diff options
author | 2021-03-29 12:47:19 -0700 | |
---|---|---|
committer | 2021-03-29 12:47:19 -0700 | |
commit | 59826e1ed26081f442304db0ac112de90f0a390d (patch) | |
tree | 29d016a72bb0b8531b72a53d99af94917f4f3528 /Source/FieldSolver/SpectralSolver | |
parent | 329037c07180517491388e54e5ed4f728f39396b (diff) | |
download | WarpX-59826e1ed26081f442304db0ac112de90f0a390d.tar.gz WarpX-59826e1ed26081f442304db0ac112de90f0a390d.tar.zst WarpX-59826e1ed26081f442304db0ac112de90f0a390d.zip |
Class `PsatdAlgorithm`: Simplify Initialization of Coefficients (#1819)
* Split Initialization Functions of Spectral Coefficients
* Simplify Initialization of Coefficients Without Averaging
* Do Not Store Coefficients C1,S1,C3,S3 With Averaging
* Simplify Initialization of Coefficients With Averaging
* Add amrex:: Prefix Following WarpX Style Guidelines
* Match Names Of Coefficients With/Without Averaging
* 'pow' Cannot Be Used in a Constant Expression
* Update Doxygen Documentation
Diffstat (limited to 'Source/FieldSolver/SpectralSolver')
-rw-r--r-- | Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.H | 50 | ||||
-rw-r--r-- | Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.cpp | 998 |
2 files changed, 432 insertions, 616 deletions
diff --git a/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.H b/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.H index efa907d14..973265cdf 100644 --- a/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.H +++ b/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.H @@ -17,7 +17,20 @@ class PsatdAlgorithm : public SpectralBaseAlgorithm { public: - // TODO Add Doxygen docs + /** + * \brief Constructor of the class PsatdAlgorithm + * + * \param[in] spectral_kspace spectral space + * \param[in] dm distribution mapping + * \param[in] norder_x order of the spectral solver along x + * \param[in] norder_y order of the spectral solver along y + * \param[in] norder_z order of the spectral solver along z + * \param[in] nodal whether the E and B fields are defined on a fully nodal grid or a Yee grid + * \param[in] v_galilean Galilean velocity (three-dimensional array) + * \param[in] dt time step of the simulation + * \param[in] update_with_rho whether the update equation for E uses rho or not + * \param[in] time_averaging whether to use time averaging for large time steps + */ PsatdAlgorithm ( const SpectralKSpace& spectral_kspace, const amrex::DistributionMapping& dm, @@ -30,10 +43,16 @@ class PsatdAlgorithm : public SpectralBaseAlgorithm const bool update_with_rho, const bool time_averaging); - // TODO Add Doxygen docs + /** + * \brief Updates the E and B fields in spectral space, according to the relevant PSATD equations + * + * \param[in,out] f all the fields in spectral space + */ virtual void pushSpectralFields (SpectralFieldData& f) const override final; - // TODO Add Doxygen docs + /** + * \brief Returns the number of fields stored in spectral space + */ virtual int getRequiredNumberOfFields () const override final { if (m_time_averaging) { @@ -43,13 +62,32 @@ class PsatdAlgorithm : public SpectralBaseAlgorithm } } - // TODO Add Doxygen docs + /** + * \brief Initializes the coefficients used in \c pushSpectralFields to update the E and B fields + * + * \param[in] spectral_kspace spectral space + * \param[in] dm distribution mapping + * \param[in] dt time step of the simulation + */ void InitializeSpectralCoefficients ( const SpectralKSpace& spectral_kspace, const amrex::DistributionMapping& dm, const amrex::Real dt); /** + * \brief Initializes additional coefficients used in \c pushSpectralFields to update the E and B fields, + * required only when using time averaging with large time steps + * + * \param[in] spectral_kspace spectral space + * \param[in] dm distribution mapping + * \param[in] dt time step of the simulation + */ + void InitializeSpectralCoefficientsAveraging ( + const SpectralKSpace& spectral_kspace, + const amrex::DistributionMapping& dm, + const amrex::Real dt); + + /** * \brief Virtual function for current correction in Fourier space * (<a href="https://doi.org/10.1016/j.jcp.2013.03.010"> Vay et al, 2013</a>). * This function overrides the virtual function \c CurrentCorrection in the @@ -90,9 +128,7 @@ class PsatdAlgorithm : public SpectralBaseAlgorithm SpectralComplexCoefficients T2_coef, X1_coef, X2_coef, X3_coef, X4_coef; // These real and complex coefficients are allocated only with averaged Galilean PSATD - SpectralRealCoefficients C1_coef, C3_coef, S1_coef, S3_coef; - SpectralComplexCoefficients Psi1_coef, Psi2_coef, Psi3_coef, Psi4_coef, - A1_coef, A2_coef, Rhoold_coef, Rhonew_coef, Jcoef_coef; + SpectralComplexCoefficients Psi1_coef, Psi2_coef, Y1_coef, Y2_coef, Y3_coef, Y4_coef; // Centered modified finite-order k vectors KVectorComponent modified_kx_vec_centered; diff --git a/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.cpp b/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.cpp index 379bb6369..01a2cfe94 100644 --- a/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.cpp +++ b/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithm.cpp @@ -20,17 +20,17 @@ PsatdAlgorithm::PsatdAlgorithm( const int norder_y, const int norder_z, const bool nodal, - const Array<Real,3>& v_galilean, - const Real dt, + const amrex::Array<amrex::Real,3>& v_galilean, + const amrex::Real dt, const bool update_with_rho, const bool time_averaging) // Initializer list : SpectralBaseAlgorithm(spectral_kspace, dm, norder_x, norder_y, norder_z, nodal), - // Initialize the centered finite-order modified k vectors: these are computed - // always with the assumption of centered grids (argument nodal = true), - // for both nodal and staggered simulations + // Initialize the centered finite-order modified k vectors: + // these are computed always with the assumption of centered grids + // (argument nodal = true), for both nodal and staggered simulations modified_kx_vec_centered(spectral_kspace.getModifiedKComponent(dm, 0, norder_x, true)), -#if (AMREX_SPACEDIM==3) +#if (AMREX_SPACEDIM == 3) modified_ky_vec_centered(spectral_kspace.getModifiedKComponent(dm, 1, norder_y, true)), modified_kz_vec_centered(spectral_kspace.getModifiedKComponent(dm, 2, norder_z, true)), #else @@ -41,7 +41,7 @@ PsatdAlgorithm::PsatdAlgorithm( m_update_with_rho(update_with_rho), m_time_averaging(time_averaging) { - const BoxArray& ba = spectral_kspace.spectralspace_ba; + const amrex::BoxArray& ba = spectral_kspace.spectralspace_ba; m_is_galilean = (v_galilean[0] != 0.) || (v_galilean[1] != 0.) || (v_galilean[2] != 0.); @@ -58,25 +58,20 @@ PsatdAlgorithm::PsatdAlgorithm( T2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); } + InitializeSpectralCoefficients(spectral_kspace, dm, dt); + // Allocate these coefficients only with averaged Galilean PSATD if (time_averaging) { - C1_coef = SpectralRealCoefficients(ba, dm, 1, 0); - S1_coef = SpectralRealCoefficients(ba, dm, 1, 0); - C3_coef = SpectralRealCoefficients(ba, dm, 1, 0); - S3_coef = SpectralRealCoefficients(ba, dm, 1, 0); Psi1_coef = SpectralComplexCoefficients(ba, dm, 1, 0); Psi2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - Psi3_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - A1_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - A2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - Rhoold_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - Rhonew_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - Jcoef_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - } + Y1_coef = SpectralComplexCoefficients(ba, dm, 1, 0); + Y3_coef = SpectralComplexCoefficients(ba, dm, 1, 0); + Y2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); + Y4_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - // Initialize coefficients - InitializeSpectralCoefficients(spectral_kspace, dm, dt); + InitializeSpectralCoefficientsAveraging(spectral_kspace, dm, dt); + } } void @@ -87,22 +82,22 @@ PsatdAlgorithm::pushSpectralFields (SpectralFieldData& f) const const bool is_galilean = m_is_galilean; // Loop over boxes - for (MFIter mfi(f.fields); mfi.isValid(); ++mfi) + for (amrex::MFIter mfi(f.fields); mfi.isValid(); ++mfi) { - const Box& bx = f.fields[mfi].box(); + const amrex::Box& bx = f.fields[mfi].box(); // Extract arrays for the fields to be updated - Array4<Complex> fields = f.fields[mfi].array(); + amrex::Array4<Complex> fields = f.fields[mfi].array(); // These coefficients are always allocated - Array4<const Real> C_arr = C_coef[mfi].array(); - Array4<const Real> S_ck_arr = S_ck_coef[mfi].array(); - Array4<const Complex> X1_arr = X1_coef[mfi].array(); - Array4<const Complex> X2_arr = X2_coef[mfi].array(); - Array4<const Complex> X3_arr = X3_coef[mfi].array(); - - Array4<const Complex> X4_arr; - Array4<const Complex> T2_arr; + amrex::Array4<const amrex::Real> C_arr = C_coef[mfi].array(); + amrex::Array4<const amrex::Real> S_ck_arr = S_ck_coef[mfi].array(); + amrex::Array4<const Complex> X1_arr = X1_coef[mfi].array(); + amrex::Array4<const Complex> X2_arr = X2_coef[mfi].array(); + amrex::Array4<const Complex> X3_arr = X3_coef[mfi].array(); + + amrex::Array4<const Complex> X4_arr; + amrex::Array4<const Complex> T2_arr; if (is_galilean) { X4_arr = X4_coef[mfi].array(); @@ -110,29 +105,29 @@ PsatdAlgorithm::pushSpectralFields (SpectralFieldData& f) const } // These coefficients are allocated only with averaged Galilean PSATD - Array4<const Complex> Psi1_arr; - Array4<const Complex> Psi2_arr; - Array4<const Complex> A1_arr; - Array4<const Complex> Rhonew_arr; - Array4<const Complex> Rhoold_arr; - Array4<const Complex> Jcoef_arr; + amrex::Array4<const Complex> Psi1_arr; + amrex::Array4<const Complex> Psi2_arr; + amrex::Array4<const Complex> Y1_arr; + amrex::Array4<const Complex> Y2_arr; + amrex::Array4<const Complex> Y3_arr; + amrex::Array4<const Complex> Y4_arr; if (time_averaging) { Psi1_arr = Psi1_coef[mfi].array(); Psi2_arr = Psi2_coef[mfi].array(); - A1_arr = A1_coef[mfi].array(); - Rhonew_arr = Rhonew_coef[mfi].array(); - Rhoold_arr = Rhoold_coef[mfi].array(); - Jcoef_arr = Jcoef_coef[mfi].array(); + Y1_arr = Y1_coef[mfi].array(); + Y2_arr = Y2_coef[mfi].array(); + Y3_arr = Y3_coef[mfi].array(); + Y4_arr = Y4_coef[mfi].array(); } // Extract pointers for the k vectors - const Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr(); -#if (AMREX_SPACEDIM==3) - const Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr(); + const amrex::Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr(); +#if (AMREX_SPACEDIM == 3) + const amrex::Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr(); #endif - const Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr(); + const amrex::Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr(); // Loop over indices within one box ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept @@ -156,27 +151,25 @@ PsatdAlgorithm::pushSpectralFields (SpectralFieldData& f) const const Complex rho_new = fields(i,j,k,Idx::rho_new); // k vector values - const Real kx = modified_kx_arr[i]; -#if (AMREX_SPACEDIM==3) - const Real ky = modified_ky_arr[j]; - const Real kz = modified_kz_arr[k]; + const amrex::Real kx = modified_kx_arr[i]; +#if (AMREX_SPACEDIM == 3) + const amrex::Real ky = modified_ky_arr[j]; + const amrex::Real kz = modified_kz_arr[k]; #else - constexpr Real ky = 0._rt; - const Real kz = modified_kz_arr[j]; + constexpr amrex::Real ky = 0._rt; + const amrex::Real kz = modified_kz_arr[j]; #endif - // Physical constants and imaginary unit - constexpr Real c2 = PhysConst::c * PhysConst::c; - constexpr Real inv_ep0 = 1._rt / PhysConst::ep0; + const amrex::Real c2 = std::pow(PhysConst::c, 2); constexpr Complex I = Complex{0._rt, 1._rt}; // These coefficients are initialized in the function InitializeSpectralCoefficients - const Real C = C_arr(i,j,k); - const Real S_ck = S_ck_arr(i,j,k); + const amrex::Real C = C_arr(i,j,k); + const amrex::Real S_ck = S_ck_arr(i,j,k); const Complex X1 = X1_arr(i,j,k); const Complex X2 = X2_arr(i,j,k); const Complex X3 = X3_arr(i,j,k); - const Complex X4 = (is_galilean) ? X4_arr(i,j,k) : - S_ck * inv_ep0; + const Complex X4 = (is_galilean) ? X4_arr(i,j,k) : - S_ck / PhysConst::ep0; const Complex T2 = (is_galilean) ? T2_arr(i,j,k) : 1.0_rt; // Update equations for E in the formulation with rho @@ -185,16 +178,16 @@ PsatdAlgorithm::pushSpectralFields (SpectralFieldData& f) const if (update_with_rho) { fields(i,j,k,Idx::Ex) = T2 * C * Ex_old - + I * c2 * T2 * S_ck * (ky * Bz_old - kz * By_old) - + X4 * Jx - I * (X2 * rho_new - T2 * X3 * rho_old) * kx; + + I * c2 * T2 * S_ck * (ky * Bz_old - kz * By_old) + + X4 * Jx - I * (X2 * rho_new - T2 * X3 * rho_old) * kx; fields(i,j,k,Idx::Ey) = T2 * C * Ey_old - + I * c2 * T2 * S_ck * (kz * Bx_old - kx * Bz_old) - + X4 * Jy - I * (X2 * rho_new - T2 * X3 * rho_old) * ky; + + I * c2 * T2 * S_ck * (kz * Bx_old - kx * Bz_old) + + X4 * Jy - I * (X2 * rho_new - T2 * X3 * rho_old) * ky; fields(i,j,k,Idx::Ez) = T2 * C * Ez_old - + I * c2 * T2 * S_ck * (kx * By_old - ky * Bx_old) - + X4 * Jz - I * (X2 * rho_new - T2 * X3 * rho_old) * kz; + + I * c2 * T2 * S_ck * (kx * By_old - ky * Bx_old) + + X4 * Jz - I * (X2 * rho_new - T2 * X3 * rho_old) * kz; } // Update equations for E in the formulation without rho @@ -206,29 +199,32 @@ PsatdAlgorithm::pushSpectralFields (SpectralFieldData& f) const Complex k_dot_E = kx * Ex_old + ky * Ey_old + kz * Ez_old; fields(i,j,k,Idx::Ex) = T2 * C * Ex_old - + I * c2 * T2 * S_ck * (ky * Bz_old - kz * By_old) - + X4 * Jx + X2 * k_dot_E * kx + X3 * k_dot_J * kx; + + I * c2 * T2 * S_ck * (ky * Bz_old - kz * By_old) + + X4 * Jx + X2 * k_dot_E * kx + X3 * k_dot_J * kx; fields(i,j,k,Idx::Ey) = T2 * C * Ey_old - + I * c2 * T2 * S_ck * (kz * Bx_old - kx * Bz_old) - + X4 * Jy + X2 * k_dot_E * ky + X3 * k_dot_J * ky; + + I * c2 * T2 * S_ck * (kz * Bx_old - kx * Bz_old) + + X4 * Jy + X2 * k_dot_E * ky + X3 * k_dot_J * ky; fields(i,j,k,Idx::Ez) = T2 * C * Ez_old - + I * c2 * T2 * S_ck * (kx * By_old - ky * Bx_old) - + X4 * Jz + X2 * k_dot_E * kz + X3 * k_dot_J * kz; + + I * c2 * T2 * S_ck * (kx * By_old - ky * Bx_old) + + X4 * Jz + X2 * k_dot_E * kz + X3 * k_dot_J * kz; } // Update equations for B // T2 = 1 always with standard PSATD (zero Galilean velocity) - fields(i,j,k,Idx::Bx) = T2 * C * Bx_old - I * T2 * S_ck * (ky * Ez_old - kz * Ey_old) - + I * X1 * (ky * Jz - kz * Jy); + fields(i,j,k,Idx::Bx) = T2 * C * Bx_old + - I * T2 * S_ck * (ky * Ez_old - kz * Ey_old) + + I * X1 * (ky * Jz - kz * Jy); - fields(i,j,k,Idx::By) = T2 * C * By_old - I * T2 * S_ck * (kz * Ex_old - kx * Ez_old) - + I * X1 * (kz * Jx - kx * Jz); + fields(i,j,k,Idx::By) = T2 * C * By_old + - I * T2 * S_ck * (kz * Ex_old - kx * Ez_old) + + I * X1 * (kz * Jx - kx * Jz); - fields(i,j,k,Idx::Bz) = T2 * C * Bz_old - I * T2 * S_ck * (kx * Ey_old - ky * Ex_old) - + I * X1 * (kx * Jy - ky * Jx); + fields(i,j,k,Idx::Bz) = T2 * C * Bz_old + - I * T2 * S_ck * (kx * Ey_old - ky * Ex_old) + + I * X1 * (kx * Jy - ky * Jx); // Additional update equations for averaged Galilean algorithm @@ -237,31 +233,34 @@ PsatdAlgorithm::pushSpectralFields (SpectralFieldData& f) const // These coefficients are initialized in the function InitializeSpectralCoefficients below const Complex Psi1 = Psi1_arr(i,j,k); const Complex Psi2 = Psi2_arr(i,j,k); - const Complex A1 = A1_arr(i,j,k); - const Complex CRhoold = Rhoold_arr(i,j,k); - const Complex CRhonew = Rhonew_arr(i,j,k); - const Complex Jcoef = Jcoef_arr(i,j,k); + const Complex Y1 = Y1_arr(i,j,k); + const Complex Y3 = Y3_arr(i,j,k); + const Complex Y2 = Y2_arr(i,j,k); + const Complex Y4 = Y4_arr(i,j,k); fields(i,j,k,AvgIdx::Ex_avg) = Psi1 * Ex_old - - I * c2 * Psi2 * (ky * Bz_old - kz * By_old) - + Jcoef * Jx + (CRhonew * rho_new + CRhoold * rho_old) * kx; + - I * c2 * Psi2 * (ky * Bz_old - kz * By_old) + + Y4 * Jx + (Y2 * rho_new + Y3 * rho_old) * kx; fields(i,j,k,AvgIdx::Ey_avg) = Psi1 * Ey_old - - I * c2 * Psi2 * (kz * Bx_old - kx * Bz_old) - + Jcoef * Jy + (CRhonew * rho_new + CRhoold * rho_old) * ky; + - I * c2 * Psi2 * (kz * Bx_old - kx * Bz_old) + + Y4 * Jy + (Y2 * rho_new + Y3 * rho_old) * ky; fields(i,j,k,AvgIdx::Ez_avg) = Psi1 * Ez_old - - I * c2 * Psi2 * (kx * By_old - ky * Bx_old) - + Jcoef * Jz + (CRhonew * rho_new + CRhoold * rho_old) * kz; + - I * c2 * Psi2 * (kx * By_old - ky * Bx_old) + + Y4 * Jz + (Y2 * rho_new + Y3 * rho_old) * kz; - fields(i,j,k,AvgIdx::Bx_avg) = Psi1 * Bx_old + I * Psi2 * (ky * Ez_old - kz * Ey_old) - + I * inv_ep0 * A1 * (ky * Jz - kz * Jy); + fields(i,j,k,AvgIdx::Bx_avg) = Psi1 * Bx_old + + I * Psi2 * (ky * Ez_old - kz * Ey_old) + + I * Y1 * (ky * Jz - kz * Jy); - fields(i,j,k,AvgIdx::By_avg) = Psi1 * By_old + I * Psi2 * (kz * Ex_old - kx * Ez_old) - + I * inv_ep0 * A1 * (kz * Jx - kx * Jz); + fields(i,j,k,AvgIdx::By_avg) = Psi1 * By_old + + I * Psi2 * (kz * Ex_old - kx * Ez_old) + + I * Y1 * (kz * Jx - kx * Jz); - fields(i,j,k,AvgIdx::Bz_avg) = Psi1 * Bz_old + I * Psi2 * (kx * Ey_old - ky * Ex_old) - + I * inv_ep0 * A1 * (kx * Jy - ky * Jx); + fields(i,j,k,AvgIdx::Bz_avg) = Psi1 * Bz_old + + I * Psi2 * (kx * Ey_old - ky * Ex_old) + + I * Y1 * (kx * Jy - ky * Jx); } }); } @@ -273,608 +272,389 @@ void PsatdAlgorithm::InitializeSpectralCoefficients ( const amrex::Real dt) { const bool update_with_rho = m_update_with_rho; - const bool time_averaging = m_time_averaging; const bool is_galilean = m_is_galilean; - const BoxArray& ba = spectral_kspace.spectralspace_ba; + const amrex::BoxArray& ba = spectral_kspace.spectralspace_ba; // Loop over boxes and allocate the corresponding coefficients for each box - for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi) + for (amrex::MFIter mfi(ba, dm); mfi.isValid(); ++mfi) { - const Box& bx = ba[mfi]; + const amrex::Box& bx = ba[mfi]; // Extract pointers for the k vectors - const Real* kx = modified_kx_vec[mfi].dataPtr(); - const Real* kx_c = modified_kx_vec_centered[mfi].dataPtr(); -#if (AMREX_SPACEDIM==3) - const Real* ky = modified_ky_vec[mfi].dataPtr(); - const Real* ky_c = modified_ky_vec_centered[mfi].dataPtr(); + const amrex::Real* kx_s = modified_kx_vec[mfi].dataPtr(); + const amrex::Real* kx_c = modified_kx_vec_centered[mfi].dataPtr(); +#if (AMREX_SPACEDIM == 3) + const amrex::Real* ky_s = modified_ky_vec[mfi].dataPtr(); + const amrex::Real* ky_c = modified_ky_vec_centered[mfi].dataPtr(); #endif - const Real* kz = modified_kz_vec[mfi].dataPtr(); - const Real* kz_c = modified_kz_vec_centered[mfi].dataPtr(); + const amrex::Real* kz_s = modified_kz_vec[mfi].dataPtr(); + const amrex::Real* kz_c = modified_kz_vec_centered[mfi].dataPtr(); // Coefficients always allocated - Array4<Real> C = C_coef[mfi].array(); - Array4<Real> S_ck = S_ck_coef[mfi].array(); - Array4<Complex> X1 = X1_coef[mfi].array(); - Array4<Complex> X2 = X2_coef[mfi].array(); - Array4<Complex> X3 = X3_coef[mfi].array(); - - Array4<Complex> X4; - Array4<Complex> T2; + amrex::Array4<amrex::Real> C = C_coef[mfi].array(); + amrex::Array4<amrex::Real> S_ck = S_ck_coef[mfi].array(); + amrex::Array4<Complex> X1 = X1_coef[mfi].array(); + amrex::Array4<Complex> X2 = X2_coef[mfi].array(); + amrex::Array4<Complex> X3 = X3_coef[mfi].array(); + + amrex::Array4<Complex> X4; + amrex::Array4<Complex> T2; if (is_galilean) { X4 = X4_coef[mfi].array(); T2 = T2_coef[mfi].array(); } - // Coefficients allocated only with averaged Galilean PSATD - Array4<Real> C1; - Array4<Real> S1; - Array4<Real> C3; - Array4<Real> S3; - Array4<Complex> Psi1; - Array4<Complex> Psi2; - Array4<Complex> Psi3; - Array4<Complex> A1; - Array4<Complex> A2; - Array4<Complex> CRhoold; - Array4<Complex> CRhonew; - Array4<Complex> Jcoef; - - if (time_averaging) - { - C1 = C1_coef[mfi].array(); - S1 = S1_coef[mfi].array(); - C3 = C3_coef[mfi].array(); - S3 = S3_coef[mfi].array(); - Psi1 = Psi1_coef[mfi].array(); - Psi2 = Psi2_coef[mfi].array(); - Psi3 = Psi3_coef[mfi].array(); - A1 = A1_coef[mfi].array(); - A2 = A2_coef[mfi].array(); - CRhoold = Rhoold_coef[mfi].array(); - CRhonew = Rhonew_coef[mfi].array(); - Jcoef = Jcoef_coef[mfi].array(); - } - // Extract Galilean velocity - Real vx = m_v_galilean[0]; -#if (AMREX_SPACEDIM==3) - Real vy = m_v_galilean[1]; + amrex::Real vg_x = m_v_galilean[0]; +#if (AMREX_SPACEDIM == 3) + amrex::Real vg_y = m_v_galilean[1]; #endif - Real vz = m_v_galilean[2]; + amrex::Real vg_z = m_v_galilean[2]; // Loop over indices within one box ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept { // Calculate norm of k vector - const Real knorm = std::sqrt( - std::pow(kx[i], 2) + -#if (AMREX_SPACEDIM==3) - std::pow(ky[j], 2) + std::pow(kz[k], 2)); + const amrex::Real knorm_s = std::sqrt( + std::pow(kx_s[i], 2) + +#if (AMREX_SPACEDIM == 3) + std::pow(ky_s[j], 2) + std::pow(kz_s[k], 2)); #else - std::pow(kz[j], 2)); -#endif - // Calculate norm of k vector (centered) - const Real knorm_c = std::sqrt( - std::pow(kx_c[i], 2) + -#if (AMREX_SPACEDIM==3) - std::pow(ky_c[j], 2) + std::pow(kz_c[k], 2)); -#else - std::pow(kz_c[j], 2)); + std::pow(kz_s[j], 2)); #endif // Physical constants and imaginary unit - constexpr Real c = PhysConst::c; - constexpr Real c2 = c*c; - constexpr Real ep0 = PhysConst::ep0; + constexpr amrex::Real c = PhysConst::c; + constexpr amrex::Real ep0 = PhysConst::ep0; constexpr Complex I = Complex{0._rt, 1._rt}; - // Auxiliary coefficients used when update_with_rho=false - const Real dt2 = dt * dt; - const Real dt3 = dt * dt2; - Complex X2_old, X3_old; + const amrex::Real c2 = std::pow(c, 2); + const amrex::Real dt2 = std::pow(dt, 2); + const amrex::Real dt3 = std::pow(dt, 3); // Calculate the dot product of the k vector with the Galilean velocity. // This has to be computed always with the centered (that is, nodal) finite-order // modified k vectors, to work correctly for both nodal and staggered simulations. - // kv = 0 always with standard PSATD (zero Galilean velocity). - const Real kv = kx_c[i]*vx + -#if (AMREX_SPACEDIM==3) - ky_c[j]*vy + kz_c[k]*vz; + // w_c = 0 always with standard PSATD (zero Galilean velocity). + const amrex::Real w_c = kx_c[i]*vg_x + +#if (AMREX_SPACEDIM == 3) + ky_c[j]*vg_y + kz_c[k]*vg_z; #else - kz_c[j]*vz; + kz_c[j]*vg_z; #endif + const amrex::Real w2_c = std::pow(w_c, 2); - // Note that: - // - X1 multiplies i*(k \times J) in the update equation for B - // - X2 multiplies rho_new if update_with_rho = 1 or (k \dot E) - // if update_with_rho = 0 in the update equation for E - // - X3 multiplies rho_old if update_with_rho = 1 or (k \dot J) - // if update_with_rho = 0 in the update equation for E - // - X4 multiplies J in the update equation for E - - if (knorm != 0. && knorm_c != 0.) - { - // Auxiliary coefficients - const Real om = c * knorm; - const Real om2 = om * om; - const Real om3 = om * om2; - const Real om_c = c * knorm_c; - const Real om2_c = om_c * om_c; - const Real om3_c = om_c * om2_c; - const Complex tmp1 = amrex::exp( I * om * dt); - const Complex tmp2 = amrex::exp(- I * om * dt); - - C (i,j,k) = std::cos(om * dt); - S_ck(i,j,k) = std::sin(om * dt) / om; - - if (time_averaging) - { - C1(i,j,k) = std::cos(0.5_rt * om * dt); - S1(i,j,k) = std::sin(0.5_rt * om * dt); - C3(i,j,k) = std::cos(1.5_rt * om * dt); - S3(i,j,k) = std::sin(1.5_rt * om * dt); - } - - const Real nu = kv / om_c; - const Real nu2 = nu * nu; - const Complex theta = amrex::exp(I * nu * om_c * dt * 0.5_rt); - const Complex theta_star = amrex::exp(- I * nu * om_c * dt * 0.5_rt); - - // T2 = 1 always with standard PSATD (zero Galilean velocity) - if (is_galilean) - { - T2(i,j,k) = theta * theta; - } - const Complex T2_tmp = (is_galilean) ? T2(i,j,k) : 1.0_rt; - - // nu = 0 always with standard PSATD (zero Galilean velocity): skip this block - if (nu != om/om_c && nu != -om/om_c && nu != 0.) - { - // x1 is the coefficient chi_1 in equation (12c) - Complex x1 = om2_c / (om2 - nu2 * om2_c) - * (theta_star - theta * C(i,j,k) + I * nu * om_c * theta * S_ck(i,j,k)); - - X1(i,j,k) = theta * x1 / (ep0 * om2_c); - - if (update_with_rho) - { - X2(i,j,k) = c2 * (x1 * om2 - theta * (1._rt - C(i,j,k)) * om2_c) - / (theta_star - theta) / (ep0 * om2_c * om2); - - X3(i,j,k) = c2 * (x1 * om2 - theta_star * (1._rt - C(i,j,k)) * om2_c) - / (theta_star - theta) / (ep0 * om2_c * om2); - } - - else // update_with_rho = 0 - { - X2_old = (x1 * om2 - theta * (1._rt - C(i,j,k)) * om2_c) - / (theta_star - theta); - - X3_old = (x1 * om2 - theta_star * (1._rt - C(i,j,k)) * om2_c) - / (theta_star - theta); - - X2(i,j,k) = c2 * T2_tmp * (X2_old - X3_old) / (om2_c * om2); - - X3(i,j,k) = I * c2 * X2_old * (T2_tmp - 1._rt) / (ep0 * nu * om3_c * om2); - } - - if (is_galilean) - { - X4(i,j,k) = I * nu * om_c * X1(i,j,k) - T2_tmp * S_ck(i,j,k) / ep0; - } - - // Averaged Galilean algorithm - if (time_averaging) - { - Complex C_rho = I * c2 / ((1._rt - T2_tmp) * ep0); - - Psi1(i,j,k) = theta * ((om * S1(i,j,k) + I * nu * om_c * C1(i,j,k)) - - T2_tmp * (om * S3(i,j,k) + I * nu * om_c * C3(i,j,k))) - / (dt * (nu2 * om2_c - om2)); - - Psi2(i,j,k) = theta * ((om * C1(i,j,k) - I * nu * om_c * S1(i,j,k)) - - T2_tmp * (om * C3(i,j,k) - I * nu * om_c * S3(i,j,k))) - / (om * dt * (nu2 * om2_c - om2)); - - Psi3(i,j,k) = I * theta * (1._rt - T2_tmp) / (nu * om_c * dt); - - A1(i,j,k) = (Psi1(i,j,k) - 1._rt + I * nu * om_c * Psi2(i,j,k)) - / (nu2 * om2_c - om2); - - A2(i,j,k) = (Psi3(i,j,k) - Psi1(i,j,k)) / om2; - - CRhoold(i,j,k) = C_rho * (T2_tmp * A1(i,j,k) - A2(i,j,k)); - - CRhonew(i,j,k) = C_rho * (A2(i,j,k) - A1(i,j,k)); - - Jcoef(i,j,k) = (I * nu * om_c * A1(i,j,k) + Psi2(i,j,k)) / ep0; - } - } - - // nu = 0 always with standard PSATD (zero Galilean velocity) - if (nu == 0.) - { - X1(i,j,k) = (1._rt - C(i,j,k)) / (ep0 * om2); - - if (update_with_rho) - { - X2(i,j,k) = c2 * (1._rt - S_ck(i,j,k) / dt) / (ep0 * om2); - - X3(i,j,k) = c2 * (C(i,j,k) - S_ck(i,j,k) / dt) / (ep0 * om2); - } - - else // update_with_rho = 0 - { - X2(i,j,k) = c2 * (1._rt - C(i,j,k)) / om2; - - X3(i,j,k) = c2 * (S_ck(i,j,k) / dt - 1._rt) * dt / (ep0 * om2); - } - - if (is_galilean) - { - X4(i,j,k) = - S_ck(i,j,k) / ep0; - } - - // Averaged Galilean algorithm - if (time_averaging) - { - Psi1(i,j,k) = (S3(i,j,k) - S1(i,j,k)) / (om * dt); - - Psi2(i,j,k) = (C3(i,j,k) - C1(i,j,k)) / (om2 * dt); + const amrex::Real om_s = c * knorm_s; + const amrex::Real om2_s = std::pow(om_s, 2); - Psi3(i,j,k) = 1._rt; + const Complex theta_c = amrex::exp( I * w_c * dt * 0.5_rt); + const Complex theta2_c = amrex::exp( I * w_c * dt); + const Complex theta_c_star = amrex::exp(-I * w_c * dt * 0.5_rt); - A1(i,j,k) = (om * dt + S1(i,j,k) - S3(i,j,k)) / (om3 * dt); + // C + C(i,j,k) = std::cos(om_s * dt); - A2(i,j,k) = (om * dt + S1(i,j,k) - S3(i,j,k)) / (om3 * dt); + // S_ck + if (om_s != 0.) + { + S_ck(i,j,k) = std::sin(om_s * dt) / om_s; + } + else // om_s = 0 + { + S_ck(i,j,k) = dt; + } - CRhoold(i,j,k) = 2._rt * I * c2 * S1(i,j,k) * (dt * C(i,j,k) - S_ck(i,j,k)) - / (om3 * dt2 * ep0); + // Auxiliary variable + amrex::Real tmp; + if (om_s != 0.) + { + tmp = (1._rt - C(i,j,k)) / (ep0 * om2_s); + } + else // om_s = 0 + { + tmp = 0.5_rt * dt2 / ep0; + } - CRhonew(i,j,k) = - I * c2 * (om2 * dt2 - C1(i,j,k) + C3(i,j,k)) - / (om2 * om2 * dt2 * ep0); + // T2 + if (is_galilean) + { + T2(i,j,k) = theta_c * theta_c; + } - Jcoef(i,j,k) = (I * nu * om_c * A1(i,j,k) + Psi2(i,j,k)) / ep0; - } - } + // X1 (multiplies i*([k] \times J) in the update equation for update B) + if ((om_s != 0.) || (w_c != 0.)) + { + X1(i,j,k) = (1._rt - theta2_c * C(i,j,k) + I * w_c * theta2_c * S_ck(i,j,k)) + / (ep0 * (om2_s - w2_c)); + } + else // om_s = 0 and w_c = 0 + { + X1(i,j,k) = 0.5_rt * dt2 / ep0; + } - // nu = 0 always with standard PSATD (zero Galilean velocity): skip this block - if (nu == om/om_c) + // X2 (multiplies rho_new if update_with_rho = 1 in the update equation for E) + // X2 (multiplies ([k] \dot E) if update_with_rho = 0 in the update equation for E) + if (update_with_rho) + { + if (w_c != 0.) { - X1(i,j,k) = (1._rt - tmp1 * tmp1 + 2._rt * I * om * dt) / (4._rt * ep0 * om2); - - if (update_with_rho) - { - X2(i,j,k) = c2 * (- 3._rt + 4._rt * tmp1 - tmp1 * tmp1 - 2._rt * I * om * dt) - / (4._rt * ep0 * om2 * (tmp1 - 1._rt)); - - X3(i,j,k) = c2 * (3._rt - 2._rt * tmp2 - 2._rt * tmp1 + tmp1 * tmp1 - - 2._rt * I * om * dt) / (4._rt * ep0 * om2 * (tmp1 - 1._rt)); - } - - else // update_with_rho = 0 - { - X2(i,j,k) = c2 * (1._rt - C(i,j,k)) * tmp1 / om2; - - X3(i,j,k) = c2 * (2._rt * om * dt - I * tmp1 * tmp1 + 4._rt * I * tmp1 - 3._rt * I) - / (4._rt * ep0 * om3); - } - - if (is_galilean) - { - X4(i,j,k) = (- I + I * tmp1 * tmp1 - 2._rt * om * dt) / (4._rt * ep0 * om); - } - - // Averaged Galilean algorithm - if (time_averaging) - { - Complex C_rho = I * c2 / ((1._rt - T2_tmp) * ep0); - - Psi1(i,j,k) = (2._rt * om * dt + I * tmp1 - I * tmp1 * tmp1 * tmp1) - / (4._rt * om * dt); - - Psi2(i,j,k) = (- 2._rt * I * om * dt - tmp1 + tmp1 * tmp1 * tmp1) - / (4._rt * om2 * dt); - - Psi3(i,j,k) = I * theta * (1._rt - T2_tmp) / (nu * om_c * dt); - - A1(i,j,k) = (2._rt * om * dt + I * (4._rt * om2 * dt2 - tmp1 + tmp1 * tmp1 * tmp1)) - / (8._rt * om3 * dt); - - A2(i,j,k) = (Psi3(i,j,k) - Psi1(i,j,k)) / om2; - - CRhoold(i,j,k) = C_rho * (T2_tmp * A1(i,j,k) - A2(i,j,k)); - - CRhonew(i,j,k) = C_rho * (A2(i,j,k) - A1(i,j,k)); - - Jcoef(i,j,k) = (I * nu * om_c * A1(i,j,k) + Psi2(i,j,k)) / ep0; - } + X2(i,j,k) = c2 * (theta_c_star * X1(i,j,k) - theta_c * tmp) + / (theta_c_star - theta_c); } - - // nu = 0 always with standard PSATD (zero Galilean velocity): skip this block - if (nu == -om/om_c) + else // w_c = 0 { - X1(i,j,k) = (1._rt - tmp2 * tmp2 - 2._rt * I * om * dt) / (4._rt * ep0 * om2); - - if (update_with_rho) - { - X2(i,j,k) = c2 * (- 4._rt + 3._rt * tmp1 + tmp2 - 2._rt * I * om * dt * tmp1) - / (4._rt * ep0 * om2 * (tmp1 - 1._rt)); - - X3(i,j,k) = c2 * (2._rt - tmp2 - 3._rt * tmp1 + 2._rt * tmp1 * tmp1 - - 2._rt * I * om * dt * tmp1) / (4._rt * ep0 * om2 * (tmp1 - 1._rt)); - } - - else // update_with_rho = 0 + if (om_s != 0.) { - X2(i,j,k) = c2 * (1._rt - C(i,j,k)) * tmp2 / om2; - - X3(i,j,k) = c2 * (2._rt * om * dt + I * tmp2 * tmp2 - 4._rt * I * tmp2 + 3._rt * I) - / (4._rt * ep0 * om3); + X2(i,j,k) = c2 * (dt - S_ck(i,j,k)) / (ep0 * dt * om2_s); } - - if (is_galilean) + else // om_s = 0 and w_c = 0 { - X4(i,j,k) = (I - I * tmp2 * tmp2 - 2._rt * om * dt) / (4._rt * ep0 * om); - } - - // Averaged Galilean algorithm - if (time_averaging) - { - Complex C_rho = I * c2 / ((1._rt - T2_tmp) * ep0); - - Psi1(i,j,k) = (2._rt * om * dt - I * tmp2 + I * tmp2 * tmp2 * tmp2) - / (4._rt * om * dt); - - Psi2(i,j,k) = (2._rt * I * om * dt - tmp2 + tmp2 * tmp2 * tmp2) - / (4._rt * om2 * dt); - - Psi3(i,j,k) = I * theta * (1._rt - T2_tmp) / (nu * om_c * dt); - - A1(i,j,k) = (2._rt * om * dt * (1._rt - 2._rt * I * om * dt) - + I * (tmp2 - tmp2 * tmp2 * tmp2)) / (8._rt * om3 * dt); - - A2(i,j,k) = (Psi3(i,j,k) - Psi1(i,j,k)) / om2; - - CRhoold(i,j,k) = C_rho * (T2_tmp * A1(i,j,k) - A2(i,j,k)); - - CRhonew(i,j,k) = C_rho * (A2(i,j,k) - A1(i,j,k)); - - Jcoef(i,j,k) = (I * nu * om_c * A1(i,j,k) + Psi2(i,j,k)) / ep0; + X2(i,j,k) = c2 * dt2 / (6._rt * ep0); } } } - - else if (knorm != 0. && knorm_c == 0.) + else // update_with_rho = 0 { - const Real om = c * knorm; - const Real om2 = om * om; - const Real om3 = om * om2; - - C(i,j,k) = std::cos(om * dt); - - S_ck(i,j,k) = std::sin(om * dt) / om; - - X1(i,j,k) = (1._rt - C(i,j,k)) / (ep0 * om2); - - if (update_with_rho) - { - X2(i,j,k) = c2 * (1._rt - S_ck(i,j,k) / dt) / (ep0 * om2); - - X3(i,j,k) = c2 * (C(i,j,k) - S_ck(i,j,k) / dt) / (ep0 * om2); - } - - else // update_with_rho = 0 - { - X2(i,j,k) = c2 * (1._rt - C(i,j,k)) / om2; - - X3(i,j,k) = c2 * (S_ck(i,j,k) / dt - 1._rt) * dt / (ep0 * om2); - } - - if (is_galilean) - { - X4(i,j,k) = - S_ck(i,j,k) / ep0; - - T2(i,j,k) = 1._rt; - } - - // Averaged Galilean algorithm - if (time_averaging) - { - C1(i,j,k) = std::cos(0.5_rt * om * dt); - S1(i,j,k) = std::sin(0.5_rt * om * dt); - C3(i,j,k) = std::cos(1.5_rt * om * dt); - S3(i,j,k) = std::sin(1.5_rt * om * dt); - - Psi1(i,j,k) = (S3(i,j,k) - S1(i,j,k)) / (om * dt); - - Psi2(i,j,k) = (C3(i,j,k) - C1(i,j,k)) / (om2 * dt); - - Psi3(i,j,k) = 1._rt; - - A1(i,j,k) = (om * dt + S1(i,j,k) - S3(i,j,k)) / (om3 * dt); - - A2(i,j,k) = (om * dt + S1(i,j,k) - S3(i,j,k)) / (om3 * dt); - - CRhoold(i,j,k) = 2._rt * I * c2 * S1(i,j,k) * (dt * C(i,j,k) - S_ck(i,j,k)) - / (om3 * dt2 * ep0); - - CRhonew(i,j,k) = - I * c2 * (om2 * dt2 - C1(i,j,k) + C3(i,j,k)) - / (om2 * om2 * dt2 * ep0); - - Jcoef(i,j,k) = Psi2(i,j,k) / ep0; - } + X2(i,j,k) = c2 * ep0 * theta2_c * tmp; } - else if (knorm == 0. && knorm_c != 0.) + // X3 (multiplies rho_old if update_with_rho = 1 in the update equation for E) + // X3 (multiplies ([k] \dot J) if update_with_rho = 0 in the update equation for E) + if (update_with_rho) { - const Real om_c = c * knorm_c; - const Real om2_c = om_c * om_c; - const Real om3_c = om_c * om2_c; - const Real nu = kv / om_c; - const Real nu2 = nu * nu; - const Complex theta = amrex::exp(I * nu * om_c * dt * 0.5_rt); - - C(i,j,k) = 1._rt; - - S_ck(i,j,k) = dt; - - if (is_galilean) + if (w_c != 0.) { - T2(i,j,k) = theta * theta; + X3(i,j,k) = c2 * (theta_c_star * X1(i,j,k) - theta_c_star * tmp) + / (theta_c_star - theta_c); } - const Complex T2_tmp = (is_galilean) ? T2(i,j,k) : 1.0_rt; - - // nu = 0 always with standard PSATD (zero Galilean velocity): skip this block - if (nu != 0.) + else // w_c = 0 { - X1(i,j,k) = (- 1._rt + T2_tmp - I * nu * om_c * dt * T2_tmp) / (ep0 * nu2 * om2_c); - - if (update_with_rho) - { - X2(i,j,k) = c2 * (1._rt - T2_tmp + I * nu * om_c * dt * T2_tmp - + 0.5_rt * nu2 * om2_c * dt2 * T2_tmp) / (ep0 * nu2 * om2_c * (T2_tmp - 1._rt)); - - X3(i,j,k) = c2 * (1._rt - T2_tmp + I * nu * om_c * dt * T2_tmp - + 0.5_rt * nu2 * om2_c * dt2) / (ep0 * nu2 * om2_c * (T2_tmp - 1._rt)); - } - - else // update_with_rho = 0 + if (om_s != 0.) { - X2(i,j,k) = c2 * dt2 * T2_tmp * 0.5_rt; - - X3(i,j,k) = c2 * (2._rt * I - 2._rt * nu * om_c * dt * T2_tmp - + I * nu2 * om2_c * dt2 * T2_tmp) / (2._rt * ep0 * nu2 * nu * om3_c); + X3(i,j,k) = c2 * (dt * C(i,j,k) - S_ck(i,j,k)) / (ep0 * dt * om2_s); } - - if (is_galilean) + else // om_s = 0 and w_c = 0 { - X4(i,j,k) = I * (T2_tmp - 1._rt) / (ep0 * nu * om_c); - } - - // Averaged Galilean algorithm - if (time_averaging) - { - Complex C_rho = I * c2 / ((1._rt - T2_tmp) * ep0); - - Psi1(i,j,k) = I * theta * (1._rt - T2_tmp) / (nu * om_c * dt); - - Psi2(i,j,k) = theta * (2._rt - I * nu * om_c * dt + T2_tmp * (3._rt * I * nu * om_c * dt - 2._rt)) - / (2._rt * nu2 * om2_c * dt); - - Psi3(i,j,k) = I * theta * (1._rt - T2_tmp) / (nu * om_c * dt); - - A1(i,j,k) = (Psi1(i,j,k) - 1._rt + I * nu * om_c * Psi2(i,j,k)) / (nu2 * om2_c); - - A2(i,j,k) = theta * (8._rt * I * (T2_tmp - 1._rt) + 4._rt * nu * om_c * dt - * (3._rt * T2_tmp - 1._rt) + I * nu2 * om2_c * dt2 * (1._rt - 9._rt * T2_tmp)) - / (8._rt * nu2 * nu * om2_c * om_c * dt); - - CRhoold(i,j,k) = C_rho * (T2_tmp * A1(i,j,k) - A2(i,j,k)); - - CRhonew(i,j,k) = C_rho * (A2(i,j,k) - A1(i,j,k)); - - Jcoef(i,j,k) = (I * nu * om_c * A1(i,j,k) + Psi2(i,j,k)) / ep0; + X3(i,j,k) = - c2 * dt2 / (3._rt * ep0); } } - - else // nu = 0 + } + else // update_with_rho = 0 + { + if (w_c != 0.) { - X1(i,j,k) = dt2 / (2._rt * ep0); - - if (update_with_rho) + X3(i,j,k) = I * c2 * (theta2_c * tmp - X1(i,j,k)) / w_c; + } + else // w_c = 0 + { + if (om_s != 0.) { - X2(i,j,k) = c2 * dt2 / (6._rt * ep0); - - X3(i,j,k) = - c2 * dt2 / (3._rt * ep0); + X3(i,j,k) = c2 * (S_ck(i,j,k) - dt) / (ep0 * om2_s); } - - else // update_with_rho = 0 + else // om_s = 0 and w_c = 0 { - X2(i,j,k) = c2 * dt2 * 0.5_rt; - X3(i,j,k) = - c2 * dt3 / (6._rt * ep0); } - - if (is_galilean) - { - X4(i,j,k) = - dt / ep0; - } - - // Averaged Galilean algorithm - if (time_averaging) - { - Psi1(i,j,k) = 1._rt; - - Psi2(i,j,k) = - dt; - - Psi3(i,j,k) = 1._rt; - - A1(i,j,k) = 13._rt * dt2 / 24._rt; - - A2(i,j,k) = 13._rt * dt2 / 24._rt; - - CRhoold(i,j,k) = - I * c2 * dt2 / (3._rt * ep0); - - CRhonew(i,j,k) = - 5._rt * I * c2 * dt2 / (24._rt * ep0); - - Jcoef(i,j,k) = - dt / ep0; - } } } - else if (knorm == 0. && knorm_c == 0.) + // X4 (multiplies J in the update equation for E) + if (is_galilean) { - C(i,j,k) = 1._rt; + X4(i,j,k) = I * w_c * X1(i,j,k) - theta2_c * S_ck(i,j,k) / ep0; + } + }); + } +} - S_ck(i,j,k) = dt; +void PsatdAlgorithm::InitializeSpectralCoefficientsAveraging ( + const SpectralKSpace& spectral_kspace, + const amrex::DistributionMapping& dm, + const amrex::Real dt) +{ + const amrex::BoxArray& ba = spectral_kspace.spectralspace_ba; - X1(i,j,k) = dt2 / (2._rt * ep0); + // Loop over boxes and allocate the corresponding coefficients for each box + for (amrex::MFIter mfi(ba, dm); mfi.isValid(); ++mfi) + { + const amrex::Box& bx = ba[mfi]; - if (update_with_rho) - { - X2(i,j,k) = c2 * dt2 / (6._rt * ep0); + // Extract pointers for the k vectors + const amrex::Real* kx_s = modified_kx_vec[mfi].dataPtr(); + const amrex::Real* kx_c = modified_kx_vec_centered[mfi].dataPtr(); +#if (AMREX_SPACEDIM == 3) + const amrex::Real* ky_s = modified_ky_vec[mfi].dataPtr(); + const amrex::Real* ky_c = modified_ky_vec_centered[mfi].dataPtr(); +#endif + const amrex::Real* kz_s = modified_kz_vec[mfi].dataPtr(); + const amrex::Real* kz_c = modified_kz_vec_centered[mfi].dataPtr(); - X3(i,j,k) = - c2 * dt2 / (3._rt * ep0); - } + // Coefficients allocated only with averaged Galilean PSATD + amrex::Array4<Complex> Psi1 = Psi1_coef[mfi].array(); + amrex::Array4<Complex> Psi2 = Psi2_coef[mfi].array(); + amrex::Array4<Complex> Y1 = Y1_coef[mfi].array(); + amrex::Array4<Complex> Y3 = Y3_coef[mfi].array(); + amrex::Array4<Complex> Y2 = Y2_coef[mfi].array(); + amrex::Array4<Complex> Y4 = Y4_coef[mfi].array(); - else // update_with_rho = 0 - { - X2(i,j,k) = c2 * dt2 * 0.5_rt; + // Extract Galilean velocity + amrex::Real vg_x = m_v_galilean[0]; +#if (AMREX_SPACEDIM == 3) + amrex::Real vg_y = m_v_galilean[1]; +#endif + amrex::Real vg_z = m_v_galilean[2]; - X3(i,j,k) = - c2 * dt3 / (6._rt * ep0); - } + // Loop over indices within one box + ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept + { + // Calculate norm of k vector + const amrex::Real knorm_s = std::sqrt( + std::pow(kx_s[i], 2) + +#if (AMREX_SPACEDIM == 3) + std::pow(ky_s[j], 2) + std::pow(kz_s[k], 2)); +#else + std::pow(kz_s[j], 2)); +#endif + // Physical constants and imaginary unit + constexpr amrex::Real c = PhysConst::c; + constexpr amrex::Real ep0 = PhysConst::ep0; + constexpr Complex I = Complex{0._rt, 1._rt}; - // T2 = 1 always with standard PSATD (zero Galilean velocity) - if (is_galilean) - { - X4(i,j,k) = - dt / ep0; + const amrex::Real c2 = std::pow(c, 2); + const amrex::Real dt2 = std::pow(dt, 2); - T2(i,j,k) = 1._rt; - } + // Calculate the dot product of the k vector with the Galilean velocity. + // This has to be computed always with the centered (that is, nodal) finite-order + // modified k vectors, to work correctly for both nodal and staggered simulations. + // w_c = 0 always with standard PSATD (zero Galilean velocity). + const amrex::Real w_c = kx_c[i]*vg_x + +#if (AMREX_SPACEDIM == 3) + ky_c[j]*vg_y + kz_c[k]*vg_z; +#else + kz_c[j]*vg_z; +#endif + const amrex::Real w2_c = std::pow(w_c, 2); + const amrex::Real w3_c = std::pow(w_c, 3); - // Averaged Galilean algorithm - if (time_averaging) - { - Psi1(i,j,k) = 1._rt; + const amrex::Real om_s = c * knorm_s; + const amrex::Real om2_s = std::pow(om_s, 2); + const amrex::Real om4_s = std::pow(om_s, 4); - Psi2(i,j,k) = - dt; + const Complex theta_c = amrex::exp(I * w_c * dt * 0.5_rt); + const Complex theta2_c = amrex::exp(I * w_c * dt); + const Complex theta3_c = amrex::exp(I * w_c * dt * 1.5_rt); + const Complex theta5_c = amrex::exp(I * w_c * dt * 2.5_rt); - Psi3(i,j,k) = 1._rt; + // C1,C3 + const amrex::Real C1 = std::cos(0.5_rt * om_s * dt); + const amrex::Real C3 = std::cos(1.5_rt * om_s * dt); - A1(i,j,k) = 13._rt * dt2 / 24._rt; + // S1_om, S3_om + amrex::Real S1_om, S3_om; + if (om_s != 0.) + { + S1_om = std::sin(0.5_rt * om_s * dt) / om_s; + S3_om = std::sin(1.5_rt * om_s * dt) / om_s; + } + else // om_s = 0 + { + S1_om = 0.5_rt * dt; + S3_om = 1.5_rt * dt; + } - A2(i,j,k) = 13._rt * dt2 / 24._rt; + // Psi1 (multiplies E in the update equation for <E>) + // Psi1 (multiplies B in the update equation for <B>) + if ((om_s != 0.) || (w_c != 0.)) + { + Psi1(i,j,k) = (theta3_c * (om2_s * S3_om + I * w_c * C3) + - theta_c * (om2_s * S1_om + I * w_c * C1)) / (dt * (om2_s - w2_c)); + } + else // om_s = 0 and w_c = 0 + { + Psi1(i,j,k) = 1._rt; + } - CRhoold(i,j,k) = - I * c2 * dt2 / (3._rt * ep0); + // Psi2 (multiplies i*([k] \times B) in the update equation for <E>) + // Psi2 (multiplies i*([k] \times E) in the update equation for <B>) + if ((om_s != 0.) || (w_c != 0.)) + { + Psi2(i,j,k) = (theta3_c * (C3 - I * w_c * S3_om) + - theta_c * (C1 - I * w_c * S1_om)) / (dt * (om2_s - w2_c)); + } + else // om_s = 0 and w_c = 0 + { + Psi2(i,j,k) = - dt; + } - CRhonew(i,j,k) = - 5._rt * I * c2 * dt2 / (24._rt * ep0); + // Psi3 + Complex Psi3; + if (w_c != 0.) + { + Psi3 = - I * (theta3_c - theta_c) / (dt * w_c); + } + else // w_c = 0 + { + Psi3 = 1._rt; + } - Jcoef(i,j,k) = - dt / ep0; - } + // Y1 (multiplies i*([k] \times J) in the update equation for <B>) + if ((om_s != 0.) || (w_c != 0.)) + { + Y1(i,j,k) = (1._rt - Psi1(i,j,k) - I * w_c * Psi2(i,j,k)) / (ep0 * (om2_s - w2_c)); } + else // om_s = 0 and w_c = 0 + { + Y1(i,j,k) = 13._rt * dt2 / (24._rt * ep0); + } + + // Y2 (multiplies rho_new in the update equation for <E>) + if ((om_s != 0.) && (w_c != 0.)) + { + Y2(i,j,k) = I * c2 * (ep0 * om2_s * Y1(i,j,k) - Psi3 + Psi1(i,j,k)) + / (ep0 * om2_s * (theta2_c - 1._rt)); + } + else if ((om_s != 0.) && (w_c == 0.)) + { + Y2(i,j,k) = I * c2 * (C1 - C3 - dt2 * om2_s) / (ep0 * dt2 * om4_s); + } + else if ((om_s == 0.) && (w_c != 0.)) + { + Y2(i,j,k) = c2 * (9._rt * dt2 * w2_c * theta3_c - dt2 * w2_c * theta_c + - 24._rt * theta3_c + 24._rt * theta_c + I * 8._rt * dt * w_c + + I * 24._rt * dt * w_c * theta3_c - I * 8._rt * dt * w_c * theta_c) + / (8._rt * ep0 * dt * w3_c * (1._rt - theta2_c)); + } + else // om_s = 0 and w_c = 0 + { + Y2(i,j,k) = - I * 5._rt * c2 * dt2 / (24._rt * ep0); + } + + // Y3 (multiplies rho_old in the update equation for <E>) + if ((om_s != 0.) && (w_c != 0.)) + { + Y3(i,j,k) = I * c2 * (Psi3 - Psi1(i,j,k) - ep0 * theta2_c * om2_s * Y1(i,j,k)) + / (ep0 * om2_s * (theta2_c - 1._rt)); + } + else if ((om_s != 0.) && (w_c == 0.)) + { + Y3(i,j,k) = I * c2 * (C3 - C1 + dt * om2_s * (S3_om - S1_om)) / (ep0 * dt2 * om4_s); + } + else if ((om_s == 0.) && (w_c != 0.)) + { + Y3(i,j,k) = c2 * (9._rt * dt2 * w2_c * theta3_c - dt2 * w2_c * theta_c + - 16._rt * theta5_c + 8._rt * theta3_c + 8._rt * theta_c + + I * 12._rt * dt * w_c * theta5_c + I * 8._rt * dt * w_c * theta3_c + - I * 4._rt * dt * w_c * theta_c + I * 8._rt * dt * w_c * theta2_c) + / (8._rt * ep0 * dt * w3_c * (theta2_c - 1._rt)); + } + else // om_s = 0 and w_c = 0 + { + Y3(i,j,k) = - I * c2 * dt2 / (3._rt * ep0); + } + + // Y4 (multiplies J in the update equation for <E>) + Y4(i,j,k) = (Psi2(i,j,k) + I * ep0 * w_c * Y1(i,j,k)) / ep0; }); } } @@ -909,7 +689,7 @@ PsatdAlgorithm::CurrentCorrection ( // Extract pointers for the k vectors const amrex::Real* const modified_kx_arr = modified_kx_vec[mfi].dataPtr(); const amrex::Real* const modified_kx_arr_c = modified_kx_vec_centered[mfi].dataPtr(); -#if (AMREX_SPACEDIM==3) +#if (AMREX_SPACEDIM == 3) const amrex::Real* const modified_ky_arr = modified_ky_vec[mfi].dataPtr(); const amrex::Real* const modified_ky_arr_c = modified_ky_vec_centered[mfi].dataPtr(); #endif @@ -937,7 +717,7 @@ PsatdAlgorithm::CurrentCorrection ( // k vector values, and coefficients const amrex::Real kx = modified_kx_arr[i]; const amrex::Real kx_c = modified_kx_arr_c[i]; -#if (AMREX_SPACEDIM==3) +#if (AMREX_SPACEDIM == 3) const amrex::Real ky = modified_ky_arr[j]; const amrex::Real kz = modified_kz_arr[k]; const amrex::Real ky_c = modified_ky_arr_c[j]; @@ -1023,7 +803,7 @@ PsatdAlgorithm::VayDeposition ( // Extract pointers for the modified k vectors const amrex::Real* const modified_kx_arr = modified_kx_vec[mfi].dataPtr(); -#if (AMREX_SPACEDIM==3) +#if (AMREX_SPACEDIM == 3) const amrex::Real* const modified_ky_arr = modified_ky_vec[mfi].dataPtr(); #endif const amrex::Real* const modified_kz_arr = modified_kz_vec[mfi].dataPtr(); @@ -1033,7 +813,7 @@ PsatdAlgorithm::VayDeposition ( { // Shortcuts for the values of D const Complex Dx = fields(i,j,k,Idx::Jx); -#if (AMREX_SPACEDIM==3) +#if (AMREX_SPACEDIM == 3) const Complex Dy = fields(i,j,k,Idx::Jy); #endif const Complex Dz = fields(i,j,k,Idx::Jz); @@ -1043,7 +823,7 @@ PsatdAlgorithm::VayDeposition ( // Modified k vector values const amrex::Real kx_mod = modified_kx_arr[i]; -#if (AMREX_SPACEDIM==3) +#if (AMREX_SPACEDIM == 3) const amrex::Real ky_mod = modified_ky_arr[j]; const amrex::Real kz_mod = modified_kz_arr[k]; #else @@ -1054,7 +834,7 @@ PsatdAlgorithm::VayDeposition ( if (kx_mod != 0._rt) fields(i,j,k,Idx::Jx) = I * Dx / kx_mod; else fields(i,j,k,Idx::Jx) = 0._rt; -#if (AMREX_SPACEDIM==3) +#if (AMREX_SPACEDIM == 3) // Compute Jy if (ky_mod != 0._rt) fields(i,j,k,Idx::Jy) = I * Dy / ky_mod; else fields(i,j,k,Idx::Jy) = 0._rt; |