aboutsummaryrefslogtreecommitdiff
path: root/Examples/Modules/embedded_boundary_cube/analysis_fields_2d.py
diff options
context:
space:
mode:
Diffstat (limited to 'Examples/Modules/embedded_boundary_cube/analysis_fields_2d.py')
-rwxr-xr-xExamples/Modules/embedded_boundary_cube/analysis_fields_2d.py60
1 files changed, 60 insertions, 0 deletions
diff --git a/Examples/Modules/embedded_boundary_cube/analysis_fields_2d.py b/Examples/Modules/embedded_boundary_cube/analysis_fields_2d.py
new file mode 100755
index 000000000..ebf303601
--- /dev/null
+++ b/Examples/Modules/embedded_boundary_cube/analysis_fields_2d.py
@@ -0,0 +1,60 @@
+#! /usr/bin/env python
+
+import yt
+import os
+import sys
+from scipy.constants import mu_0, pi, c
+import numpy as np
+
+sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
+import checksumAPI
+
+# This is a script that analyses the simulation results from
+# the script `inputs_3d`. This simulates a TMmnp mode in a PEC cubic resonator.
+# The magnetic field in the simulation is given (in theory) by:
+# $$ B_y = \mu \cos(k_x x)\cos(k_z z)\cos( \omega_p t)$$
+# with
+# $$ k_x = \frac{m\pi}{L}$$
+# $$ k_y = \frac{n\pi}{L}$$
+# $$ k_z = \frac{p\pi}{L}$$
+
+hi = [0.8, 0.8]
+lo = [-0.8, -0.8]
+ncells = [32, 32, 1]
+dx = (hi[0] - lo[0]) / ncells[0]
+dz = (hi[1] - lo[1]) / ncells[1]
+m = 0
+n = 1
+Lx = 1
+Lz = 1
+
+# Open the right plot file
+filename = sys.argv[1]
+ds = yt.load(filename)
+data = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)
+
+t = ds.current_time.to_value()
+
+# Compute the analytic solution
+By_th = np.zeros(ncells)
+for i in range(ncells[0]):
+ for j in range(ncells[1]):
+ x = (i+0.5) * dx + lo[0]
+ z = (j+0.5) * dz + lo[1]
+
+ By_th[i, j, 0] = mu_0 * (np.cos(m * pi / Lx * (x - Lx / 2)) *
+ np.cos(n * pi / Lz * (z - Lz / 2)) *
+ (-Lx / 2 <= x < Lx / 2) *
+ (-Lz / 2 <= z < Lz / 2) *
+ np.cos(np.pi / Lx * c * t))
+
+rel_tol_err = 1e-3
+
+# Compute relative l^2 error on By
+By_sim = data['By'].to_ndarray()
+rel_err_y = np.sqrt(np.sum(np.square(By_sim - By_th)) / np.sum(np.square(By_th)))
+assert (rel_err_y < rel_tol_err)
+
+test_name = os.path.split(os.getcwd())[1]
+
+checksumAPI.evaluate_checksum(test_name, filename)