aboutsummaryrefslogtreecommitdiff
path: root/Examples/Modules/nuclear_fusion/analysis_deuterium_tritium_fusion.py
diff options
context:
space:
mode:
Diffstat (limited to 'Examples/Modules/nuclear_fusion/analysis_deuterium_tritium_fusion.py')
-rwxr-xr-xExamples/Modules/nuclear_fusion/analysis_deuterium_tritium_fusion.py392
1 files changed, 392 insertions, 0 deletions
diff --git a/Examples/Modules/nuclear_fusion/analysis_deuterium_tritium_fusion.py b/Examples/Modules/nuclear_fusion/analysis_deuterium_tritium_fusion.py
new file mode 100755
index 000000000..f218df54d
--- /dev/null
+++ b/Examples/Modules/nuclear_fusion/analysis_deuterium_tritium_fusion.py
@@ -0,0 +1,392 @@
+#! /usr/bin/env python
+# Copyright 2022 Neil Zaim, Remi Lehe
+#
+# This file is part of WarpX.
+#
+# License: BSD-3-Clause-LBNL
+
+import os
+import sys
+
+import yt
+
+sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
+import checksumAPI
+import numpy as np
+import scipy.constants as scc
+
+## This script performs various checks for the fusion module. The simulation
+## that we check is made of 2 different tests, each with different reactant and product species.
+##
+## The first test is performed in the center of mass frame of the reactant. It could correspond to the
+## physical case of two beams colliding with each other. The kinetic energy of the colliding
+## particles depends on the cell number in the z direction and varies in the few keV to few MeV
+## range. All the particles within a cell have the exact same momentum. The reactant species have the same
+## density and number of particles in this test. The number of product species is much smaller than
+## the initial number of reactants
+##
+## The second test is performed in the rest frame of the second reactant. It corresponds to the
+## physical case of a low density beam colliding with a high-density mixed target. The energy of the
+## beam particles is varied in the few keV to few MeV range, depending on the cell number in the z
+## direction. As in the previous case, all the particles within a cell have the exact same
+## momentum. In this test, there are 100 immobile macroparticles for each reactant per cell, as well as 900
+## of the beam reactant macroparticles per cell. The density of the immobile particles is 6 orders of
+## magnitude higher than the number of beam particles, which means that they have a much higher
+## weight. This test is similar to the example given in section 3 of Higginson et al.,
+## Journal of Computation Physics, 388 439–453 (2019), which was found to be sensitive to the way
+## unsampled pairs are accounted for. As before, the number of product particles is much smaller than
+## the initial number of reactants.
+##
+## In all simulations, we check particle number, charge, momentum and energy conservation and
+## perform basic checks regarding the produced particles. When possible, we also compare the number
+## of produced macroparticles, fusion yield and energy of the produced particles to theoretical
+## values.
+##
+## Please be aware that the relative tolerances are often set empirically in this analysis script,
+## so it would not be surprising that some tolerances need to be increased in the future.
+
+default_tol = 1.e-12 # Default relative tolerance
+
+## Define reactants and products
+reactant_species = ['deuterium', 'tritium']
+product_species = ['helium', 'neutron']
+
+mass = {
+ 'deuterium': 2.01410177812*scc.m_u,
+ 'tritium': 3.0160492779*scc.m_u,
+ 'helium': 4.00260325413*scc.m_u,
+ 'neutron': 1.0013784193052508*scc.m_p
+}
+m_reduced = np.product([mass[s] for s in reactant_species])/np.sum([mass[s] for s in reactant_species])
+
+## Some physical parameters
+keV_to_Joule = scc.e*1e3
+MeV_to_Joule = scc.e*1e6
+barn_to_square_meter = 1.e-28
+
+E_fusion = 17.5893*MeV_to_Joule # Energy released during the fusion reaction
+
+## Some numerical parameters for this test
+size_x = 8
+size_y = 8
+size_z = 16
+dV_total = size_x*size_y*size_z # Total simulation volume
+# Volume of a slice corresponding to a single cell in the z direction. In tests 1 and 2, all the
+# particles of a given species in the same slice have the exact same momentum
+dV_slice = size_x*size_y
+dt = 1./(scc.c*np.sqrt(3.))
+# In test 1 and 2, the energy in cells number i (in z direction) is typically Energy_step * i**2
+Energy_step = 22.*keV_to_Joule
+
+def is_close(val1, val2, rtol=default_tol, atol=0.):
+ ## Wrapper around numpy.isclose, used to override the default tolerances.
+ return np.isclose(val1, val2, rtol=rtol, atol=atol)
+
+def add_existing_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix):
+ data_dict[prefix+"_px_"+suffix] = yt_ad[species_name, "particle_momentum_x"].v
+ data_dict[prefix+"_py_"+suffix] = yt_ad[species_name, "particle_momentum_y"].v
+ data_dict[prefix+"_pz_"+suffix] = yt_ad[species_name, "particle_momentum_z"].v
+ data_dict[prefix+"_w_"+suffix] = yt_ad[species_name, "particle_weight"].v
+ data_dict[prefix+"_id_"+suffix] = yt_ad[species_name, "particle_id"].v
+ data_dict[prefix+"_cpu_"+suffix] = yt_ad[species_name, "particle_cpu"].v
+ data_dict[prefix+"_z_"+suffix] = yt_ad[species_name, "particle_position_z"].v
+
+def add_empty_species_to_dict(data_dict, species_name, prefix, suffix):
+ data_dict[prefix+"_px_"+suffix] = np.empty(0)
+ data_dict[prefix+"_py_"+suffix] = np.empty(0)
+ data_dict[prefix+"_pz_"+suffix] = np.empty(0)
+ data_dict[prefix+"_w_"+suffix] = np.empty(0)
+ data_dict[prefix+"_id_"+suffix] = np.empty(0)
+ data_dict[prefix+"_cpu_"+suffix] = np.empty(0)
+ data_dict[prefix+"_z_"+suffix] = np.empty(0)
+
+def add_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix):
+ try:
+ ## If species exist, we add its data to the dictionary
+ add_existing_species_to_dict(yt_ad, data_dict, species_name, prefix, suffix)
+ except yt.utilities.exceptions.YTFieldNotFound:
+ ## If species does not exist, we avoid python crash and add empty arrays to the
+ ## dictionnary.
+ add_empty_species_to_dict(data_dict, species_name, prefix, suffix)
+
+def check_particle_number_conservation(data):
+ # Check consumption of reactants
+ total_w_reactant1_start = np.sum(data[reactant_species[0] + "_w_start"])
+ total_w_reactant1_end = np.sum(data[reactant_species[0] + "_w_end"])
+ total_w_reactant2_start = np.sum(data[reactant_species[1] + "_w_start"])
+ total_w_reactant2_end = np.sum(data[reactant_species[1] + "_w_end"])
+ consumed_reactant1 = total_w_reactant1_start - total_w_reactant1_end
+ consumed_reactant2 = total_w_reactant2_start - total_w_reactant2_end
+ assert(consumed_reactant1 >= 0.)
+ assert(consumed_reactant2 >= 0.)
+ ## Check that number of consumed reactants are equal
+ assert_scale = max(total_w_reactant1_start, total_w_reactant2_start)
+ assert(is_close(consumed_reactant1, consumed_reactant2, rtol = 0., atol = default_tol*assert_scale))
+
+ # That the number of products corresponds consumed particles
+ for species_name in product_species:
+ created_product = np.sum(data[species_name + "_w_end"])
+ assert(created_product >= 0.)
+ assert(is_close(total_w_reactant1_start, total_w_reactant1_end + created_product))
+ assert(is_close(total_w_reactant2_start, total_w_reactant2_end + created_product))
+
+def compute_energy_array(data, species_name, suffix, m):
+ ## Relativistic computation of kinetic energy for a given species
+ psq_array = data[species_name+'_px_'+suffix]**2 + data[species_name+'_py_'+suffix]**2 + \
+ data[species_name+'_pz_'+suffix]**2
+ rest_energy = m*scc.c**2
+ return np.sqrt(psq_array*scc.c**2 + rest_energy**2) - rest_energy
+
+def check_energy_conservation(data):
+ total_energy_start = 0
+ for species_name in reactant_species:
+ total_energy_start += np.sum( data[species_name + "_w_start"] * \
+ compute_energy_array(data, species_name, "start", mass[species_name]) )
+ total_energy_end = 0
+ for species_name in product_species + reactant_species:
+ total_energy_end += np.sum( data[species_name + "_w_end"] * \
+ compute_energy_array(data, species_name, "end", mass[species_name]) )
+ n_fusion_reaction = np.sum(data[product_species[0] + "_w_end"])
+ assert(is_close(total_energy_end,
+ total_energy_start + n_fusion_reaction*E_fusion,
+ rtol = 1.e-8))
+
+def check_momentum_conservation(data):
+ total_px_start = 0
+ total_py_start = 0
+ total_pz_start = 0
+ for species_name in reactant_species:
+ total_px_start += np.sum(
+ data[species_name+'_px_start'] * data[species_name+'_w_start'])
+ total_py_start += np.sum(
+ data[species_name+'_py_start'] * data[species_name+'_w_start'])
+ total_pz_start += np.sum(
+ data[species_name+'_pz_start'] * data[species_name+'_w_start'])
+ total_px_end = 0
+ total_py_end = 0
+ total_pz_end = 0
+ for species_name in reactant_species + product_species:
+ total_px_end += np.sum(
+ data[species_name+'_px_end'] * data[species_name+'_w_end'])
+ total_py_end += np.sum(
+ data[species_name+'_py_end'] * data[species_name+'_w_end'])
+ total_pz_end += np.sum(
+ data[species_name+'_pz_end'] * data[species_name+'_w_end'])
+
+ ## Absolute tolerance is needed because sometimes the initial momentum is exactly 0
+ assert(is_close(total_px_start, total_px_end, atol=1.e-15))
+ assert(is_close(total_py_start, total_py_end, atol=1.e-15))
+ assert(is_close(total_pz_start, total_pz_end, atol=1.e-15))
+
+def check_id(data):
+ ## Check that all created particles have unique id + cpu identifier (two particles with
+ ## different cpu can have the same id)
+ for species_name in product_species:
+ complex_id = data[species_name + "_id_end"] + 1j*data[species_name + "_cpu_end"]
+ assert(complex_id.shape == np.unique(complex_id).shape)
+
+def generic_check(data):
+ check_particle_number_conservation(data)
+ check_energy_conservation(data)
+ check_momentum_conservation(data)
+ check_id(data)
+
+def check_isotropy(data, relative_tolerance):
+ ## Checks that the product particles are emitted isotropically
+ for species_name in product_species:
+ average_px_sq = np.average(data[species_name+"_px_end"]*data[species_name+"_px_end"])
+ average_py_sq = np.average(data[species_name+"_py_end"]*data[species_name+"_py_end"])
+ average_pz_sq = np.average(data[species_name+"_pz_end"]*data[species_name+"_pz_end"])
+ assert(is_close(average_px_sq, average_py_sq, rtol = relative_tolerance))
+ assert(is_close(average_px_sq, average_pz_sq, rtol = relative_tolerance))
+
+def check_xy_isotropy(data):
+ ## Checks that the product particles are emitted isotropically in x and y
+ for species_name in product_species:
+ average_px_sq = np.average(data[species_name+"_px_end"]*data[species_name+"_px_end"])
+ average_py_sq = np.average(data[species_name+"_py_end"]*data[species_name+"_py_end"])
+ average_pz_sq = np.average(data[species_name+"_pz_end"]*data[species_name+"_pz_end"])
+ assert(is_close(average_px_sq, average_py_sq, rtol = 5.e-2))
+ assert(average_pz_sq > average_px_sq)
+ assert(average_pz_sq > average_py_sq)
+
+def cross_section( E_keV ):
+ ## Returns cross section in b, using the analytical fits given
+ ## in H.-S. Bosch and G.M. Hale 1992 Nucl. Fusion 32 611
+ joule_to_keV = 1.e-3/scc.e
+ B_G = scc.pi * scc.alpha * np.sqrt( 2.*m_reduced * scc.c**2 * joule_to_keV );
+ A1 = 6.927e4;
+ A2 = 7.454e8;
+ A3 = 2.050e6;
+ A4 = 5.2002e4;
+ B1 = 6.38e1;
+ B2 = -9.95e-1;
+ B3 = 6.981e-5;
+ B4 = 1.728e-4;
+ astrophysical_factor = (A1 + E_keV*(A2 + E_keV*(A3 + E_keV*A4))) / (1 + E_keV*(B1 + E_keV*(B2 + E_keV*(B3 + E_keV*B4))));
+ millibarn_to_barn = 1.e-3;
+ return millibarn_to_barn * astrophysical_factor/E_keV * np.exp(-B_G/np.sqrt(E_keV))
+
+def E_com_to_p_sq_com(m1, m2, E):
+ ## E is the total (kinetic+mass) energy of a two particle (with mass m1 and m2) system in
+ ## its center of mass frame, in J.
+ ## Returns the square norm of the momentum of each particle in that frame.
+ E_ratio = E/((m1+m2)*scc.c**2)
+ return m1*m2*scc.c**2 * (E_ratio**2 - 1) + (m1-m2)**2*scc.c**2/4 * (E_ratio - 1./E_ratio)**2
+
+def compute_relative_v_com(E):
+ ## E is the kinetic energy of reactants in the center of mass frame, in keV
+ ## Returns the relative velocity between reactants in this frame, in m/s
+ m0 = mass[reactant_species[0]]
+ m1 = mass[reactant_species[1]]
+ E_J = E*keV_to_Joule + (m0 + m1)*scc.c**2
+ p_sq = E_com_to_p_sq_com(m0, m1, E_J)
+ p = np.sqrt(p_sq)
+ gamma0 = np.sqrt(1. + p_sq / (m0*scc.c)**2)
+ gamma1 = np.sqrt(1. + p_sq / (m1*scc.c)**2)
+ v0 = p/(gamma0*m0)
+ v1 = p/(gamma1*m1)
+ return v0+v1
+
+def expected_weight_com(E_com, reactant0_density, reactant1_density, dV, dt):
+ ## Computes expected number of product particles as a function of energy E_com in the
+ ## center of mass frame. E_com is in keV.
+ assert(np.all(E_com>=0))
+ ## Case E_com == 0 is handled manually to avoid division by zero
+ conditions = [E_com == 0, E_com > 0]
+ ## Necessary to avoid division by 0 warning when pb_cross_section is evaluated
+ E_com_never_zero = np.clip(E_com, 1.e-15, None)
+ choices = [0., cross_section(E_com_never_zero)*compute_relative_v_com(E_com_never_zero)]
+ sigma_times_vrel = np.select(conditions, choices)
+ return reactant0_density*reactant1_density*sigma_times_vrel*barn_to_square_meter*dV*dt
+
+def check_macroparticle_number(data, fusion_probability_target_value, num_pair_per_cell):
+ ## Checks that the number of macroparticles is as expected for the first and second tests
+
+ ## The first slice 0 < z < 1 does not contribute to product species creation
+ numcells = dV_total - dV_slice
+ ## In these tests, the fusion_multiplier is so high that the fusion probability per pair is
+ ## equal to the parameter fusion_probability_target_value
+ fusion_probability_per_pair = fusion_probability_target_value
+ expected_fusion_number = numcells*num_pair_per_cell*fusion_probability_per_pair
+ expected_macroparticle_number = 2*expected_fusion_number
+ std_macroparticle_number = 2*np.sqrt(expected_fusion_number)
+ actual_macroparticle_number = data[product_species[0] + "_w_end"].shape[0]
+ # 5 sigma test that has an intrinsic probability to fail of 1 over ~2 millions
+ assert(is_close(actual_macroparticle_number, expected_macroparticle_number, rtol = 0.,
+ atol = 5.*std_macroparticle_number))
+
+ ## used in subsequent function
+ return expected_fusion_number
+
+def p_sq_reactant1_frame_to_E_COM_frame(p_reactant0_sq):
+ # Takes the reactant0 square norm of the momentum in the reactant1 rest frame and returns the total
+ # kinetic energy in the center of mass frame. Everything is in SI units.
+ m0 = mass[reactant_species[0]]
+ m1 = mass[reactant_species[1]]
+
+ # Total (kinetic + mass) energy in lab frame
+ E_lab = np.sqrt(p_reactant0_sq*scc.c**2 + (m0*scc.c**2)**2) + m1*scc.c**2
+ # Use invariant E**2 - p**2c**2 of 4-momentum norm to compute energy in center of mass frame
+ E_com = np.sqrt(E_lab**2 - p_reactant0_sq*scc.c**2)
+ # Corresponding kinetic energy
+ E_com_kin = E_com - (m1+m0)*scc.c**2
+ return E_com_kin*(p_reactant0_sq>0.)
+
+def p_sq_to_kinetic_energy(p_sq, m):
+ ## Returns the kinetic energy of a particle as a function of its squared momentum.
+ ## Everything is in SI units.
+ return np.sqrt(p_sq*scc.c**2 + (m*scc.c**2)**2) - (m*scc.c**2)
+
+def compute_E_com1(data):
+ ## Computes kinetic energy (in Joule) in the center of frame for the first test
+
+ ## Square norm of the momentum of reactant as a function of cell number in z direction
+ p_sq = 2.*m_reduced*(Energy_step*np.arange(size_z)**2)
+ Ekin = 0
+ for species_name in reactant_species:
+ Ekin += p_sq_to_kinetic_energy( p_sq, mass[species_name] )
+ return Ekin
+
+def compute_E_com2(data):
+ ## Computes kinetic energy (in Joule) in the center of frame for the second test
+
+ ## Square norm of the momentum of reactant0 as a function of cell number in z direction
+ p_reactant0_sq = 2.*mass[reactant_species[0]]*(Energy_step*np.arange(size_z)**2)
+ return p_sq_reactant1_frame_to_E_COM_frame(p_reactant0_sq)
+
+def check_fusion_yield(data, expected_fusion_number, E_com, reactant0_density, reactant1_density):
+ ## Checks that the fusion yield is as expected for the first and second tests.
+ product_weight_theory = expected_weight_com(E_com/keV_to_Joule,
+ reactant0_density, reactant1_density, dV_slice, dt)
+ for species_name in product_species:
+ product_weight_simulation = np.histogram(data[species_name+"_z_end"],
+ bins=size_z, range=(0, size_z), weights = data[species_name+"_w_end"])[0]
+ ## -1 is here because the first slice 0 < z < 1 does not contribute to fusion
+ expected_fusion_number_per_slice = expected_fusion_number/(size_z-1)
+ relative_std_weight = 1./np.sqrt(expected_fusion_number_per_slice)
+
+ # 5 sigma test that has an intrinsic probability to fail of 1 over ~2 millions
+ assert(np.all(is_close(product_weight_theory, product_weight_simulation,
+ rtol = 5.*relative_std_weight)))
+
+def specific_check1(data):
+ check_isotropy(data, relative_tolerance = 3.e-2)
+ expected_fusion_number = check_macroparticle_number(data,
+ fusion_probability_target_value = 0.002,
+ num_pair_per_cell = 10000)
+ E_com = compute_E_com1(data)
+ check_fusion_yield(data, expected_fusion_number, E_com, reactant0_density = 1.,
+ reactant1_density = 1.)
+
+def specific_check2(data):
+ check_xy_isotropy(data)
+ ## Only 900 particles pairs per cell here because we ignore the 10% of reactants that are at rest
+ expected_fusion_number = check_macroparticle_number(data,
+ fusion_probability_target_value = 0.02,
+ num_pair_per_cell = 900)
+ E_com = compute_E_com2(data)
+ check_fusion_yield(data, expected_fusion_number, E_com, reactant0_density = 1.e20,
+ reactant1_density = 1.e26)
+
+def check_charge_conservation(rho_start, rho_end):
+ assert(np.all(is_close(rho_start, rho_end, rtol=2.e-11)))
+
+def main():
+ filename_end = sys.argv[1]
+ filename_start = filename_end[:-4] + '0000'
+ ds_end = yt.load(filename_end)
+ ds_start = yt.load(filename_start)
+ ad_end = ds_end.all_data()
+ ad_start = ds_start.all_data()
+ field_data_end = ds_end.covering_grid(level=0, left_edge=ds_end.domain_left_edge,
+ dims=ds_end.domain_dimensions)
+ field_data_start = ds_start.covering_grid(level=0, left_edge=ds_start.domain_left_edge,
+ dims=ds_start.domain_dimensions)
+
+ ntests = 2
+ for i in range(1, ntests+1):
+ data = {}
+
+ for species_name in reactant_species:
+ add_species_to_dict(ad_start, data, species_name+str(i), species_name, "start")
+ add_species_to_dict(ad_end, data, species_name+str(i), species_name, "end")
+
+ for species_name in product_species:
+ add_species_to_dict(ad_end, data, species_name+str(i), species_name, "end")
+
+ # General checks that are performed for all tests
+ generic_check(data)
+
+ # Checks that are specific to test number i
+ eval("specific_check"+str(i)+"(data)")
+
+ rho_start = field_data_start["rho"].to_ndarray()
+ rho_end = field_data_end["rho"].to_ndarray()
+ check_charge_conservation(rho_start, rho_end)
+
+ test_name = os.path.split(os.getcwd())[1]
+ checksumAPI.evaluate_checksum(test_name, filename_end)
+
+if __name__ == "__main__":
+ main()