aboutsummaryrefslogtreecommitdiff
path: root/Examples/Physics_applications
diff options
context:
space:
mode:
authorGravatar Prabhat Kumar <89051199+prkkumar@users.noreply.github.com> 2023-01-17 13:28:45 -0800
committerGravatar GitHub <noreply@github.com> 2023-01-17 21:28:45 +0000
commitf085da36d40472c42f0653f87867148ca8cc656d (patch)
tree49314d7c0f6c6d2f87b30361e2da1f1c9c71799f /Examples/Physics_applications
parent76ef14c14ccdfc1b4ca20875c766d1b6c7725d50 (diff)
downloadWarpX-f085da36d40472c42f0653f87867148ca8cc656d.tar.gz
WarpX-f085da36d40472c42f0653f87867148ca8cc656d.tar.zst
WarpX-f085da36d40472c42f0653f87867148ca8cc656d.zip
Modify refined injection CI test for anisotropic ref ratio (#3605)
* Modify refined ijection CI to account for anisotropic ref ratio * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * change n_move based on new dt * change variable name to be more specific * Update Regression/WarpX-tests.ini Co-authored-by: Edoardo Zoni <59625522+EZoni@users.noreply.github.com> * reset benchmark for RefineInjection because now it uses anisotropic refinement ratio * add comment to show the formula for n_move * Reset benchmark of `RefinedInjection` * Remove wrong benchmark file Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Edoardo Zoni <59625522+EZoni@users.noreply.github.com> Co-authored-by: Edoardo Zoni <ezoni@lbl.gov>
Diffstat (limited to 'Examples/Physics_applications')
-rwxr-xr-xExamples/Physics_applications/laser_acceleration/analysis_refined_injection.py11
1 files changed, 6 insertions, 5 deletions
diff --git a/Examples/Physics_applications/laser_acceleration/analysis_refined_injection.py b/Examples/Physics_applications/laser_acceleration/analysis_refined_injection.py
index a9527fa1f..e7d26d2cb 100755
--- a/Examples/Physics_applications/laser_acceleration/analysis_refined_injection.py
+++ b/Examples/Physics_applications/laser_acceleration/analysis_refined_injection.py
@@ -39,13 +39,14 @@ n_fine = 64
# num particles per stream at time 0
n_0 = 15
-# number of times moving window moves
-n_move = 99
+# number of times the moving window moves, calculated as n_move = (c*t)/dz where c is speed of light, t is physical time (nsteps*dt). dz is dz on level 0
+n_move = 192
-# ref ratio
-rr = 2
+# ref ratio = 2 1
+# Refined only transversly. Longitudinal spacing between particles in each stream is the same in both coarse and fine regions
+rr_longitudinal = 1
-np_expected = (n_coarse + n_fine*rr)*(n_0 + n_move)
+np_expected = (n_coarse + n_fine*rr_longitudinal)*(n_0 + n_move)
assert( np == np_expected )