aboutsummaryrefslogtreecommitdiff
path: root/Examples/Modules/laser_injection_from_file/analysis.py
diff options
context:
space:
mode:
Diffstat (limited to 'Examples/Modules/laser_injection_from_file/analysis.py')
-rwxr-xr-xExamples/Modules/laser_injection_from_file/analysis.py192
1 files changed, 192 insertions, 0 deletions
diff --git a/Examples/Modules/laser_injection_from_file/analysis.py b/Examples/Modules/laser_injection_from_file/analysis.py
new file mode 100755
index 000000000..813e4e54b
--- /dev/null
+++ b/Examples/Modules/laser_injection_from_file/analysis.py
@@ -0,0 +1,192 @@
+#!/usr/bin/python3
+
+#ADD COMMENT
+#ADD COMMENT
+#ADD COMMENT
+import yt ; yt.funcs.mylog.setLevel(50)
+import numpy as np
+import matplotlib.pyplot as plt
+from scipy.signal import hilbert
+import glob
+import os
+
+#Maximum acceptable error for this test
+relative_error_threshold = 0.06
+
+#Physical parameters
+um = 1.e-6
+fs = 1.e-15
+c = 299792458
+
+#Parameters of the gaussian beam
+wavelength = 1.*um
+w0 = 6.*um
+tt = 10.*fs
+x_c = 0.*um
+t_c = 20.*fs
+foc_dist = 10*um
+E_max = 1e12
+rot_angle = -np.pi/4.0
+
+#Parameters of the tx grid
+x_l = -12.0*um
+x_r = 12.0*um
+x_points = 480
+t_l = 0.0*fs
+t_r = 40.0*fs
+t_points = 400
+tcoords = np.linspace(t_l, t_r, t_points)
+xcoords = np.linspace(x_l, x_r, x_points)
+
+def gauss(T,X,Y,opt):
+ k0 = 2.0*np.pi/wavelength
+ inv_tau2 = 1./tt/tt
+ osc_phase = k0*c*(T-t_c)
+
+ diff_factor = 1.0 + 1.0j* foc_dist * 2/(k0*w0*w0)
+ inv_w_2 = 1.0/(w0*w0*diff_factor)
+
+ pre_fact = np.exp(1.0j * osc_phase)
+
+ if opt == '3d':
+ pre_fact = pre_fact/diff_factor
+ else:
+ pre_fact = pre_fact/np.sqrt(diff_factor)
+
+ exp_arg = - (X*X + Y*Y)*inv_w_2 - inv_tau2 * (T-t_c)*(T-t_c)
+
+ return np.real(pre_fact * np.exp(exp_arg))
+
+# Function for the envelope
+def gauss_env(T,XX,ZZ):
+
+ X = np.cos(rot_angle)*XX + np.sin(rot_angle)*ZZ
+ Z = -np.sin(rot_angle)*XX + np.cos(rot_angle)*ZZ
+
+ inv_tau2 = 1./tt/tt
+ inv_w_2 = 1.0/(w0*w0)
+ exp_arg = - (X*X)*inv_w_2 - inv_tau2 / c/c * (Z-T*c)*(Z-T*c)
+ return E_max * np.real(np.exp(exp_arg))
+
+def write_file(fname, x, y, t, E):
+ with open(fname, 'wb') as file:
+ flag_unif = 0
+ file.write(flag_unif.to_bytes(1, byteorder='little'))
+ file.write((len(t)).to_bytes(4, byteorder='little', signed=False))
+ file.write((len(x)).to_bytes(4, byteorder='little', signed=False))
+ file.write((len(y)).to_bytes(4, byteorder='little', signed=False))
+ file.write(t.tobytes())
+ file.write(x.tobytes())
+ file.write(y.tobytes())
+ file.write(E.tobytes())
+
+
+def write_file_unf(fname, x, y, t, E):
+ with open(fname, 'wb') as file:
+ flag_unif = 1
+ file.write(flag_unif.to_bytes(1, byteorder='little'))
+ file.write((len(t)).to_bytes(4, byteorder='little', signed=False))
+ file.write((len(x)).to_bytes(4, byteorder='little', signed=False))
+ file.write((len(y)).to_bytes(4, byteorder='little', signed=False))
+ file.write(t[0].tobytes())
+ file.write(t[-1].tobytes())
+ file.write(x[0].tobytes())
+ file.write(x[-1].tobytes())
+ file.write(y[0].tobytes())
+ file.write(y[-1].tobytes())
+ file.write(E.tobytes())
+
+
+def create_gaussian_2d():
+ T, X, Y = np.meshgrid(tcoords, xcoords, np.array([0.0]), indexing='ij')
+ E_t = gauss(T,X,Y,'2d')
+ write_file("gauss_2d.txye", xcoords, np.array([0.0]), tcoords, E_t)
+ write_file_unf("gauss_2d_unf.txye", xcoords, np.array([0.0]), tcoords, E_t)
+
+
+def do_analysis(fname, compname, steps):
+ ds = yt.load(fname)
+
+ dt = ds.current_time.to_value()/steps
+
+ # Define 2D meshes
+ x = np.linspace(
+ ds.domain_left_edge[0],
+ ds.domain_right_edge[0],
+ ds.domain_dimensions[0]).v
+ z = np.linspace(
+ ds.domain_left_edge[ds.dimensionality-1],
+ ds.domain_right_edge[ds.dimensionality-1],
+ ds.domain_dimensions[ds.dimensionality-1]).v
+ X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')
+
+ # Compute the theory for envelope
+ env_theory = gauss_env(+t_c-ds.current_time.to_value(), X,Z)+gauss_env(-t_c+ds.current_time.to_value(), X,Z)
+
+ # Read laser field in PIC simulation, and compute envelope
+ all_data_level_0 = ds.covering_grid(level=0,left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)
+ F_laser = all_data_level_0['boxlib', 'Ey'].v.squeeze()
+ env = abs(hilbert(F_laser))
+ extent = [ds.domain_left_edge[ds.dimensionality-1], ds.domain_right_edge[ds.dimensionality-1],
+ ds.domain_left_edge[0], ds.domain_right_edge[0] ]
+
+ # Plot results
+ plt.figure(figsize=(8,6))
+ plt.subplot(221)
+ plt.title('PIC field')
+ plt.imshow(F_laser, extent=extent)
+ plt.colorbar()
+ plt.subplot(222)
+ plt.title('PIC envelope')
+ plt.imshow(env, extent=extent)
+ plt.colorbar()
+ plt.subplot(223)
+ plt.title('Theory envelope')
+ plt.imshow(env_theory, extent=extent)
+ plt.colorbar()
+ plt.subplot(224)
+ plt.title('Difference')
+ plt.imshow(env-env_theory, extent=extent)
+ plt.colorbar()
+ plt.tight_layout()
+ plt.savefig(compname, bbox_inches='tight')
+
+ relative_error_env = np.sum(np.abs(env-env_theory)) / np.sum(np.abs(env))
+ print("Relative error envelope: ", relative_error_env)
+ assert(relative_error_env < relative_error_threshold)
+
+ fft_F_laser = np.fft.fft2(F_laser)
+
+ freq_rows = np.fft.fftfreq(F_laser.shape[0],dt)
+ freq_cols = np.fft.fftfreq(F_laser.shape[1],dt)
+
+ pos_max = np.unravel_index(np.abs(fft_F_laser).argmax(), fft_F_laser.shape)
+
+ freq = np.sqrt((freq_rows[pos_max[0]])**2 + (freq_cols[pos_max[1]]**2))
+ exp_freq = c/wavelength
+
+ relative_error_freq = np.abs(freq-exp_freq)/exp_freq
+ print("Relative error frequency: ", relative_error_freq)
+ assert(relative_error_freq < relative_error_threshold)
+
+
+
+def launch_analysis(executable):
+ create_gaussian_2d()
+ os.system("./" + executable + " inputs.2d_test_txye")
+ do_analysis("diags/plotfiles/plt00250/", "comp_unf.pdf", 250)
+ os.system("sed 's/gauss_2d_unf.txye/gauss_2d.txye/g' inputs.2d_test_txye > inputs.2d_test_txye_non_unf")
+ os.system("./" + executable + " inputs.2d_test_txye_non_unf")
+ do_analysis("diags/plotfiles/plt00250/", "comp_non_unf.pdf", 250)
+
+
+def main() :
+ executables = glob.glob("main2d*")
+ if len(executables) == 1 :
+ launch_analysis(executables[0])
+ else :
+ assert(False)
+
+
+if __name__ == "__main__":
+ main()