aboutsummaryrefslogtreecommitdiff
path: root/Source/FieldSolver/FiniteDifferenceSolver/EvolveE.cpp
diff options
context:
space:
mode:
authorGravatar Remi Lehe <remi.lehe@normalesup.org> 2020-02-26 11:10:53 -0800
committerGravatar GitHub <noreply@github.com> 2020-02-26 11:10:53 -0800
commit846c54ec7627513cb470e69aee32eac1b5fc45e7 (patch)
tree06871dba8ae9b612453f7537dcca2a6b0e6dea54 /Source/FieldSolver/FiniteDifferenceSolver/EvolveE.cpp
parent7ded8dbbea0a294b862ce174a065022b15898a00 (diff)
downloadWarpX-846c54ec7627513cb470e69aee32eac1b5fc45e7.tar.gz
WarpX-846c54ec7627513cb470e69aee32eac1b5fc45e7.tar.zst
WarpX-846c54ec7627513cb470e69aee32eac1b5fc45e7.zip
Use C++ templates in `EvolveE` function (#676)
* Prepare EvolveE * Cartesian equations without current * Implement Cartesian EvolveE * Progress towards cylindrical solver * Correct typo * Implement cylindrical solver (without on-axis condition) * Fix compilation errors * Add regularization for RZ solver * Added correction term for F * Remove file for nodal stencil * Apply stylistic changes to EvolveE * Fix compilation errors * Correction to avoid out of bound * Remove references to old file * Correct bug in EvolveB * Implement correction on axis for Et * Remove previous field update functions * Remove unused code
Diffstat (limited to 'Source/FieldSolver/FiniteDifferenceSolver/EvolveE.cpp')
-rw-r--r--Source/FieldSolver/FiniteDifferenceSolver/EvolveE.cpp345
1 files changed, 345 insertions, 0 deletions
diff --git a/Source/FieldSolver/FiniteDifferenceSolver/EvolveE.cpp b/Source/FieldSolver/FiniteDifferenceSolver/EvolveE.cpp
new file mode 100644
index 000000000..f7cbb6e7e
--- /dev/null
+++ b/Source/FieldSolver/FiniteDifferenceSolver/EvolveE.cpp
@@ -0,0 +1,345 @@
+/* Copyright 2020 Remi Lehe
+ *
+ * This file is part of WarpX.
+ *
+ * License: BSD-3-Clause-LBNL
+ */
+
+#include "WarpXAlgorithmSelection.H"
+#include "FiniteDifferenceSolver.H"
+#ifdef WARPX_DIM_RZ
+# include "FiniteDifferenceAlgorithms/CylindricalYeeAlgorithm.H"
+#else
+# include "FiniteDifferenceAlgorithms/CartesianYeeAlgorithm.H"
+# include "FiniteDifferenceAlgorithms/CartesianCKCAlgorithm.H"
+# include "FiniteDifferenceAlgorithms/CartesianNodalAlgorithm.H"
+#endif
+#include "WarpXConst.H"
+#include <AMReX_Gpu.H>
+
+using namespace amrex;
+
+/**
+ * \brief Update the E field, over one timestep
+ */
+void FiniteDifferenceSolver::EvolveE (
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 >& Efield,
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Bfield,
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Jfield,
+ std::unique_ptr<amrex::MultiFab> const& Ffield,
+ amrex::Real const dt ) {
+
+ // Select algorithm (The choice of algorithm is a runtime option,
+ // but we compile code for each algorithm, using templates)
+#ifdef WARPX_DIM_RZ
+ if (m_fdtd_algo == MaxwellSolverAlgo::Yee){
+
+ EvolveECylindrical <CylindricalYeeAlgorithm> ( Efield, Bfield, Jfield, Ffield, dt );
+
+#else
+ if (m_do_nodal) {
+
+ EvolveECartesian <CartesianNodalAlgorithm> ( Efield, Bfield, Jfield, Ffield, dt );
+
+ } else if (m_fdtd_algo == MaxwellSolverAlgo::Yee) {
+
+ EvolveECartesian <CartesianYeeAlgorithm> ( Efield, Bfield, Jfield, Ffield, dt );
+
+ } else if (m_fdtd_algo == MaxwellSolverAlgo::CKC) {
+
+ EvolveECartesian <CartesianCKCAlgorithm> ( Efield, Bfield, Jfield, Ffield, dt );
+
+#endif
+ } else {
+ amrex::Abort("Unknown algorithm");
+ }
+
+}
+
+
+#ifndef WARPX_DIM_RZ
+
+template<typename T_Algo>
+void FiniteDifferenceSolver::EvolveECartesian (
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 >& Efield,
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Bfield,
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Jfield,
+ std::unique_ptr<amrex::MultiFab> const& Ffield,
+ amrex::Real const dt ) {
+
+ Real constexpr c2 = PhysConst::c * PhysConst::c;
+
+ // Loop through the grids, and over the tiles within each grid
+#ifdef _OPENMP
+#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
+#endif
+ for ( MFIter mfi(*Efield[0], TilingIfNotGPU()); mfi.isValid(); ++mfi ) {
+
+ // Extract field data for this grid/tile
+ Array4<Real> const& Ex = Efield[0]->array(mfi);
+ Array4<Real> const& Ey = Efield[1]->array(mfi);
+ Array4<Real> const& Ez = Efield[2]->array(mfi);
+ Array4<Real> const& Bx = Bfield[0]->array(mfi);
+ Array4<Real> const& By = Bfield[1]->array(mfi);
+ Array4<Real> const& Bz = Bfield[2]->array(mfi);
+ Array4<Real> const& jx = Jfield[0]->array(mfi);
+ Array4<Real> const& jy = Jfield[1]->array(mfi);
+ Array4<Real> const& jz = Jfield[2]->array(mfi);
+
+ // Extract stencil coefficients
+ Real const * const AMREX_RESTRICT coefs_x = m_stencil_coefs_x.dataPtr();
+ int const n_coefs_x = m_stencil_coefs_x.size();
+ Real const * const AMREX_RESTRICT coefs_y = m_stencil_coefs_y.dataPtr();
+ int const n_coefs_y = m_stencil_coefs_y.size();
+ Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr();
+ int const n_coefs_z = m_stencil_coefs_z.size();
+
+ // Extract tileboxes for which to loop
+ Box const& tex = mfi.tilebox(Efield[0]->ixType().ixType());
+ Box const& tey = mfi.tilebox(Efield[1]->ixType().ixType());
+ Box const& tez = mfi.tilebox(Efield[2]->ixType().ixType());
+
+ // Loop over the cells and update the fields
+ amrex::ParallelFor(tex, tey, tez,
+
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Ex(i, j, k) += c2 * dt * (
+ - T_Algo::DownwardDz(By, coefs_z, n_coefs_z, i, j, k)
+ + T_Algo::DownwardDy(Bz, coefs_y, n_coefs_y, i, j, k)
+ - PhysConst::mu0 * jx(i, j, k) );
+ },
+
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Ey(i, j, k) += c2 * dt * (
+ - T_Algo::DownwardDx(Bz, coefs_x, n_coefs_x, i, j, k)
+ + T_Algo::DownwardDz(Bx, coefs_z, n_coefs_z, i, j, k)
+ - PhysConst::mu0 * jy(i, j, k) );
+ },
+
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Ez(i, j, k) += c2 * dt * (
+ - T_Algo::DownwardDy(Bx, coefs_y, n_coefs_y, i, j, k)
+ + T_Algo::DownwardDx(By, coefs_x, n_coefs_x, i, j, k)
+ - PhysConst::mu0 * jz(i, j, k) );
+ }
+
+ );
+
+ // If F is not a null pointer, further update E using the grad(F) term
+ // (hyperbolic correction for errors in charge conservation)
+ if (Ffield) {
+
+ // Extract field data for this grid/tile
+ Array4<Real> F = Ffield->array(mfi);
+
+ // Loop over the cells and update the fields
+ amrex::ParallelFor(tex, tey, tez,
+
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Ex(i, j, k) += T_Algo::UpwardDx(F, coefs_x, n_coefs_x, i, j, k);
+ },
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Ey(i, j, k) += T_Algo::UpwardDy(F, coefs_y, n_coefs_y, i, j, k);
+ },
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Ez(i, j, k) += T_Algo::UpwardDz(F, coefs_z, n_coefs_z, i, j, k);
+ }
+
+ );
+
+ }
+
+ }
+
+}
+
+#else // corresponds to ifndef WARPX_DIM_RZ
+
+template<typename T_Algo>
+void FiniteDifferenceSolver::EvolveECylindrical (
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 >& Efield,
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Bfield,
+ std::array< std::unique_ptr<amrex::MultiFab>, 3 > const& Jfield,
+ std::unique_ptr<amrex::MultiFab> const& Ffield,
+ amrex::Real const dt ) {
+
+ // Loop through the grids, and over the tiles within each grid
+#ifdef _OPENMP
+#pragma omp parallel if (amrex::Gpu::notInLaunchRegion())
+#endif
+ for ( MFIter mfi(*Efield[0], TilingIfNotGPU()); mfi.isValid(); ++mfi ) {
+
+ // Extract field data for this grid/tile
+ Array4<Real> const& Er = Efield[0]->array(mfi);
+ Array4<Real> const& Et = Efield[1]->array(mfi);
+ Array4<Real> const& Ez = Efield[2]->array(mfi);
+ Array4<Real> const& Br = Bfield[0]->array(mfi);
+ Array4<Real> const& Bt = Bfield[1]->array(mfi);
+ Array4<Real> const& Bz = Bfield[2]->array(mfi);
+ Array4<Real> const& jr = Jfield[0]->array(mfi);
+ Array4<Real> const& jt = Jfield[1]->array(mfi);
+ Array4<Real> const& jz = Jfield[2]->array(mfi);
+
+ // Extract stencil coefficients
+ Real const * const AMREX_RESTRICT coefs_r = m_stencil_coefs_r.dataPtr();
+ int const n_coefs_r = m_stencil_coefs_r.size();
+ Real const * const AMREX_RESTRICT coefs_z = m_stencil_coefs_z.dataPtr();
+ int const n_coefs_z = m_stencil_coefs_z.size();
+
+ // Extract cylindrical specific parameters
+ Real const dr = m_dr;
+ int const nmodes = m_nmodes;
+ Real const rmin = m_rmin;
+
+ // Extract tileboxes for which to loop
+ Box const& ter = mfi.tilebox(Efield[0]->ixType().ixType());
+ Box const& tet = mfi.tilebox(Efield[1]->ixType().ixType());
+ Box const& tez = mfi.tilebox(Efield[2]->ixType().ixType());
+
+ Real const c2 = PhysConst::c * PhysConst::c;
+
+ // Loop over the cells and update the fields
+ amrex::ParallelFor(ter, tet, tez,
+
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Real const r = rmin + (i + 0.5)*dr; // r on cell-centered point (Er is cell-centered in r)
+ Er(i, j, 0, 0) += c2 * dt*(
+ - T_Algo::DownwardDz(Bt, coefs_z, n_coefs_z, i, j, 0, 0)
+ - PhysConst::mu0 * jr(i, j, 0, 0) ); // Mode m=0
+ for (int m=1; m<nmodes; m++) { // Higher-order modes
+ Er(i, j, 0, 2*m-1) += c2 * dt*(
+ - T_Algo::DownwardDz(Bt, coefs_z, n_coefs_z, i, j, 0, 2*m-1)
+ + m * Bz(i, j, 0, 2*m )/r
+ - PhysConst::mu0 * jr(i, j, 0, 2*m-1) ); // Real part
+ Er(i, j, 0, 2*m ) += c2 * dt*(
+ - T_Algo::DownwardDz(Bt, coefs_z, n_coefs_z, i, j, 0, 2*m )
+ - m * Bz(i, j, 0, 2*m-1)/r
+ - PhysConst::mu0 * jr(i, j, 0, 2*m ) ); // Imaginary part
+ }
+ },
+
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Real const r = rmin + i*dr; // r on a nodal grid (Et is nodal in r)
+ if (r != 0) { // Off-axis, regular Maxwell equations
+ Et(i, j, 0, 0) += c2 * dt*(
+ - T_Algo::DownwardDr(Bz, coefs_r, n_coefs_r, i, j, 0, 0)
+ + T_Algo::DownwardDz(Br, coefs_z, n_coefs_z, i, j, 0, 0)
+ - PhysConst::mu0 * jt(i, j, 0, 0 ) ); // Mode m=0
+ for (int m=1 ; m<nmodes ; m++) { // Higher-order modes
+ Et(i, j, 0, 2*m-1) += c2 * dt*(
+ - T_Algo::DownwardDr(Bz, coefs_r, n_coefs_r, i, j, 0, 2*m-1)
+ + T_Algo::DownwardDz(Br, coefs_z, n_coefs_z, i, j, 0, 2*m-1)
+ - PhysConst::mu0 * jt(i, j, 0, 2*m-1) ); // Real part
+ Et(i, j, 0, 2*m ) += c2 * dt*(
+ - T_Algo::DownwardDr(Bz, coefs_r, n_coefs_r, i, j, 0, 2*m )
+ + T_Algo::DownwardDz(Br, coefs_z, n_coefs_z, i, j, 0, 2*m )
+ - PhysConst::mu0 * jt(i, j, 0, 2*m ) ); // Imaginary part
+ }
+ } else { // r==0: on-axis corrections
+ // Ensure that Et remains 0 on axis (except for m=1)
+ Et(i, j, 0, 0) = 0.; // Mode m=0
+ for (int m=1; m<nmodes; m++) { // Higher-order modes
+ if (m == 1){
+ // The bulk equation could in principle be used here since it does not diverge
+ // on axis. However, it typically gives poor results e.g. for the propagation
+ // of a laser pulse (the field is spuriously reduced on axis). For this reason
+ // a modified on-axis condition is used here: we use the fact that
+ // Etheta(r=0,m=1) should equal -iEr(r=0,m=1), for the fields Er and Et to be
+ // independent of theta at r=0. Now with linear interpolation:
+ // Er(r=0,m=1) = 0.5*[Er(r=dr/2,m=1) + Er(r=-dr/2,m=1)]
+ // And using the rule applying for the guards cells
+ // Er(r=-dr/2,m=1) = Er(r=dr/2,m=1). Thus: Et(i,j,m) = -i*Er(i,j,m)
+ Et(i,j,0,2*m-1) = Er(i,j,0,2*m );
+ Et(i,j,0,2*m ) = -Er(i,j,0,2*m-1);
+ } else {
+ Et(i, j, 0, 2*m-1) = 0.;
+ Et(i, j, 0, 2*m ) = 0.;
+ }
+ }
+ }
+ },
+
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Real const r = rmin + i*dr; // r on a nodal grid (Ez is nodal in r)
+ if (r != 0) { // Off-axis, regular Maxwell equations
+ Ez(i, j, 0, 0) += c2 * dt*(
+ T_Algo::DownwardDrr_over_r(Bt, r, dr, coefs_r, n_coefs_r, i, j, 0, 0)
+ - PhysConst::mu0 * jz(i, j, 0, 0 ) ); // Mode m=0
+ for (int m=1 ; m<nmodes ; m++) { // Higher-order modes
+ Ez(i, j, 0, 2*m-1) += c2 * dt *(
+ - m * Br(i, j, 0, 2*m )/r
+ + T_Algo::DownwardDrr_over_r(Bt, r, dr, coefs_r, n_coefs_r, i, j, 0, 2*m-1)
+ - PhysConst::mu0 * jz(i, j, 0, 2*m-1) ); // Real part
+ Ez(i, j, 0, 2*m ) += c2 * dt *(
+ m * Br(i, j, 0, 2*m-1)/r
+ + T_Algo::DownwardDrr_over_r(Bt, r, dr, coefs_r, n_coefs_r, i, j, 0, 2*m )
+ - PhysConst::mu0 * jz(i, j, 0, 2*m ) ); // Imaginary part
+ }
+ } else { // r==0: on-axis corrections
+ // For m==0, Bt is linear in r, for small r
+ // Therefore, the formula below regularizes the singularity
+ Ez(i, j, 0, 0) += c2 * dt*(
+ 4*Bt(i, j, 0, 0)/dr // regularization
+ - PhysConst::mu0 * jz(i, j, 0, 0 ) );
+ // Ensure that Ez remains 0 for higher-order modes
+ for (int m=1; m<nmodes; m++) {
+ Ez(i, j, 0, 2*m-1) = 0.;
+ Ez(i, j, 0, 2*m ) = 0.;
+ }
+ }
+ }
+
+ ); // end of loop over cells
+
+ // If F is not a null pointer, further update E using the grad(F) term
+ // (hyperbolic correction for errors in charge conservation)
+ if (Ffield) {
+
+ // Extract field data for this grid/tile
+ Array4<Real> F = Ffield->array(mfi);
+
+ // Loop over the cells and update the fields
+ amrex::ParallelFor(ter, tet, tez,
+
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Er(i, j, 0, 0) += T_Algo::UpwardDr(F, coefs_r, n_coefs_r, i, j, 0, 0);
+ for (int m=1; m<nmodes; m++) { // Higher-order modes
+ Er(i, j, 0, 2*m-1) += T_Algo::UpwardDr(F, coefs_r, n_coefs_r, i, j, 0, 2*m-1); // Real part
+ Er(i, j, 0, 2*m ) += T_Algo::UpwardDr(F, coefs_r, n_coefs_r, i, j, 0, 2*m ); // Imaginary part
+ }
+ },
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ // Mode m=0: no update
+ Real const r = rmin + i*dr; // r on a nodal grid (Et is nodal in r)
+ if (r != 0){ // Off-axis, regular Maxwell equations
+ for (int m=1; m<nmodes; m++) { // Higher-order modes
+ Et(i, j, 0, 2*m-1) += m * F(i, j, 0, 2*m )/r; // Real part
+ Et(i, j, 0, 2*m ) += -m * F(i, j, 0, 2*m-1)/r; // Imaginary part
+ }
+ } else { // r==0: on-axis corrections
+ // For m==1, F is linear in r, for small r
+ // Therefore, the formula below regularizes the singularity
+ if (nmodes >= 2) { // needs to have at least m=0 and m=1
+ int const m=1;
+ Et(i, j, 0, 2*m-1) += m * F(i+1, j, 0, 2*m )/dr; // Real part
+ Et(i, j, 0, 2*m ) += -m * F(i+1, j, 0, 2*m-1)/dr; // Imaginary part
+ }
+ }
+ },
+ [=] AMREX_GPU_DEVICE (int i, int j, int k){
+ Ez(i, j, 0, 0) += T_Algo::UpwardDz(F, coefs_z, n_coefs_z, i, j, 0, 0);
+ for (int m=1; m<nmodes; m++) { // Higher-order modes
+ Ez(i, j, 0, 2*m-1) += T_Algo::UpwardDz(F, coefs_z, n_coefs_z, i, j, 0, 2*m-1); // Real part
+ Ez(i, j, 0, 2*m ) += T_Algo::UpwardDz(F, coefs_z, n_coefs_z, i, j, 0, 2*m ); // Imaginary part
+ }
+ }
+
+ ); // end of loop over cells
+
+ } // end of if condition for F
+
+ } // end of loop over grid/tiles
+
+}
+
+#endif // corresponds to ifndef WARPX_DIM_RZ