aboutsummaryrefslogtreecommitdiff
path: root/Examples/Modules
diff options
context:
space:
mode:
Diffstat (limited to 'Examples/Modules')
-rwxr-xr-xExamples/Modules/embedded_boundary_cube/analysis_fields.py13
-rwxr-xr-xExamples/Modules/embedded_boundary_rotated_cube/analysis_fields.py116
-rw-r--r--Examples/Modules/embedded_boundary_rotated_cube/inputs_3d72
3 files changed, 195 insertions, 6 deletions
diff --git a/Examples/Modules/embedded_boundary_cube/analysis_fields.py b/Examples/Modules/embedded_boundary_cube/analysis_fields.py
index 58dad1bb7..e4b461edd 100755
--- a/Examples/Modules/embedded_boundary_cube/analysis_fields.py
+++ b/Examples/Modules/embedded_boundary_cube/analysis_fields.py
@@ -32,7 +32,13 @@ Lx = 1
Ly = 1
Lz = 1
h_2 = (m * pi / Lx) ** 2 + (n * pi / Ly) ** 2 + (p * pi / Lz) ** 2
-t = 1.3342563807926085e-08
+
+# Open the right plot file
+filename = sys.argv[1]
+ds = yt.load(filename)
+data = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)
+
+t = ds.current_time.to_value()
# Compute the analytic solution
Bx_th = np.zeros(ncells)
@@ -65,11 +71,6 @@ for i in range(ncells[0]):
(-Lz/2 <= z < Lz/2) *
np.cos(np.sqrt(2) * np.pi / Lx * c * t))
-# Open the right plot file
-filename = sys.argv[1]
-ds = yt.load(filename)
-data = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)
-
rel_tol_err = 1e-1
# Compute relative l^2 error on By
diff --git a/Examples/Modules/embedded_boundary_rotated_cube/analysis_fields.py b/Examples/Modules/embedded_boundary_rotated_cube/analysis_fields.py
new file mode 100755
index 000000000..7765c5d69
--- /dev/null
+++ b/Examples/Modules/embedded_boundary_rotated_cube/analysis_fields.py
@@ -0,0 +1,116 @@
+#! /usr/bin/env python
+
+# Copyright 2021 Lorenzo Giacomel
+#
+# This file is part of WarpX.
+#
+# License: BSD-3-Clause-LBNL
+
+
+import yt
+import os, sys
+from scipy.constants import mu_0, pi, c
+import numpy as np
+sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
+import checksumAPI
+
+# This is a script that analyses the simulation results from
+# the script `inputs_3d`. This simulates a TMmnp mode in a PEC cubic resonator rotated by pi/8.
+# The magnetic field in the simulation is given (in theory) by:
+# $$ B_x = \frac{-2\mu}{h^2}\, k_x k_z \sin(k_x x)\cos(k_y y)\cos(k_z z)\cos( \omega_p t)$$
+# $$ B_y = \frac{-2\mu}{h^2}\, k_y k_z \cos(k_x x)\sin(k_y y)\cos(k_z z)\cos( \omega_p t)$$
+# $$ B_z = \cos(k_x x)\cos(k_y y)\sin(k_z z)\sin( \omega_p t)$$
+# with
+# $$ h^2 = k_x^2 + k_y^2 + k_z^2$$
+# $$ k_x = \frac{m\pi}{L}$$
+# $$ k_y = \frac{n\pi}{L}$$
+# $$ k_z = \frac{p\pi}{L}$$
+
+hi = [0.8, 0.8, 0.8]
+lo = [-0.8, -0.8, -0.8]
+m = 0
+n = 1
+p = 1
+Lx = 1.06
+Ly = 1.06
+Lz = 1.06
+h_2 = (m * pi / Lx) ** 2 + (n * pi / Ly) ** 2 + (p * pi / Lz) ** 2
+theta = np.pi/8
+
+# Open the right plot file
+filename = sys.argv[1]
+ds = yt.load(filename)
+data = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)
+
+t = ds.current_time.to_value()
+
+rel_tol_err = 1e-2
+my_grid = ds.index.grids[0]
+
+By_sim = my_grid['raw', 'By_fp'].squeeze().v
+Bz_sim = my_grid['raw', 'Bz_fp'].squeeze().v
+
+ncells = np.array(np.shape(By_sim[:, :, :, 0]))
+dx = (hi[0] - lo[0])/ncells[0]
+dy = (hi[1] - lo[1])/ncells[1]
+dz = (hi[2] - lo[2])/ncells[2]
+
+# Compute the analytic solution
+Bx_th = np.zeros(ncells)
+By_th = np.zeros(ncells)
+Bz_th = np.zeros(ncells)
+for i in range(ncells[0]):
+ for j in range(ncells[1]):
+ for k in range(ncells[2]):
+ x0 = (i+0.5)*dx + lo[0]
+ y0 = j*dy + lo[1]
+ z0 = (k+0.5)*dz + lo[2]
+
+ x = x0
+ y = y0*np.cos(-theta)-z0*np.sin(-theta)
+ z = y0*np.sin(-theta)+z0*np.cos(-theta)
+ By = -2/h_2*mu_0*(n * pi/Ly)*(p * pi/Lz) * (np.cos(m * pi/Lx * (x - Lx/2)) *
+ np.sin(n * pi/Ly * (y - Ly/2)) *
+ np.cos(p * pi/Lz * (z - Lz/2)) *
+ np.cos(np.sqrt(2) *
+ np.pi / Lx * c * t))
+
+ Bz = mu_0*(np.cos(m * pi/Lx * (x - Lx/2)) *
+ np.cos(n * pi/Ly * (y - Ly/2)) *
+ np.sin(p * pi/Lz * (z - Lz/2)) *
+ np.cos(np.sqrt(2) * np.pi / Lx * c * t))
+
+ By_th[i, j, k] = (By*np.cos(theta) - Bz*np.sin(theta))*(By_sim[i, j, k, 0] != 0)
+
+ x0 = (i+0.5)*dx + lo[0]
+ y0 = (j+0.5)*dy + lo[1]
+ z0 = k*dz + lo[2]
+
+ x = x0
+ y = y0*np.cos(-theta)-z0*np.sin(-theta)
+ z = y0*np.sin(-theta)+z0*np.cos(-theta)
+
+ By = -2/h_2*mu_0*(n * pi/Ly)*(p * pi/Lz) * (np.cos(m * pi/Lx * (x - Lx/2)) *
+ np.sin(n * pi/Ly * (y - Ly/2)) *
+ np.cos(p * pi/Lz * (z - Lz/2)) *
+ np.cos(np.sqrt(2) *
+ np.pi / Lx * c * t))
+
+ Bz = mu_0*(np.cos(m * pi/Lx * (x - Lx/2)) *
+ np.cos(n * pi/Ly * (y - Ly/2)) *
+ np.sin(p * pi/Lz * (z - Lz/2)) *
+ np.cos(np.sqrt(2) * np.pi / Lx * c * t))
+
+ Bz_th[i, j, k] = (By*np.sin(theta) + Bz*np.cos(theta))*(Bz_sim[i, j, k, 0] != 0)
+
+
+# Compute relative l^2 error on By
+rel_err_y = np.sqrt( np.sum(np.square(By_sim[:, :, :, 0] - By_th)) / np.sum(np.square(By_th)))
+assert(rel_err_y < rel_tol_err)
+# Compute relative l^2 error on Bz
+rel_err_z = np.sqrt( np.sum(np.square(Bz_sim[:, :, :, 0] - Bz_th)) / np.sum(np.square(Bz_th)))
+assert(rel_err_z < rel_tol_err)
+
+test_name = os.path.split(os.getcwd())[1]
+
+checksumAPI.evaluate_checksum(test_name, filename)
diff --git a/Examples/Modules/embedded_boundary_rotated_cube/inputs_3d b/Examples/Modules/embedded_boundary_rotated_cube/inputs_3d
new file mode 100644
index 000000000..7a6d51cf7
--- /dev/null
+++ b/Examples/Modules/embedded_boundary_rotated_cube/inputs_3d
@@ -0,0 +1,72 @@
+stop_time = 5.303669113650618e-09
+amr.n_cell = 32 32 32
+amr.max_grid_size = 128
+amr.max_level = 0
+
+geometry.coord_sys = 0
+geometry.prob_lo = -0.8 -0.8 -0.8
+geometry.prob_hi = 0.8 0.8 0.8
+warpx.cfl = 1
+
+boundary.field_lo = pec pec pec
+boundary.field_hi = pec pec pec
+
+algo.maxwell_solver = ect
+
+my_constants.xmin = -0.53
+my_constants.ymin = -0.53
+my_constants.zmin = -0.53
+my_constants.xmax = 0.53
+my_constants.ymax = 0.53
+my_constants.zmax = 0.53
+my_constants.pi = 3.141592653589793
+my_constants.theta = pi/8
+
+warpx.eb_implicit_function = "max(max(max(x+xmin,-(x+xmax)), max(y*cos(-theta)-z*sin(-theta)+ymin,-(y*cos(-theta)-z*sin(-theta)+ymax))), max(y*sin(-theta)+z*cos(-theta)+zmin,-(y*sin(-theta)+z*cos(-theta)+zmax)))"
+
+my_constants.m = 0
+my_constants.n = 1
+my_constants.p = 1
+my_constants.Lx = 1.06
+my_constants.Ly = 1.06
+my_constants.Lz = 1.06
+my_constants.x_cent = 0.
+my_constants.y_cent = 0.
+my_constants.z_cent = 0.
+my_constants.h_2 = (m * pi / Lx) ** 2 + (n * pi / Ly) ** 2 + (p * pi / Lz) ** 2
+my_constants.mu_0 = 1.25663706212e-06
+
+warpx.B_ext_grid_init_style = parse_B_ext_grid_function
+warpx.Bx_external_grid_function(x,y,z) = -2/h_2 * mu_0 * (m * pi / Lx) * (p * pi / Lz) *
+ sin(m * pi / Lx * (x - Lx / 2 - x_cent)) *
+ cos(n * pi / Ly * (y*cos(-theta)-z*sin(-theta) - Ly / 2 - y_cent)) *
+ cos(p * pi / Lz * (y*sin(-theta)+z*cos(-theta) - Lz / 2 - z_cent))
+
+warpx.By_external_grid_function(x,y,z) = -2/h_2 * mu_0 * (n * pi / Ly) * (p * pi / Lz) *
+ cos(m * pi / Lx * (x - Lx / 2 - x_cent)) *
+ sin(n * pi / Ly * (y*cos(-theta)-z*sin(-theta) - Ly / 2 - y_cent)) *
+ cos(p * pi / Lz * (y*sin(-theta)+z*cos(-theta) - Lz / 2 - z_cent)) *
+ cos(theta) -
+ mu_0 *
+ cos(m * pi / Lx * (x - Lx / 2 - x_cent)) *
+ cos(n * pi / Ly * (y*cos(-theta)-z*sin(-theta) - Ly / 2 - y_cent)) *
+ sin(p * pi / Lz * (y*sin(-theta)+z*cos(-theta) - Lz / 2 - z_cent)) *
+ sin(theta)
+
+warpx.Bz_external_grid_function(x,y,z) = mu_0 *
+ cos(m * pi / Lx * (x - Lx / 2 - x_cent)) *
+ cos(n * pi / Ly * (y*cos(-theta)-z*sin(-theta) - Ly / 2 - y_cent)) *
+ sin(p * pi / Lz * (y*sin(-theta)+z*cos(-theta) - Lz / 2 - z_cent)) *
+ cos(theta) -
+ 2/h_2 * mu_0 * (n * pi / Ly) * (p * pi / Lz) *
+ cos(m * pi / Lx * (x - Lx / 2 - x_cent)) *
+ sin(n * pi / Ly * (y*cos(-theta)-z*sin(-theta) - Ly / 2 - y_cent)) *
+ cos(p * pi / Lz * (y*sin(-theta)+z*cos(-theta) - Lz / 2 - z_cent)) *
+ sin(theta)
+
+
+diagnostics.diags_names = diag1
+diag1.intervals = 1000
+diag1.diag_type = Full
+diag1.plot_raw_fields = 1
+diag1.fields_to_plot = Ex Ey Ez Bx By Bz