diff options
Diffstat (limited to 'Source/FieldSolver/SpectralSolver/PsatdAlgorithm.cpp')
-rw-r--r-- | Source/FieldSolver/SpectralSolver/PsatdAlgorithm.cpp | 169 |
1 files changed, 116 insertions, 53 deletions
diff --git a/Source/FieldSolver/SpectralSolver/PsatdAlgorithm.cpp b/Source/FieldSolver/SpectralSolver/PsatdAlgorithm.cpp index ada7506c3..9e0bbfe06 100644 --- a/Source/FieldSolver/SpectralSolver/PsatdAlgorithm.cpp +++ b/Source/FieldSolver/SpectralSolver/PsatdAlgorithm.cpp @@ -27,58 +27,60 @@ PsatdAlgorithm::PsatdAlgorithm(const SpectralKSpace& spectral_kspace, X2_coef = SpectralCoefficients(ba, dm, 1, 0); X3_coef = SpectralCoefficients(ba, dm, 1, 0); - // Fill them with the right values: - // Loop over boxes and allocate the corresponding coefficients - // for each box owned by the local MPI proc - for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi){ - - const Box& bx = ba[mfi]; - - // Extract pointers for the k vectors - const Real* modified_kx = modified_kx_vec[mfi].dataPtr(); -#if (AMREX_SPACEDIM==3) - const Real* modified_ky = modified_ky_vec[mfi].dataPtr(); -#endif - const Real* modified_kz = modified_kz_vec[mfi].dataPtr(); - // Extract arrays for the coefficients - Array4<Real> C = C_coef[mfi].array(); - Array4<Real> S_ck = S_ck_coef[mfi].array(); - Array4<Real> X1 = X1_coef[mfi].array(); - Array4<Real> X2 = X2_coef[mfi].array(); - Array4<Real> X3 = X3_coef[mfi].array(); - - // Loop over indices within one box - ParallelFor(bx, - [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept - { - // Calculate norm of vector - const Real k_norm = std::sqrt( - std::pow(modified_kx[i], 2) + -#if (AMREX_SPACEDIM==3) - std::pow(modified_ky[j], 2) + - std::pow(modified_kz[k], 2)); -#else - std::pow(modified_kz[j], 2)); -#endif - - // Calculate coefficients - constexpr Real c = PhysConst::c; - constexpr Real ep0 = PhysConst::ep0; - if (k_norm != 0){ - C(i,j,k) = std::cos(c*k_norm*dt); - S_ck(i,j,k) = std::sin(c*k_norm*dt)/(c*k_norm); - X1(i,j,k) = (1. - C(i,j,k))/(ep0 * c*c * k_norm*k_norm); - X2(i,j,k) = (1. - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); - X3(i,j,k) = (C(i,j,k) - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); - } else { // Handle k_norm = 0, by using the analytical limit - C(i,j,k) = 1.; - S_ck(i,j,k) = dt; - X1(i,j,k) = 0.5 * dt*dt / ep0; - X2(i,j,k) = c*c * dt*dt / (6.*ep0); - X3(i,j,k) = - c*c * dt*dt / (3.*ep0); - } - }); - } + InitializeCoefficience(spectral_kspace, dm, dt); +// // Fill them with the right values: +// // Loop over boxes and allocate the corresponding coefficients +// // for each box owned by the local MPI proc +// for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi){ +// +// //const Box& bx = ba[mfi]; +// const Box bx = ba[mfi]; +// +// // Extract pointers for the k vectors +// const Real* modified_kx = modified_kx_vec[mfi].dataPtr(); +//#if (AMREX_SPACEDIM==3) +// const Real* modified_ky = modified_ky_vec[mfi].dataPtr(); +//#endif +// const Real* modified_kz = modified_kz_vec[mfi].dataPtr(); +// // Extract arrays for the coefficients +// Array4<Real> C = C_coef[mfi].array(); +// Array4<Real> S_ck = S_ck_coef[mfi].array(); +// Array4<Real> X1 = X1_coef[mfi].array(); +// Array4<Real> X2 = X2_coef[mfi].array(); +// Array4<Real> X3 = X3_coef[mfi].array(); +// +// // Loop over indices within one box +// ParallelFor(bx, +// [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept +// { +// // Calculate norm of vector +// const Real k_norm = std::sqrt( +// std::pow(modified_kx[i], 2) + +//#if (AMREX_SPACEDIM==3) +// std::pow(modified_ky[j], 2) + +// std::pow(modified_kz[k], 2)); +//#else +// std::pow(modified_kz[j], 2)); +//#endif +// +// // Calculate coefficients +// constexpr Real c = PhysConst::c; +// constexpr Real ep0 = PhysConst::ep0; +// if (k_norm != 0){ +// C(i,j,k) = std::cos(c*k_norm*dt); +// S_ck(i,j,k) = std::sin(c*k_norm*dt)/(c*k_norm); +// X1(i,j,k) = (1. - C(i,j,k))/(ep0 * c*c * k_norm*k_norm); +// X2(i,j,k) = (1. - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); +// X3(i,j,k) = (C(i,j,k) - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); +// } else { // Handle k_norm = 0, by using the analytical limit +// C(i,j,k) = 1.; +// S_ck(i,j,k) = dt; +// X1(i,j,k) = 0.5 * dt*dt / ep0; +// X2(i,j,k) = c*c * dt*dt / (6.*ep0); +// X3(i,j,k) = - c*c * dt*dt / (3.*ep0); +// } +// }); +// } }; /* Advance the E and B field in spectral space (stored in `f`) @@ -135,7 +137,7 @@ PsatdAlgorithm::pushSpectralFields(SpectralFieldData& f) const{ #endif constexpr Real c2 = PhysConst::c*PhysConst::c; constexpr Real inv_ep0 = 1./PhysConst::ep0; - constexpr Complex I = Complex{0,1}; + const Complex I = Complex{0,1}; const Real C = C_arr(i,j,k); const Real S_ck = S_ck_arr(i,j,k); const Real X1 = X1_arr(i,j,k); @@ -165,3 +167,64 @@ PsatdAlgorithm::pushSpectralFields(SpectralFieldData& f) const{ }); } }; + +void PsatdAlgorithm::InitializeCoefficience(const SpectralKSpace& spectral_kspace, + const amrex::DistributionMapping& dm, + const amrex::Real dt) +{ + const BoxArray& ba = spectral_kspace.spectralspace_ba; + // Fill them with the right values: + // Loop over boxes and allocate the corresponding coefficients + // for each box owned by the local MPI proc + for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi){ + + //const Box& bx = ba[mfi]; + const Box bx = ba[mfi]; + + // Extract pointers for the k vectors + const Real* modified_kx = modified_kx_vec[mfi].dataPtr(); +#if (AMREX_SPACEDIM==3) + const Real* modified_ky = modified_ky_vec[mfi].dataPtr(); +#endif + const Real* modified_kz = modified_kz_vec[mfi].dataPtr(); + // Extract arrays for the coefficients + Array4<Real> C = C_coef[mfi].array(); + Array4<Real> S_ck = S_ck_coef[mfi].array(); + Array4<Real> X1 = X1_coef[mfi].array(); + Array4<Real> X2 = X2_coef[mfi].array(); + Array4<Real> X3 = X3_coef[mfi].array(); + + // Loop over indices within one box + ParallelFor(bx, + [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept + { + // Calculate norm of vector + const Real k_norm = std::sqrt( + std::pow(modified_kx[i], 2) + +#if (AMREX_SPACEDIM==3) + std::pow(modified_ky[j], 2) + + std::pow(modified_kz[k], 2)); +#else + std::pow(modified_kz[j], 2)); +#endif + + + // Calculate coefficients + constexpr Real c = PhysConst::c; + constexpr Real ep0 = PhysConst::ep0; + if (k_norm != 0){ + C(i,j,k) = std::cos(c*k_norm*dt); + S_ck(i,j,k) = std::sin(c*k_norm*dt)/(c*k_norm); + X1(i,j,k) = (1. - C(i,j,k))/(ep0 * c*c * k_norm*k_norm); + X2(i,j,k) = (1. - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); + X3(i,j,k) = (C(i,j,k) - S_ck(i,j,k)/dt)/(ep0 * k_norm*k_norm); + } else { // Handle k_norm = 0, by using the analytical limit + C(i,j,k) = 1.; + S_ck(i,j,k) = dt; + X1(i,j,k) = 0.5 * dt*dt / ep0; + X2(i,j,k) = c*c * dt*dt / (6.*ep0); + X3(i,j,k) = - c*c * dt*dt / (3.*ep0); + } + }); + } +} |