diff options
Diffstat (limited to 'Examples/Modules/embedded_boundary_rotated_cube/analysis_fields_2d.py')
-rwxr-xr-x | Examples/Modules/embedded_boundary_rotated_cube/analysis_fields_2d.py | 64 |
1 files changed, 64 insertions, 0 deletions
diff --git a/Examples/Modules/embedded_boundary_rotated_cube/analysis_fields_2d.py b/Examples/Modules/embedded_boundary_rotated_cube/analysis_fields_2d.py new file mode 100755 index 000000000..cde45e596 --- /dev/null +++ b/Examples/Modules/embedded_boundary_rotated_cube/analysis_fields_2d.py @@ -0,0 +1,64 @@ +#! /usr/bin/env python + +import yt +import os +import sys +from scipy.constants import mu_0, pi, c +import numpy as np + +sys.path.insert(1, '../../../../warpx/Regression/Checksum/') +import checksumAPI + +# This is a script that analyses the simulation results from +# the script `inputs_3d`. This simulates a TMmnp mode in a PEC cubic resonator. +# The magnetic field in the simulation is given (in theory) by: +# $$ B_y = \mu \cos(k_x x)\cos(k_z z)\cos( \omega_p t)$$ +# with +# $$ k_x = \frac{m\pi}{L}$$ +# $$ k_y = \frac{n\pi}{L}$$ +# $$ k_z = \frac{p\pi}{L}$$ + +hi = [0.8, 0.8] +lo = [-0.8, -0.8] +ncells = [32, 32] +dx = (hi[0] - lo[0]) / ncells[0] +dz = (hi[1] - lo[1]) / ncells[1] +m = 0 +n = 1 +Lx = 1.06 +Lz = 1.06 + +# Open the right plot file +filename = sys.argv[1] +ds = yt.load(filename) +data = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions) +my_grid = ds.index.grids[0] + +By_sim = my_grid['By'].squeeze().v + +t = ds.current_time.to_value() + +theta = np.pi/8 + +# Compute the analytic solution +By_th = np.zeros(ncells) +for i in range(ncells[0]): + for j in range(ncells[1]): + x = i * dx + lo[0] + z = j * dz + lo[1] + xr = x*np.cos(-theta) + z*np.sin(-theta) + zr = -x*np.sin(-theta) + z*np.cos(-theta) + + By_th[i, j] = mu_0 * (np.cos(m * pi / Lx * (xr - Lx / 2)) * + np.cos(n * pi / Lz * (zr - Lz / 2)) * + np.cos(np.pi / Lx * c * t))*(By_sim[i, j] != 0) + +rel_tol_err = 1e-1 + +# Compute relative l^2 error on By +rel_err_y = np.sqrt(np.sum(np.square(By_sim - By_th)) / np.sum(np.square(By_th))) +assert (rel_err_y < rel_tol_err) + +test_name = os.path.split(os.getcwd())[1] + +checksumAPI.evaluate_checksum(test_name, filename) |