diff options
Diffstat (limited to 'Python/pywarpx/_libwarpx.py')
-rwxr-xr-x | Python/pywarpx/_libwarpx.py | 524 |
1 files changed, 524 insertions, 0 deletions
diff --git a/Python/pywarpx/_libwarpx.py b/Python/pywarpx/_libwarpx.py new file mode 100755 index 000000000..5174e018d --- /dev/null +++ b/Python/pywarpx/_libwarpx.py @@ -0,0 +1,524 @@ +# --- This defines the wrapper functions that directly call the underlying compiled routines +import os +import sys +import ctypes +from ctypes.util import find_library +import numpy as np +from numpy.ctypeslib import ndpointer + + +def get_package_root(): + ''' + Get the path to the installation location (where libwarpx.so would be installed). + ''' + cur = os.path.abspath(__file__) + while True: + name = os.path.basename(cur) + if name == 'pywarpx': + return cur + elif not name: + return '' + cur = os.path.dirname(cur) + +libwarpx = ctypes.CDLL(os.path.join(get_package_root(), "libwarpx.so")) +libc = ctypes.CDLL(find_library('c')) + + + +libwarpx.warpx_getistep.restype = ctypes.c_int +libwarpx.warpx_gett_new.restype = ctypes.c_double +libwarpx.warpx_getdt.restype = ctypes.c_double +libwarpx.warpx_maxStep.restype = ctypes.c_int +libwarpx.warpx_stopTime.restype = ctypes.c_double +libwarpx.warpx_checkInt.restype = ctypes.c_int +libwarpx.warpx_plotInt.restype = ctypes.c_int +libwarpx.warpx_finestLevel.restype = ctypes.c_int + + +libwarpx.warpx_EvolveE.argtypes = [ctypes.c_int, ctypes.c_double] +libwarpx.warpx_EvolveB.argtypes = [ctypes.c_int, ctypes.c_double] +libwarpx.warpx_FillBoundaryE.argtypes = [ctypes.c_int, ctypes.c_bool] +libwarpx.warpx_FillBoundaryB.argtypes = [ctypes.c_int, ctypes.c_bool] +libwarpx.warpx_PushParticlesandDepose.argtypes = [ctypes.c_int, ctypes.c_double] +libwarpx.warpx_getistep.argtypes = [ctypes.c_int] +libwarpx.warpx_setistep.argtypes = [ctypes.c_int, ctypes.c_int] +libwarpx.warpx_gett_new.argtypes = [ctypes.c_int] +libwarpx.warpx_sett_new.argtypes = [ctypes.c_int, ctypes.c_double] +libwarpx.warpx_getdt.argtypes = [ctypes.c_int] + + + +# some useful data structures and typenames +class Particle(ctypes.Structure): + _fields_ = [('x', ctypes.c_double), + ('y', ctypes.c_double), + ('z', ctypes.c_double), + ('id', ctypes.c_int), + ('cpu', ctypes.c_int)] + + +p_dtype = np.dtype([('x', 'f8'), ('y', 'f8'), ('z', 'f8'), + ('id', 'i4'), ('cpu', 'i4')]) + +c_double_p = ctypes.POINTER(ctypes.c_double) +LP_c_char = ctypes.POINTER(ctypes.c_char) +LP_LP_c_char = ctypes.POINTER(LP_c_char) + +# where do I import these? this might only work for CPython... +PyBuf_READ = 0x100 +PyBUF_WRITE = 0x200 + +# this is a function for converting a ctypes pointer to a numpy array +def array1d_from_pointer(pointer, dtype, size): + if sys.version_info.major >= 3: + buffer_from_memory = ctypes.pythonapi.PyMemoryView_FromMemory + buffer_from_memory.argtypes = (ctypes.c_void_p, ctypes.c_int, ctypes.c_int) + buffer_from_memory.restype = ctypes.py_object + buf = buffer_from_memory(pointer, dtype.itemsize*size, PyBUF_WRITE) + else: + buffer_from_memory = ctypes.pythonapi.PyBuffer_FromReadWriteMemory + buffer_from_memory.restype = ctypes.py_object + buf = buffer_from_memory(pointer, dtype.itemsize*size) + return np.frombuffer(buf, dtype=dtype, count=size) + + +# set the arg and return types of the wrapped functions +f = libwarpx.amrex_init +f.argtypes = (ctypes.c_int, LP_LP_c_char) + +f = libwarpx.warpx_getParticleStructs +f.restype = ctypes.POINTER(ctypes.POINTER(Particle)) + +f = libwarpx.warpx_getParticleArrays +f.restype = ctypes.POINTER(c_double_p) + +f = libwarpx.warpx_getParticleArrays +f.restype = ctypes.POINTER(c_double_p) + +f = libwarpx.warpx_getEfield +f.restype = ctypes.POINTER(c_double_p) + +f = libwarpx.warpx_getBfield +f.restype = ctypes.POINTER(c_double_p) + +f = libwarpx.warpx_getCurrentDensity +f.restype = ctypes.POINTER(c_double_p) + +f = libwarpx.addNParticles +f.argtypes = (ctypes.c_int, ctypes.c_int, + ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), + ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), + ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), + ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), + ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), + ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), + ctypes.c_int, + ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), + ctypes.c_int) + +def amrex_init(argv): + # --- Construct the ctype list of strings to pass in + argc = len(argv) + argvC = (LP_c_char * (argc+1))() + for i, arg in enumerate(argv): + enc_arg = arg.encode('utf-8') + argvC[i] = ctypes.create_string_buffer(enc_arg) + + libwarpx.amrex_init(argc, argvC) + +def add_particles(species_number, + x, y, z, ux, uy, uz, attr, unique_particles): + ''' + + A function for adding particles to the WarpX simulation. + + Parameters + ---------- + + species_number : the species to add the particle to + x, y, z : numpy arrays of the particle positions + ux, uy, uz : numpy arrays of the particle momenta + attr : a 2D numpy array with the particle attributes + unique_particles : whether the particles are unique or duplicated on + several processes + + ''' + libwarpx.addNParticles(species_number, x.size, + x, y, z, ux, uy, uz, + attr.shape[1], attr, unique_particles) + +def get_particle_structs(species_number): + ''' + + This returns a list of numpy arrays containing the particle struct data + on each tile for this process. The particle data is represented as a structured + numpy array and contains the particle 'x', 'y', 'z', 'id', and 'cpu'. + + The data for the numpy arrays are not copied, but share the underlying + memory buffer with WarpX. The numpy arrays are fully writeable. + + Parameters + ---------- + + species_number : the species id that the data will be returned for + + Returns + ------- + + A List of numpy arrays. + + ''' + + particles_per_tile = ctypes.POINTER(ctypes.c_int)() + num_tiles = ctypes.c_int(0) + data = libwarpx.warpx_getParticleStructs(0, ctypes.byref(num_tiles), + ctypes.byref(particles_per_tile)) + + particle_data = [] + for i in range(num_tiles.value): + arr = array1d_from_pointer(data[i], p_dtype, particles_per_tile[i]) + particle_data.append(arr) + + libc.free(particles_per_tile) + libc.free(data) + return particle_data + + +def get_particle_arrays(species_number, comp): + ''' + + This returns a list of numpy arrays containing the particle array data + on each tile for this process. + + The data for the numpy arrays are not copied, but share the underlying + memory buffer with WarpX. The numpy arrays are fully writeable. + + Parameters + ---------- + + species_number : the species id that the data will be returned for + comp : the component of the array data that will be returned. + + Returns + ------- + + A List of numpy arrays. + + ''' + + particles_per_tile = ctypes.POINTER(ctypes.c_int)() + num_tiles = ctypes.c_int(0) + data = libwarpx.warpx_getParticleArrays(0, comp, ctypes.byref(num_tiles), + ctypes.byref(particles_per_tile)) + + particle_data = [] + for i in range(num_tiles.value): + arr = np.ctypeslib.as_array(data[i], (particles_per_tile[i],)) + arr.setflags(write=1) + particle_data.append(arr) + + libc.free(particles_per_tile) + libc.free(data) + return particle_data + + +def get_particle_x(species_number): + ''' + + Return a list of numpy arrays containing the particle 'x' + positions on each tile. + + ''' + structs = get_particle_structs(species_number) + return [struct['x'] for struct in structs] + + +def get_particle_y(species_number): + ''' + + Return a list of numpy arrays containing the particle 'y' + positions on each tile. + + ''' + structs = get_particle_structs(species_number) + return [struct['y'] for struct in structs] + + +def get_particle_z(species_number): + ''' + + Return a list of numpy arrays containing the particle 'z' + positions on each tile. + + ''' + structs = get_particle_structs(species_number) + return [struct['z'] for struct in structs] + + +def get_particle_id(species_number): + ''' + + Return a list of numpy arrays containing the particle 'z' + positions on each tile. + + ''' + structs = get_particle_structs(species_number) + return [struct['id'] for struct in structs] + + +def get_particle_cpu(species_number): + ''' + + Return a list of numpy arrays containing the particle 'z' + positions on each tile. + + ''' + structs = get_particle_structs(species_number) + return [struct['cpu'] for struct in structs] + + +def get_particle_weight(species_number): + ''' + + Return a list of numpy arrays containing the particle + weight on each tile. + + ''' + + return get_particle_arrays(species_number, 0) + + +def get_particle_ux(species_number): + ''' + + Return a list of numpy arrays containing the particle + x momentum on each tile. + + ''' + + return get_particle_arrays(species_number, 1) + + +def get_particle_uy(species_number): + ''' + + Return a list of numpy arrays containing the particle + y momentum on each tile. + + ''' + + return get_particle_arrays(species_number, 2) + + +def get_particle_uz(species_number): + ''' + + Return a list of numpy arrays containing the particle + z momentum on each tile. + + ''' + + return get_particle_arrays(species_number, 3) + + +def get_particle_Ex(species_number): + ''' + + Return a list of numpy arrays containing the particle + x electric field on each tile. + + ''' + + return get_particle_arrays(species_number, 4) + + +def get_particle_Ey(species_number): + ''' + + Return a list of numpy arrays containing the particle + y electric field on each tile. + + ''' + + return get_particle_arrays(species_number, 5) + + +def get_particle_Ez(species_number): + ''' + + Return a list of numpy arrays containing the particle + z electric field on each tile. + + ''' + + return get_particle_arrays(species_number, 6) + + +def get_particle_Bx(species_number): + ''' + + Return a list of numpy arrays containing the particle + x magnetic field on each tile. + + ''' + + return get_particle_arrays(species_number, 7) + + +def get_particle_By(species_number): + ''' + + Return a list of numpy arrays containing the particle + y magnetic field on each tile. + + ''' + + return get_particle_arrays(species_number, 8) + + +def get_particle_Bz(species_number): + ''' + + Return a list of numpy arrays containing the particle + z magnetic field on each tile. + + ''' + + return get_particle_arrays(species_number, 9) + + +def get_mesh_electric_field(level, direction, include_ghosts=True): + ''' + + This returns a list of numpy arrays containing the mesh electric field + data on each grid for this process. + + The data for the numpy arrays are not copied, but share the underlying + memory buffer with WarpX. The numpy arrays are fully writeable. + + Parameters + ---------- + + level : the AMR level to get the data for + direction : the component of the data you want + include_ghosts : whether to include ghost zones or not + + Returns + ------- + + A List of numpy arrays. + + ''' + + shapes = ctypes.POINTER(ctypes.c_int)() + size = ctypes.c_int(0) + ngrow = ctypes.c_int(0) + data = libwarpx.warpx_getEfield(0, direction, + ctypes.byref(size), ctypes.byref(ngrow), + ctypes.byref(shapes)) + ng = ngrow.value + grid_data = [] + for i in range(size.value): + shape=(shapes[3*i+0], shapes[3*i+1], shapes[3*i+2]) + arr = np.ctypeslib.as_array(data[i], shape) + arr.setflags(write=1) + if include_ghosts: + grid_data.append(arr) + else: + grid_data.append(arr[ng:-ng,ng:-ng,ng:-ng]) + + libc.free(shapes) + libc.free(data) + return grid_data + + +def get_mesh_magnetic_field(level, direction, include_ghosts=True): + ''' + + This returns a list of numpy arrays containing the mesh magnetic field + data on each grid for this process. + + The data for the numpy arrays are not copied, but share the underlying + memory buffer with WarpX. The numpy arrays are fully writeable. + + Parameters + ---------- + + level : the AMR level to get the data for + direction : the component of the data you want + include_ghosts : whether to include ghost zones or not + + Returns + ------- + + A List of numpy arrays. + + ''' + + shapes = ctypes.POINTER(ctypes.c_int)() + size = ctypes.c_int(0) + ngrow = ctypes.c_int(0) + data = libwarpx.warpx_getBfield(0, direction, + ctypes.byref(size), ctypes.byref(ngrow), + ctypes.byref(shapes)) + ng = ngrow.value + grid_data = [] + for i in range(size.value): + shape=(shapes[3*i+0], shapes[3*i+1], shapes[3*i+2]) + arr = np.ctypeslib.as_array(data[i], shape) + arr.setflags(write=1) + if include_ghosts: + grid_data.append(arr) + else: + grid_data.append(arr[ng:-ng,ng:-ng,ng:-ng]) + + libc.free(shapes) + libc.free(data) + return grid_data + + +def get_mesh_current_density(level, direction, include_ghosts=True): + ''' + + This returns a list of numpy arrays containing the mesh current density + data on each grid for this process. + + The data for the numpy arrays are not copied, but share the underlying + memory buffer with WarpX. The numpy arrays are fully writeable. + + Parameters + ---------- + + level : the AMR level to get the data for + direction : the component of the data you want + include_ghosts : whether to include ghost zones or not + + Returns + ------- + + A List of numpy arrays. + + ''' + + shapes = ctypes.POINTER(ctypes.c_int)() + size = ctypes.c_int(0) + ngrow = ctypes.c_int(0) + data = libwarpx.warpx_getCurrentDensity(0, direction, + ctypes.byref(size), ctypes.byref(ngrow), + ctypes.byref(shapes)) + ng = ngrow.value + grid_data = [] + for i in range(size.value): + shape=(shapes[3*i+0], shapes[3*i+1], shapes[3*i+2]) + arr = np.ctypeslib.as_array(data[i], shape) + arr.setflags(write=1) + if include_ghosts: + grid_data.append(arr) + else: + grid_data.append(arr[ng:-ng,ng:-ng,ng:-ng]) + + libc.free(shapes) + libc.free(data) + return grid_data + + |