aboutsummaryrefslogtreecommitdiff
path: root/Python/pywarpx/PICMI.py
diff options
context:
space:
mode:
Diffstat (limited to 'Python/pywarpx/PICMI.py')
-rw-r--r--Python/pywarpx/PICMI.py160
1 files changed, 139 insertions, 21 deletions
diff --git a/Python/pywarpx/PICMI.py b/Python/pywarpx/PICMI.py
index 1bc36e5ca..b1711926f 100644
--- a/Python/pywarpx/PICMI.py
+++ b/Python/pywarpx/PICMI.py
@@ -6,14 +6,10 @@ from pywarpx import *
codename = 'WarpX'
-def _args_to_string(*args):
- # --- Converts of sequence of number to a string that is appropriate for input.
- return ' '.join(map(repr, args))
-
class Grid(PICMI_Grid):
def init(self, **kw):
- amr.n_cell = _args_to_string(self.nx, self.ny, self.nz)
+ amr.n_cell = [self.nx, self.ny, self.nz]
# Maximum allowable size of each subdomain in the problem domain;
# this is used to decompose the domain for parallel calculations.
@@ -25,8 +21,8 @@ class Grid(PICMI_Grid):
# Geometry
geometry.coord_sys = kw.get('coord_sys', 0) # 0: Cartesian
geometry.is_periodic = '%d %d %d'%(self.bcxmin=='periodic', self.bcymin=='periodic', self.bczmin=='periodic') # Is periodic?
- geometry.prob_lo = _args_to_string(self.xmin, self.ymin, self.zmin) # physical domain
- geometry.prob_hi = _args_to_string(self.xmax, self.ymax, self.zmax)
+ geometry.prob_lo = [self.xmin, self.ymin, self.zmin] # physical domain
+ geometry.prob_hi = [self.xmax, self.ymax, self.zmax]
if self.moving_window_velocity is not None and np.any(self.moving_window_velocity != 0):
warpx.do_moving_window = 1
@@ -78,15 +74,20 @@ class Gaussian_laser(PICMI_Gaussian_laser):
warpx.use_laser = 1
laser.profile = "Gaussian"
- laser.position = _args_to_string(self.antenna_x0, self.antenna_y0, self.antenna_z0) # This point is on the laser plane
- laser.direction = _args_to_string(self.antenna_xvec, self.antenna_yvec, self.antenna_zvec) # The plane normal direction
- laser.polarization = _args_to_string(np.cos(self.pol_angle), np.sin(self.pol_angle), 0.) # The main polarization vector
+ laser.wavelength = self.wavelength # The wavelength of the laser (in meters)
laser.e_max = self.E0 # Maximum amplitude of the laser field (in V/m)
+ laser.polarization = [np.cos(self.pol_angle), np.sin(self.pol_angle), 0.] # The main polarization vector
laser.profile_waist = self.waist # The waist of the laser (in meters)
laser.profile_duration = self.duration # The duration of the laser (in seconds)
- laser.profile_t_peak = self.t_peak # The time at which the laser reaches its peak (in seconds)
- laser.profile_focal_distance = self.focal_position - self.antenna_z0 # Focal distance from the antenna (in meters)
- laser.wavelength = self.wavelength # The wavelength of the laser (in meters)
+ laser.profile_t_peak = (self.focal_position - self.z0)/clight # The time at which the laser reaches its peak (in seconds)
+
+
+class Laser_antenna(PICMI_Laser_antenna):
+ def init(self, **kw):
+
+ laser.position = [self.antenna_x0, self.antenna_y0, self.antenna_z0] # This point is on the laser plane
+ laser.direction = [self.antenna_xvec, self.antenna_yvec, self.antenna_zvec] # The plane normal direction
+ laser.profile_focal_distance = self.laser.focal_position - self.antenna_z0 # Focal distance from the antenna (in meters)
class Species(PICMI_Species):
@@ -94,7 +95,10 @@ class Species(PICMI_Species):
self.species_number = particles.nspecies
particles.nspecies = particles.nspecies + 1
- particles.species_names = particles.species_names + ' ' + self.name
+ if particles.species_names is None:
+ particles.species_names = self.name
+ else:
+ particles.species_names = particles.species_names + ' ' + self.name
self.bucket = Bucket.Bucket(self.name, mass=self.mass, charge=self.charge, injection_style = 'python')
Particles.particles_list.append(self.bucket)
@@ -107,6 +111,102 @@ class Species(PICMI_Species):
add_particles(self.species_number, x, y, z, ux, uy, uz, pid, unique_particles)
+class GaussianBeam(PICMI_GaussianBeam):
+ def init(self, **kw):
+
+ self.species.bucket.injection_style = "gaussian_beam"
+ self.species.bucket.x_m = self.Xmean
+ self.species.bucket.y_m = self.Ymean
+ self.species.bucket.z_m = self.Zmean
+ self.species.bucket.x_rms = self.Xrms
+ self.species.bucket.y_rms = self.Yrms
+ self.species.bucket.z_rms = self.Zrms
+ self.species.bucket.npart = self.number_sim_particles
+ self.species.bucket.q_tot = self.number_sim_particles*self.species.charge
+
+ # --- These are unused but need to be set (maybe)
+ self.species.bucket.profile = 'constant'
+ self.species.bucket.density = 1
+
+ # --- Momentum distribution
+ if 'u_over_r' in kw:
+ # --- Radial expansion
+ self.species.bucket.momentum_distribution_type = "radial_expansion"
+ self.species.bucket.u_over_r = kw['u_over_r']
+
+ elif self.UXrms == 0. and self.UYrms == 0. and self.UZrms == 0.:
+ # --- Constant velocity
+ self.species.bucket.momentum_distribution_type = "constant"
+ self.species.bucket.ux = self.UXmean
+ self.species.bucket.uy = self.UYmean
+ self.species.bucket.uz = self.UZmean
+
+ else:
+ # --- Gaussian velocity distribution
+ self.species.bucket.momentum_distribution_type = "gaussian"
+ self.species.bucket.ux_m = self.UXmean
+ self.species.bucket.uy_m = self.UYmean
+ self.species.bucket.uz_m = self.UZmean
+ self.species.bucket.u_th = self.UZrms
+ # !!! UXrms and UYrms are unused. Only an isotropic distribution is supported
+ # !!! Maybe an error should be raised
+
+
+class Plasma(PICMI_Plasma):
+ def init(self, **kw):
+
+ for species in self.species:
+ species.bucket.injection_style = "NUniformPerCell"
+ species.bucket.xmin = self.xmin
+ species.bucket.xmax = self.xmax
+ species.bucket.ymin = self.ymin
+ species.bucket.ymax = self.ymax
+ species.bucket.zmin = self.zmin
+ species.bucket.zmax = self.zmax
+
+ species.bucket.profile = 'constant'
+ species.bucket.density = self.density
+
+ if self.number_per_cell is not None:
+ species.bucket.nrandompercell = self.number_per_cell
+ elif self.number_per_cell_each_dim is not None:
+ species.bucket.num_particles_per_cell_each_dim = self.number_per_cell_each_dim
+
+ # --- Momentum distribution
+ if 'u_over_r' in kw:
+ # --- Radial expansion
+ species.bucket.momentum_distribution_type = "radial_expansion"
+ species.bucket.u_over_r = kw['u_over_r']
+
+ elif self.vthx == 0. and self.vthy == 0. and self.vthz == 0.:
+ # --- Constant velocity
+ species.bucket.momentum_distribution_type = "constant"
+ species.bucket.ux = self.vxmean
+ species.bucket.uy = self.vymean
+ species.bucket.uz = self.vzmean
+
+ else:
+ # --- Gaussian velocity distribution
+ species.bucket.momentum_distribution_type = "gaussian"
+ species.bucket.ux_m = self.vxmean
+ species.bucket.uy_m = self.vymean
+ species.bucket.uz_m = self.vzmean
+ species.bucket.u_th = self.vthz
+ # !!! vthx and vthy are unused. Only an isotropic distribution is supported
+ # !!! Maybe an error should be raised
+
+
+class ParticleList(PICMI_ParticleList):
+ def init(self, **kw):
+
+ assert len(self.x) == 1, "WarpX only supports initializing with a single particle"
+
+ self.species.bucket.injection_style = "SingleParticle"
+ self.species.bucket.single_particle_pos = [self.x[0], self.y[0], self.z[0]]
+ self.species.bucket.single_particle_vel = [self.ux[0]/clight, self.uy[0]/clight, self.uz[0]/clight]
+ self.species.bucket.single_particle_weight = self.weight
+
+
class Simulation(PICMI_Simulation):
def set_warpx_attr(self, warpx_obj, attr, kw):
value = kw.get(attr, None)
@@ -117,17 +217,35 @@ class Simulation(PICMI_Simulation):
def init(self, **kw):
warpx.verbose = self.verbose
- warpx.cfl = self.cfl
+ warpx.cfl = self.timestep_over_cfl
+ if self.timestep == 0.:
+ warpx.cfl = self.timestep_over_cfl
+ else:
+ warpx.const_dt = self.timestep
amr.plot_int = self.plot_int
- self.amrex = AMReX()
- self.amrex.init()
- warpx.init()
-
- def step(self, nsteps=-1):
+ self.initialized = False
+
+ def initialize(self, inputs_name=None):
+ if not self.initialized:
+ self.initialized = True
+ warpx.init()
+
+ def write_inputs(self, inputs_name='inputs'):
+ kw = {}
+ if hasattr(self, 'max_step'):
+ kw['max_step'] = self.max_step
+ warpx.write_inputs(inputs_name, **kw)
+
+ def step(self, nsteps=None):
+ self.initialize()
+ if nsteps is None:
+ if self.max_step is not None:
+ nsteps = self.max_step
+ else:
+ nsteps = -1
warpx.evolve(nsteps)
def finalize(self):
warpx.finalize()
- self.amrex.finalize()