diff options
Diffstat (limited to 'Source/FieldSolver/SpectralSolver/SpectralAlgorithms/GalileanAlgorithm.cpp')
-rw-r--r-- | Source/FieldSolver/SpectralSolver/SpectralAlgorithms/GalileanAlgorithm.cpp | 592 |
1 files changed, 0 insertions, 592 deletions
diff --git a/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/GalileanAlgorithm.cpp b/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/GalileanAlgorithm.cpp deleted file mode 100644 index ea5aa7ec0..000000000 --- a/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/GalileanAlgorithm.cpp +++ /dev/null @@ -1,592 +0,0 @@ -#include "GalileanAlgorithm.H" -#include "Utils/WarpXConst.H" - -#include <cmath> - - -#if WARPX_USE_PSATD - -using namespace amrex; - -/* \brief Initialize coefficients for the update equation */ -GalileanAlgorithm::GalileanAlgorithm(const SpectralKSpace& spectral_kspace, - const DistributionMapping& dm, - const int norder_x, const int norder_y, - const int norder_z, const bool nodal, - const Array<Real, 3>& v_galilean, - const Real dt, - const bool update_with_rho) - // Initialize members of base class - : SpectralBaseAlgorithm(spectral_kspace, dm, norder_x, norder_y, norder_z, nodal), - // Initialize the centered finite-order modified k vectors: these are computed - // always with the assumption of centered grids (argument nodal = true), - // for both nodal and staggered simulations - modified_kx_vec_centered(spectral_kspace.getModifiedKComponent(dm,0,norder_x,true)), -#if (AMREX_SPACEDIM==3) - modified_ky_vec_centered(spectral_kspace.getModifiedKComponent(dm,1,norder_y,true)), - modified_kz_vec_centered(spectral_kspace.getModifiedKComponent(dm,2,norder_z,true)), -#else - modified_kz_vec_centered(spectral_kspace.getModifiedKComponent(dm,1,norder_z,true)), -#endif - m_v_galilean(v_galilean), - m_dt(dt), - m_update_with_rho(update_with_rho) -{ - const BoxArray& ba = spectral_kspace.spectralspace_ba; - - // Allocate the arrays of coefficients - C_coef = SpectralRealCoefficients(ba, dm, 1, 0); - S_ck_coef = SpectralRealCoefficients(ba, dm, 1, 0); - X1_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - X2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - X3_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - X4_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - Theta2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); - - InitializeSpectralCoefficients(spectral_kspace, dm, dt); -} - -/* Advance the E and B field in spectral space (stored in `f`) over one time step */ -void -GalileanAlgorithm::pushSpectralFields (SpectralFieldData& f) const -{ - const bool update_with_rho = m_update_with_rho; - - // Loop over boxes - for (MFIter mfi(f.fields); mfi.isValid(); ++mfi){ - - const Box& bx = f.fields[mfi].box(); - - // Extract arrays for the fields to be updated - Array4<Complex> fields = f.fields[mfi].array(); - - // Extract arrays for the coefficients - Array4<const Real> C_arr = C_coef[mfi].array(); - Array4<const Real> S_ck_arr = S_ck_coef[mfi].array(); - Array4<const Complex> X1_arr = X1_coef[mfi].array(); - Array4<const Complex> X2_arr = X2_coef[mfi].array(); - Array4<const Complex> X3_arr = X3_coef[mfi].array(); - Array4<const Complex> X4_arr = X4_coef[mfi].array(); - Array4<const Complex> Theta2_arr = Theta2_coef[mfi].array(); - - // Extract pointers for the k vectors - const Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr(); -#if (AMREX_SPACEDIM==3) - const Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr(); -#endif - const Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr(); - - // Loop over indices within one box - ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept - { - // Record old values of the fields to be updated - using Idx = SpectralFieldIndex; - const Complex Ex_old = fields(i,j,k,Idx::Ex); - const Complex Ey_old = fields(i,j,k,Idx::Ey); - const Complex Ez_old = fields(i,j,k,Idx::Ez); - const Complex Bx_old = fields(i,j,k,Idx::Bx); - const Complex By_old = fields(i,j,k,Idx::By); - const Complex Bz_old = fields(i,j,k,Idx::Bz); - - // Shortcuts for the values of J and rho - const Complex Jx = fields(i,j,k,Idx::Jx); - const Complex Jy = fields(i,j,k,Idx::Jy); - const Complex Jz = fields(i,j,k,Idx::Jz); - const Complex rho_old = fields(i,j,k,Idx::rho_old); - const Complex rho_new = fields(i,j,k,Idx::rho_new); - - // k vector values - const Real kx = modified_kx_arr[i]; -#if (AMREX_SPACEDIM==3) - const Real ky = modified_ky_arr[j]; - const Real kz = modified_kz_arr[k]; -#else - constexpr Real ky = 0._rt; - const Real kz = modified_kz_arr[j]; -#endif - // Physical constant c**2 and imaginary unit - constexpr Real c2 = PhysConst::c*PhysConst::c; - constexpr Complex I = Complex{0._rt,1._rt}; - - // The definition of these coefficients is explained in more detail - // in the function InitializeSpectralCoefficients below - const Real C = C_arr(i,j,k); - const Real S_ck = S_ck_arr(i,j,k); - const Complex X1 = X1_arr(i,j,k); - const Complex X2 = X2_arr(i,j,k); - const Complex X3 = X3_arr(i,j,k); - const Complex X4 = X4_arr(i,j,k); - const Complex T2 = Theta2_arr(i,j,k); - - // The equations in the following are the update equations for B and E, - // equations (11a) and (11b) of (Lehe et al, PRE 94, 2016), respectively, - // (or their rho-free formulation) - - // Update E (equation (11b) or its rho-free formulation): - if (update_with_rho) { - - // Ex - fields(i,j,k,Idx::Ex) = T2*C*Ex_old - + T2*S_ck*c2*I*(ky*Bz_old - kz*By_old) - + X4*Jx - I*(X2*rho_new - T2*X3*rho_old)*kx; - // Ey - fields(i,j,k,Idx::Ey) = T2*C*Ey_old - + T2*S_ck*c2*I*(kz*Bx_old - kx*Bz_old) - + X4*Jy - I*(X2*rho_new - T2*X3*rho_old)*ky; - // Ez - fields(i,j,k,Idx::Ez) = T2*C*Ez_old - + T2*S_ck*c2*I*(kx*By_old - ky*Bx_old) - + X4*Jz - I*(X2*rho_new - T2*X3*rho_old)*kz; - } else { - - Complex k_dot_J = kx * Jx + ky * Jy + kz * Jz; - Complex k_dot_E = kx * Ex_old + ky * Ey_old + kz * Ez_old; - - // Ex - fields(i,j,k,Idx::Ex) = T2 * C * Ex_old + I * T2 * S_ck * c2 * (ky * Bz_old - kz * By_old) - + X4 * Jx + X2 * k_dot_E * kx + X3 * k_dot_J * kx; - // Ey - fields(i,j,k,Idx::Ey) = T2 * C * Ey_old + I * T2 * S_ck * c2 * (kz * Bx_old - kx * Bz_old) - + X4 * Jy + X2 * k_dot_E * ky + X3 * k_dot_J * ky; - // Ez - fields(i,j,k,Idx::Ez) = T2 * C * Ez_old + I * T2 * S_ck * c2 * (kx * By_old - ky * Bx_old) - + X4 * Jz + X2 * k_dot_E * kz + X3 * k_dot_J * kz; - } - - // Update B (equation (11a) with X1 rescaled by theta/(epsilon_0*c**2*k**2)): - // Bx - fields(i,j,k,Idx::Bx) = T2*C*Bx_old - T2*S_ck*I*(ky*Ez_old - kz*Ey_old) + X1*I*(ky*Jz - kz*Jy); - // By - fields(i,j,k,Idx::By) = T2*C*By_old - T2*S_ck*I*(kz*Ex_old - kx*Ez_old) + X1*I*(kz*Jx - kx*Jz); - // Bz - fields(i,j,k,Idx::Bz) = T2*C*Bz_old - T2*S_ck*I*(kx*Ey_old - ky*Ex_old) + X1*I*(kx*Jy - ky*Jx); - }); - } -} - -void GalileanAlgorithm::InitializeSpectralCoefficients (const SpectralKSpace& spectral_kspace, - const amrex::DistributionMapping& dm, - const amrex::Real dt) -{ - const bool update_with_rho = m_update_with_rho; - - const BoxArray& ba = spectral_kspace.spectralspace_ba; - - // Loop over boxes and allocate the corresponding coefficients for each box - for (MFIter mfi(ba, dm); mfi.isValid(); ++mfi) { - - const Box& bx = ba[mfi]; - - // Extract pointers for the k vectors - const Real* kx = modified_kx_vec[mfi].dataPtr(); - const Real* kx_c = modified_kx_vec_centered[mfi].dataPtr(); -#if (AMREX_SPACEDIM==3) - const Real* ky = modified_ky_vec[mfi].dataPtr(); - const Real* ky_c = modified_ky_vec_centered[mfi].dataPtr(); -#endif - const Real* kz = modified_kz_vec[mfi].dataPtr(); - const Real* kz_c = modified_kz_vec_centered[mfi].dataPtr(); - - // Extract arrays for the coefficients - Array4<Real> C = C_coef[mfi].array(); - Array4<Real> S_ck = S_ck_coef[mfi].array(); - Array4<Complex> X1 = X1_coef[mfi].array(); - Array4<Complex> X2 = X2_coef[mfi].array(); - Array4<Complex> X3 = X3_coef[mfi].array(); - Array4<Complex> X4 = X4_coef[mfi].array(); - Array4<Complex> T2 = Theta2_coef[mfi].array(); - - // Extract Galilean velocity - Real vx = m_v_galilean[0]; -#if (AMREX_SPACEDIM==3) - Real vy = m_v_galilean[1]; -#endif - Real vz = m_v_galilean[2]; - - // Loop over indices within one box - ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept - { - // Calculate norm of vector - const Real knorm = std::sqrt( - std::pow(kx[i], 2) + -#if (AMREX_SPACEDIM==3) - std::pow(ky[j], 2) + - std::pow(kz[k], 2)); -#else - std::pow(kz[j], 2)); -#endif - // Calculate norm of vector - const Real knorm_c = std::sqrt( - std::pow(kx_c[i], 2) + -#if (AMREX_SPACEDIM==3) - std::pow(ky_c[j], 2) + - std::pow(kz_c[k], 2)); -#else - std::pow(kz_c[j], 2)); -#endif - // Physical constants c, c**2, and epsilon_0, and imaginary unit - constexpr Real c = PhysConst::c; - constexpr Real c2 = c*c; - constexpr Real ep0 = PhysConst::ep0; - constexpr Complex I = Complex{0._rt,1._rt}; - - // Auxiliary coefficients used when update_with_rho=false - const Real dt2 = dt * dt; - const Real dt3 = dt * dt2; - Complex X2_old, X3_old; - - // Calculate dot product of k vector with Galilean velocity: - // this has to be computed always with the centered finite-order modified k - // vectors, in order to work correctly for both nodal and staggered simulations - const Real kv = kx_c[i]*vx + -#if (AMREX_SPACEDIM==3) - ky_c[j]*vy + kz_c[k]*vz; -#else - kz_c[j]*vz; -#endif - // The coefficients in the following refer to the ones given in equations - // (12a)-(12d) of (Lehe et al, PRE 94, 2016), used to update B and E - // (equations (11a) and (11b) of the same reference, respectively) - - if (knorm != 0. && knorm_c != 0.) { - - // Auxiliary coefficients - const Real om = c * knorm; - const Real om2 = om * om; - const Real om3 = om * om2; - const Real om_c = c * knorm_c; - const Real om2_c = om_c * om_c; - const Real om3_c = om_c * om2_c; - const Complex tmp1 = amrex::exp( I * om * dt); - const Complex tmp2 = amrex::exp(- I * om * dt); - - // See equation (12a) - C (i,j,k) = std::cos(om * dt); - S_ck(i,j,k) = std::sin(om * dt) / om; - - // See equation (12b) - const Real nu = kv / om_c; - const Complex theta = amrex::exp( I * nu * om_c * dt * 0.5_rt); - const Complex theta_star = amrex::exp(- I * nu * om_c * dt * 0.5_rt); - - // This is exp(i*(k \dot v_gal)*dt) - T2(i,j,k) = theta * theta; - - if ( (nu != om/om_c) && (nu != -om/om_c) && (nu != 0.) ) { - - // x1 is the coefficient chi_1 in equation (12c) - Complex x1 = om2_c / (om2 - nu * nu * om2_c) - * (theta_star - theta * C(i,j,k) + I * nu * om_c * theta * S_ck(i,j,k)); - - // X1 multiplies i*(k \times J) in the update equation for B - X1(i,j,k) = theta * x1 / (ep0 * om2_c); - - if (update_with_rho) { - // X2 multiplies rho_new in the update equation for E - // X3 multiplies rho_old in the update equation for E - X2(i,j,k) = c2 * (x1 * om2 - theta * (1._rt - C(i,j,k)) * om2_c) - / (theta_star - theta) / (ep0 * om2_c * om2); - X3(i,j,k) = c2 * (x1 * om2 - theta_star * (1._rt - C(i,j,k)) * om2_c) - / (theta_star - theta) / (ep0 * om2_c * om2); - } else { - // X2_old is the coefficient chi_2 in equation (12d) - // X3_old is the coefficient chi_3 in equation (12d) - // X2 multiplies (k \dot E) in the update equation for E - // X3 multiplies (k \dot J) in the update equation for E - X2_old = (x1 * om2 - theta * (1._rt - C(i,j,k)) * om2_c) - / (theta_star - theta); - X3_old = (x1 * om2 - theta_star * (1._rt - C(i,j,k)) * om2_c) - / (theta_star - theta); - X2(i,j,k) = c2 * T2(i,j,k) * (X2_old - X3_old) - / (om2_c * om2); - X3(i,j,k) = I * c2 * X2_old * (T2(i,j,k) - 1._rt) - / (ep0 * nu * om3_c * om2); - } - - // X4 multiplies J in the update equation for E - X4(i,j,k) = I * nu * om_c * X1(i,j,k) - T2(i,j,k) * S_ck(i,j,k) / ep0; - } - - // Limits for nu = 0 - if (nu == 0.) { - - // X1 multiplies i*(k \times J) in the update equation for B - X1(i,j,k) = (1._rt - C(i,j,k)) / (ep0 * om2); - - if (update_with_rho) { - // X2 multiplies rho_new in the update equation for E - // X3 multiplies rho_old in the update equation for E - X2(i,j,k) = c2 * (1._rt - S_ck(i,j,k) / dt) / (ep0 * om2); - X3(i,j,k) = c2 * (C(i,j,k) - S_ck(i,j,k) / dt) / (ep0 * om2); - } else { - // X2 multiplies (k \dot E) in the update equation for E - // X3 multiplies (k \dot J) in the update equation for E - X2(i,j,k) = c2 * (1._rt - C(i,j,k)) / om2; - X3(i,j,k) = c2 * (S_ck(i,j,k) / dt - 1._rt) * dt / (ep0 * om2); - } - - // Coefficient multiplying J in update equation for E - X4(i,j,k) = - S_ck(i,j,k) / ep0; - } - - // Limits for nu = omega/omega_c - if (nu == om/om_c) { - - // X1 multiplies i*(k \times J) in the update equation for B - X1(i,j,k) = (1._rt - tmp1 * tmp1 + 2._rt * I * om * dt) / (4._rt * ep0 * om2); - - if (update_with_rho) { - // X2 multiplies rho_new in the update equation for E - // X3 multiplies rho_old in the update equation for E - X2(i,j,k) = c2 * (- 3._rt + 4._rt * tmp1 - tmp1 * tmp1 - 2._rt * I * om * dt) - / (4._rt * ep0 * om2 * (tmp1 - 1._rt)); - X3(i,j,k) = c2 * (3._rt - 2._rt * tmp2 - 2._rt * tmp1 + tmp1 * tmp1 - 2._rt * I * om * dt) - / (4._rt * ep0 * om2 * (tmp1 - 1._rt)); - } else { - // X2 multiplies (k \dot E) in the update equation for E - // X3 multiplies (k \dot J) in the update equation for E - X2(i,j,k) = c2 * (1._rt - C(i,j,k)) * tmp1 / om2; - X3(i,j,k) = c2 * (2._rt * om * dt - I * tmp1 * tmp1 + 4._rt * I * tmp1 - 3._rt * I) - / (4._rt * ep0 * om3); - } - - // Coefficient multiplying J in update equation for E - X4(i,j,k) = (- I + I * tmp1 * tmp1 - 2._rt * om * dt) / (4._rt * ep0 * om); - } - - // Limits for nu = -omega/omega_c - if (nu == -om/om_c) { - - // X1 multiplies i*(k \times J) in the update equation for B - X1(i,j,k) = (1._rt - tmp2 * tmp2 - 2._rt * I * om * dt) / (4._rt * ep0 * om2); - - if (update_with_rho) { - // X2 multiplies rho_new in the update equation for E - // X3 multiplies rho_old in the update equation for E - X2(i,j,k) = c2 * (- 4._rt + 3._rt * tmp1 + tmp2 - 2._rt * I * om * dt * tmp1) - / (4._rt * ep0 * om2 * (tmp1 - 1._rt)); - X3(i,j,k) = c2 * (2._rt - tmp2 - 3._rt * tmp1 + 2._rt * tmp1 * tmp1 - 2._rt * I * om * dt * tmp1) - / (4._rt * ep0 * om2 * (tmp1 - 1._rt)); - } else { - // X2 multiplies (k \dot E) in the update equation for E - // X3 multiplies (k \dot J) in the update equation for E - X2(i,j,k) = c2 * (1._rt - C(i,j,k)) * tmp2 / om2; - X3(i,j,k) = c2 * (2._rt * om * dt + I * tmp2 * tmp2 - 4._rt * I * tmp2 + 3._rt * I) - / (4._rt * ep0 * om3); - } - - // Coefficient multiplying J in update equation for E - X4(i,j,k) = (I - I * tmp2 * tmp2 - 2._rt * om * dt) / (4._rt * ep0 * om); - } - } - - // Limits for omega_c = 0 only - else if (knorm != 0. && knorm_c == 0.) { - - const Real om = c * knorm; - const Real om2 = om * om; - - C (i,j,k) = std::cos(om * dt); - S_ck(i,j,k) = std::sin(om * dt) / om; - T2(i,j,k) = 1._rt; - - // X1 multiplies i*(k \times J) in the update equation for B - X1(i,j,k) = (1._rt - C(i,j,k)) / (ep0 * om2); - - if (update_with_rho) { - // X2 multiplies rho_new in the update equation for E - // X3 multiplies rho_old in the update equation for E - X2(i,j,k) = c2 * (1._rt - S_ck(i,j,k) / dt) / (ep0 * om2); - X3(i,j,k) = c2 * (C(i,j,k) - S_ck(i,j,k) / dt) / (ep0 * om2); - } else { - // X2 multiplies (k \dot E) in the update equation for E - // X3 multiplies (k \dot J) in the update equation for E - X2(i,j,k) = c2 * (1._rt - C(i,j,k)) / om2; - X3(i,j,k) = c2 * (S_ck(i,j,k) / dt - 1._rt) * dt / (ep0 * om2); - } - - // Coefficient multiplying J in update equation for E - X4(i,j,k) = - S_ck(i,j,k) / ep0; - - } - - // Limits for omega = 0 only - else if (knorm == 0. && knorm_c != 0.) { - - const Real om_c = c * knorm_c; - const Real om2_c = om_c * om_c; - const Real om3_c = om_c * om2_c; - const Real nu = kv / om_c; - const Complex theta = amrex::exp(I * nu * om_c * dt * 0.5_rt); - - C(i,j,k) = 1._rt; - S_ck(i,j,k) = dt; - T2(i,j,k) = theta * theta; - - // X1 multiplies i*(k \times J) in the update equation for B - X1(i,j,k) = (-1._rt + T2(i,j,k) - I * nu * om_c * dt * T2(i,j,k)) - / (ep0 * nu * nu * om2_c); - - if (update_with_rho) { - // X2 multiplies rho_new in the update equation for E - // X3 multiplies rho_old in the update equation for E - X2(i,j,k) = c2 * (1._rt - T2(i,j,k) + I * nu * om_c * dt * T2(i,j,k) - + 0.5_rt * nu * nu * om2_c * dt * dt * T2(i,j,k)) - / (ep0 * nu * nu * om2_c * (T2(i,j,k) - 1._rt)); - X3(i,j,k) = c2 * (1._rt - T2(i,j,k) + I * nu * om_c * dt * T2(i,j,k) - + 0.5_rt * nu * nu * om2_c * dt * dt) - / (ep0 * nu * nu * om2_c * (T2(i,j,k) - 1._rt)); - } else { - // X2 multiplies (k \dot E) in the update equation for E - // X3 multiplies (k \dot J) in the update equation for E - X2(i,j,k) = c2 * dt * dt * T2(i,j,k) * 0.5_rt; - X3(i,j,k) = c2 * (2._rt * I - 2._rt * nu * om_c * dt * T2(i,j,k) - + I * nu * nu * om2_c * dt * dt * T2(i,j,k)) - / (2._rt * ep0 * nu * nu * nu * om3_c); - } - - // Coefficient multiplying J in update equation for E - X4(i,j,k) = I * (T2(i,j,k) - 1._rt) / (ep0 * nu * om_c); - } - - // Limits for omega = 0 and omega_c = 0 - else if (knorm == 0. && knorm_c == 0.) { - - // Limits of cos(c*k*dt) and sin(c*k*dt)/(c*k) - C(i,j,k) = 1._rt; - S_ck(i,j,k) = dt; - - // X1 multiplies i*(k \times J) in the update equation for B - X1(i,j,k) = dt2 / (2._rt * ep0); - - if (update_with_rho) { - // X2 multiplies rho_new in the update equation for E - // X3 multiplies rho_old in the update equation for E - X2(i,j,k) = c2 * dt2 / (6._rt * ep0); - X3(i,j,k) = - c2 * dt2 / (3._rt * ep0); - } else { - // X2 multiplies (k \dot E) in the update equation for E - // X3 multiplies (k \dot J) in the update equation for E - X2(i,j,k) = c2 * dt2 * 0.5_rt; - X3(i,j,k) = - c2 * dt3 / (6._rt * ep0); - } - - // Coefficient multiplying J in update equation for E - X4(i,j,k) = -dt / ep0; - - // Limit of exp(I*(k \dot v_gal)*dt) - T2(i,j,k) = 1._rt; - } - }); - } -} - -void -GalileanAlgorithm::CurrentCorrection (SpectralFieldData& field_data, - std::array<std::unique_ptr<amrex::MultiFab>,3>& current, - const std::unique_ptr<amrex::MultiFab>& rho) { - // Profiling - BL_PROFILE("GalileanAlgorithm::CurrentCorrection"); - - using Idx = SpectralFieldIndex; - - // Forward Fourier transform of J and rho - field_data.ForwardTransform(*current[0], Idx::Jx, 0); - field_data.ForwardTransform(*current[1], Idx::Jy, 0); - field_data.ForwardTransform(*current[2], Idx::Jz, 0); - field_data.ForwardTransform(*rho, Idx::rho_old, 0); - field_data.ForwardTransform(*rho, Idx::rho_new, 1); - - // Loop over boxes - for (amrex::MFIter mfi(field_data.fields); mfi.isValid(); ++mfi){ - - const amrex::Box& bx = field_data.fields[mfi].box(); - - // Extract arrays for the fields to be updated - amrex::Array4<Complex> fields = field_data.fields[mfi].array(); - - // Extract pointers for the k vectors - const amrex::Real* const modified_kx_arr = modified_kx_vec[mfi].dataPtr(); - const amrex::Real* const modified_kx_arr_c = modified_kx_vec_centered[mfi].dataPtr(); -#if (AMREX_SPACEDIM==3) - const amrex::Real* const modified_ky_arr = modified_ky_vec[mfi].dataPtr(); - const amrex::Real* const modified_ky_arr_c = modified_ky_vec_centered[mfi].dataPtr(); -#endif - const amrex::Real* const modified_kz_arr = modified_kz_vec[mfi].dataPtr(); - const amrex::Real* const modified_kz_arr_c = modified_kz_vec_centered[mfi].dataPtr(); - - // Local copy of member variables before GPU loop - const amrex::Real dt = m_dt; - - // Galilean velocity - const amrex::Real vgx = m_v_galilean[0]; - const amrex::Real vgy = m_v_galilean[1]; - const amrex::Real vgz = m_v_galilean[2]; - - // Loop over indices within one box - ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept - { - // Shortcuts for the values of J and rho - const Complex Jx = fields(i,j,k,Idx::Jx); - const Complex Jy = fields(i,j,k,Idx::Jy); - const Complex Jz = fields(i,j,k,Idx::Jz); - const Complex rho_old = fields(i,j,k,Idx::rho_old); - const Complex rho_new = fields(i,j,k,Idx::rho_new); - - // k vector values, and coefficients - const amrex::Real kx = modified_kx_arr[i]; - const amrex::Real kx_c = modified_kx_arr_c[i]; -#if (AMREX_SPACEDIM==3) - const amrex::Real ky = modified_ky_arr[j]; - const amrex::Real kz = modified_kz_arr[k]; - const amrex::Real ky_c = modified_ky_arr_c[j]; - const amrex::Real kz_c = modified_kz_arr_c[k]; -#else - constexpr amrex::Real ky = 0._rt; - const amrex::Real kz = modified_kz_arr[j]; - constexpr amrex::Real ky_c = 0._rt; - const amrex::Real kz_c = modified_kz_arr_c[j]; -#endif - constexpr Complex I = Complex{0._rt,1._rt}; - - const amrex::Real k_norm = std::sqrt(kx * kx + ky * ky + kz * kz); - - // Correct J - if (k_norm != 0._rt) - { - const Complex k_dot_J = kx * Jx + ky * Jy + kz * Jz; - const amrex::Real k_dot_vg = kx_c * vgx + ky_c * vgy + kz_c * vgz; - - if ( k_dot_vg != 0._rt ) { - - const Complex rho_old_mod = rho_old * amrex::exp(I * k_dot_vg * dt); - const Complex den = 1._rt - amrex::exp(I * k_dot_vg * dt); - - fields(i,j,k,Idx::Jx) = Jx - (k_dot_J - k_dot_vg * (rho_new - rho_old_mod) / den) * kx / (k_norm * k_norm); - fields(i,j,k,Idx::Jy) = Jy - (k_dot_J - k_dot_vg * (rho_new - rho_old_mod) / den) * ky / (k_norm * k_norm); - fields(i,j,k,Idx::Jz) = Jz - (k_dot_J - k_dot_vg * (rho_new - rho_old_mod) / den) * kz / (k_norm * k_norm); - - } else { - - fields(i,j,k,Idx::Jx) = Jx - (k_dot_J - I * (rho_new - rho_old) / dt) * kx / (k_norm * k_norm); - fields(i,j,k,Idx::Jy) = Jy - (k_dot_J - I * (rho_new - rho_old) / dt) * ky / (k_norm * k_norm); - fields(i,j,k,Idx::Jz) = Jz - (k_dot_J - I * (rho_new - rho_old) / dt) * kz / (k_norm * k_norm); - } - } - }); - } - - // Backward Fourier transform of J - field_data.BackwardTransform(*current[0], Idx::Jx, 0); - field_data.BackwardTransform(*current[1], Idx::Jy, 0); - field_data.BackwardTransform(*current[2], Idx::Jz, 0); -} - -void -GalileanAlgorithm::VayDeposition (SpectralFieldData& /*field_data*/, - std::array<std::unique_ptr<amrex::MultiFab>,3>& /*current*/) -{ - amrex::Abort("Vay deposition not implemented for Galilean PSATD"); -} - -#endif // WARPX_USE_PSATD |