMGy+ULg3/HX4g73/pzXw8KUkOJXhdikj0aWspL0BLzXByR61AIaFwAdgxHmDIbXv1xLY4Q+qMxBiYshBpCY4lZHoUrrbpQy3S+mJCUp3u+Si1Q7ACCLwARgTpmmqKxhWdzCs7lBYvlBEvlBY3fv+9YUi8oXDtgmFDkNKcjmV7HIo2eU88P8Je//voMUOwBgg8AGIKv6eIBg+RCgMhRWOmAqbGtOZxA5DchqGnA5DTsOQy2Eo0fmf4LY3yPX83yG300H3K4CoQeADENMiprkvAJp7/2/uXWZm7//N3nC4//emuS/A7Qtvh/zXMOR07A16hDcAsYzABwAAYHNsmggAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsDkCHwAAgM0R+AAAAGyOwAcAAGBzBD4AAACbI/ABAADYHIEPAADA5gh8AAAANkfgAwAAsLn/D25dXXwu+BF0AAAAAElFTkSuQmCC"
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Count the number of people who work and don't work\n",
    "work_counts = df['Do you currently work?'].value_counts()\n",
    "\n",
    "# Plotting a pie chart\n",
    "plt.figure(figsize=(8, 8))\n",
    "plt.pie(work_counts, labels=work_counts.index, autopct='%1.1f%%', startangle=90, colors=['lightblue', 'lightcoral'])\n",
    "plt.title('Distribution of People Who Work and Don\\'t Work')\n",
    "plt.show()"
   ],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-02-23T01:12:49.355506Z",
     "start_time": "2024-02-23T01:12:49.112753Z"
    }
   },
   "id": "da1811cc63b41845",
   "execution_count": 6
  },
  {
   "cell_type": "code",
   "outputs": [],
   "source": [],
   "metadata": {
    "collapsed": false,
    "ExecuteTime": {
     "end_time": "2024-02-23T01:12:49.360434Z",
     "start_time": "2024-02-23T01:12:49.357193Z"
    }
   },
   "id": "201db70188d3e778",
   "execution_count": 6
  },
  {
   "cell_type": "markdown",
   "source": [],
   "metadata": {
    "collapsed": false
   },
   "id": "8d65fec230193b72"
  }
 ],
 "metadata": {
  "colab": {
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}