diff options
Diffstat (limited to 'Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithmComoving.cpp')
-rw-r--r-- | Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithmComoving.cpp | 526 |
1 files changed, 526 insertions, 0 deletions
diff --git a/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithmComoving.cpp b/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithmComoving.cpp new file mode 100644 index 000000000..b14ded092 --- /dev/null +++ b/Source/FieldSolver/SpectralSolver/SpectralAlgorithms/PsatdAlgorithmComoving.cpp @@ -0,0 +1,526 @@ +#include "PsatdAlgorithmComoving.H" + +#include "Utils/WarpXConst.H" +#include "Utils/WarpX_Complex.H" + +#include <AMReX.H> +#include <AMReX_Array4.H> +#include <AMReX_BLProfiler.H> +#include <AMReX_BaseFab.H> +#include <AMReX_BoxArray.H> +#include <AMReX_GpuComplex.H> +#include <AMReX_GpuLaunch.H> +#include <AMReX_GpuQualifiers.H> +#include <AMReX_MFIter.H> +#include <AMReX_PODVector.H> + +#include <cmath> + +#if WARPX_USE_PSATD + +using namespace amrex; + +PsatdAlgorithmComoving::PsatdAlgorithmComoving (const SpectralKSpace& spectral_kspace, + const DistributionMapping& dm, + const SpectralFieldIndex& spectral_index, + const int norder_x, const int norder_y, + const int norder_z, const bool nodal, + const amrex::IntVect& fill_guards, + const amrex::Vector<amrex::Real>& v_comoving, + const amrex::Real dt, + const bool update_with_rho) + // Members initialization + : SpectralBaseAlgorithm(spectral_kspace, dm, spectral_index, norder_x, norder_y, norder_z, nodal, fill_guards), + m_spectral_index(spectral_index), + // Initialize the infinite-order k vectors (the argument n_order = -1 selects + // the infinite order option, the argument nodal = false is then irrelevant) + kx_vec(spectral_kspace.getModifiedKComponent(dm, 0, -1, false)), +#if defined(WARPX_DIM_3D) + ky_vec(spectral_kspace.getModifiedKComponent(dm, 1, -1, false)), + kz_vec(spectral_kspace.getModifiedKComponent(dm, 2, -1, false)), +#else + kz_vec(spectral_kspace.getModifiedKComponent(dm, 1, -1, false)), +#endif + m_v_comoving(v_comoving), + m_dt(dt) +{ + amrex::ignore_unused(update_with_rho); + + const BoxArray& ba = spectral_kspace.spectralspace_ba; + + // Allocate arrays of real spectral coefficients + C_coef = SpectralRealCoefficients(ba, dm, 1, 0); + S_ck_coef = SpectralRealCoefficients(ba, dm, 1, 0); + + // Allocate arrays of complex spectral coefficients + X1_coef = SpectralComplexCoefficients(ba, dm, 1, 0); + X2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); + X3_coef = SpectralComplexCoefficients(ba, dm, 1, 0); + X4_coef = SpectralComplexCoefficients(ba, dm, 1, 0); + Theta2_coef = SpectralComplexCoefficients(ba, dm, 1, 0); + + // Initialize real and complex spectral coefficients + InitializeSpectralCoefficients(spectral_kspace, dm, dt); +} + +void +PsatdAlgorithmComoving::pushSpectralFields (SpectralFieldData& f) const +{ + const SpectralFieldIndex& Idx = m_spectral_index; + + // Loop over boxes + for (amrex::MFIter mfi(f.fields); mfi.isValid(); ++mfi){ + + const amrex::Box& bx = f.fields[mfi].box(); + + // Extract arrays for the fields to be updated + amrex::Array4<Complex> fields = f.fields[mfi].array(); + + // Extract arrays for the coefficients + amrex::Array4<const amrex::Real> C_arr = C_coef [mfi].array(); + amrex::Array4<const amrex::Real> S_ck_arr = S_ck_coef[mfi].array(); + amrex::Array4<const Complex> X1_arr = X1_coef [mfi].array(); + amrex::Array4<const Complex> X2_arr = X2_coef [mfi].array(); + amrex::Array4<const Complex> X3_arr = X3_coef [mfi].array(); + amrex::Array4<const Complex> X4_arr = X4_coef [mfi].array(); + + // Extract pointers for the k vectors + const amrex::Real* modified_kx_arr = modified_kx_vec[mfi].dataPtr(); +#if defined(WARPX_DIM_3D) + const amrex::Real* modified_ky_arr = modified_ky_vec[mfi].dataPtr(); +#endif + const amrex::Real* modified_kz_arr = modified_kz_vec[mfi].dataPtr(); + + // Loop over indices within one box + amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept + { + // Record old values of the fields to be updated + const Complex Ex_old = fields(i,j,k,Idx.Ex); + const Complex Ey_old = fields(i,j,k,Idx.Ey); + const Complex Ez_old = fields(i,j,k,Idx.Ez); + const Complex Bx_old = fields(i,j,k,Idx.Bx); + const Complex By_old = fields(i,j,k,Idx.By); + const Complex Bz_old = fields(i,j,k,Idx.Bz); + + // Shortcuts for the values of J and rho + const Complex Jx = fields(i,j,k,Idx.Jx); + const Complex Jy = fields(i,j,k,Idx.Jy); + const Complex Jz = fields(i,j,k,Idx.Jz); + const Complex rho_old = fields(i,j,k,Idx.rho_old); + const Complex rho_new = fields(i,j,k,Idx.rho_new); + + // k vector values + const amrex::Real kx_mod = modified_kx_arr[i]; +#if defined(WARPX_DIM_3D) + const amrex::Real ky_mod = modified_ky_arr[j]; + const amrex::Real kz_mod = modified_kz_arr[k]; +#else + constexpr amrex::Real ky_mod = 0._rt; + const amrex::Real kz_mod = modified_kz_arr[j]; +#endif + + // Physical constant c**2 and imaginary unit + constexpr amrex::Real c2 = PhysConst::c*PhysConst::c; + constexpr Complex I = Complex{0._rt,1._rt}; + + // The definition of these coefficients is explained in more detail + // in the function InitializeSpectralCoefficients below + const amrex::Real C = C_arr(i,j,k); + const amrex::Real S_ck = S_ck_arr(i,j,k); + const Complex X1 = X1_arr(i,j,k); + const Complex X2 = X2_arr(i,j,k); + const Complex X3 = X3_arr(i,j,k); + const Complex X4 = X4_arr(i,j,k); + + // Update E + fields(i,j,k,Idx.Ex) = C*Ex_old + S_ck*c2*I*(ky_mod*Bz_old - kz_mod*By_old) + + X4*Jx - I*(X2*rho_new - X3*rho_old)*kx_mod; + + fields(i,j,k,Idx.Ey) = C*Ey_old + S_ck*c2*I*(kz_mod*Bx_old - kx_mod*Bz_old) + + X4*Jy - I*(X2*rho_new - X3*rho_old)*ky_mod; + + fields(i,j,k,Idx.Ez) = C*Ez_old + S_ck*c2*I*(kx_mod*By_old - ky_mod*Bx_old) + + X4*Jz - I*(X2*rho_new - X3*rho_old)*kz_mod; + + // Update B + fields(i,j,k,Idx.Bx) = C*Bx_old - S_ck*I*(ky_mod*Ez_old - kz_mod*Ey_old) + + X1*I*(ky_mod*Jz - kz_mod*Jy); + + fields(i,j,k,Idx.By) = C*By_old - S_ck*I*(kz_mod*Ex_old - kx_mod*Ez_old) + + X1*I*(kz_mod*Jx - kx_mod*Jz); + + fields(i,j,k,Idx.Bz) = C*Bz_old - S_ck*I*(kx_mod*Ey_old - ky_mod*Ex_old) + + X1*I*(kx_mod*Jy - ky_mod*Jx); + }); + } +} + +void PsatdAlgorithmComoving::InitializeSpectralCoefficients (const SpectralKSpace& spectral_kspace, + const amrex::DistributionMapping& dm, + const amrex::Real dt) +{ + const amrex::BoxArray& ba = spectral_kspace.spectralspace_ba; + + // Loop over boxes and allocate the corresponding coefficients for each box + for (amrex::MFIter mfi(ba, dm); mfi.isValid(); ++mfi) { + + const amrex::Box& bx = ba[mfi]; + + // Extract pointers for the k vectors + const amrex::Real* kx_mod = modified_kx_vec[mfi].dataPtr(); + const amrex::Real* kx = kx_vec[mfi].dataPtr(); +#if defined(WARPX_DIM_3D) + const amrex::Real* ky_mod = modified_ky_vec[mfi].dataPtr(); + const amrex::Real* ky = ky_vec[mfi].dataPtr(); +#endif + const amrex::Real* kz_mod = modified_kz_vec[mfi].dataPtr(); + const amrex::Real* kz = kz_vec[mfi].dataPtr(); + + // Extract arrays for the coefficients + amrex::Array4<amrex::Real> C = C_coef [mfi].array(); + amrex::Array4<amrex::Real> S_ck = S_ck_coef [mfi].array(); + amrex::Array4<Complex> X1 = X1_coef [mfi].array(); + amrex::Array4<Complex> X2 = X2_coef [mfi].array(); + amrex::Array4<Complex> X3 = X3_coef [mfi].array(); + amrex::Array4<Complex> X4 = X4_coef [mfi].array(); + amrex::Array4<Complex> T2 = Theta2_coef[mfi].array(); + + // Store comoving velocity + const amrex::Real vx = m_v_comoving[0]; +#if defined(WARPX_DIM_3D) + const amrex::Real vy = m_v_comoving[1]; +#endif + const amrex::Real vz = m_v_comoving[2]; + + // Loop over indices within one box + amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept + { + // Calculate norm of finite-order k vector + const amrex::Real knorm_mod = std::sqrt( + std::pow(kx_mod[i], 2) + +#if defined(WARPX_DIM_3D) + std::pow(ky_mod[j], 2) + + std::pow(kz_mod[k], 2)); +#else + std::pow(kz_mod[j], 2)); +#endif + // Calculate norm of infinite-order k vector + const amrex::Real knorm = std::sqrt( + std::pow(kx[i], 2) + +#if defined(WARPX_DIM_3D) + std::pow(ky[j], 2) + + std::pow(kz[k], 2)); +#else + std::pow(kz[j], 2)); +#endif + // Physical constants c, c**2, and epsilon_0, and imaginary unit + constexpr amrex::Real c = PhysConst::c; + constexpr amrex::Real c2 = c*c; + constexpr amrex::Real ep0 = PhysConst::ep0; + constexpr Complex I = Complex{0._rt, 1._rt}; + + // Auxiliary coefficients used when update_with_rho=false + const amrex::Real dt2 = dt * dt; + + // Calculate dot product of k vector with comoving velocity + const amrex::Real kv = kx[i]*vx + +#if defined(WARPX_DIM_3D) + ky[j]*vy + kz[k]*vz; +#else + kz[j]*vz; +#endif + + if (knorm_mod != 0. && knorm != 0.) { + + // Auxiliary coefficients + const amrex::Real om_mod = c * knorm_mod; + const amrex::Real om2_mod = om_mod * om_mod; + const amrex::Real om = c * knorm; + const amrex::Real om2 = om * om; + const Complex tmp1 = amrex::exp( I * om_mod * dt); + const Complex tmp2 = amrex::exp(- I * om_mod * dt); + const Complex tmp1_sqrt = amrex::exp( I * om_mod * dt * 0.5_rt); + const Complex tmp2_sqrt = amrex::exp(- I * om_mod * dt * 0.5_rt); + + C (i,j,k) = std::cos(om_mod * dt); + S_ck(i,j,k) = std::sin(om_mod * dt) / om_mod; + + const amrex::Real nu = - kv / om; + const Complex theta = amrex::exp( I * nu * om * dt * 0.5_rt); + const Complex theta_star = amrex::exp(- I * nu * om * dt * 0.5_rt); + + T2(i,j,k) = theta * theta; + + if ( (nu != om_mod/om) && (nu != -om_mod/om) && (nu != 0.) ) { + + Complex x1 = om2 / (om2_mod - nu * nu * om2) + * (theta_star - theta * C(i,j,k) + I * nu * om * theta * S_ck(i,j,k)); + + // X1 multiplies i*(k \times J) in the update equation for B + X1(i,j,k) = x1 / (ep0 * om2); + + // X2 multiplies rho_new in the update equation for E + // X3 multiplies rho_old in the update equation for E + X2(i,j,k) = c2 * (x1 * om2_mod - theta * (1._rt - C(i,j,k)) * om2) + / (theta_star - theta) / (ep0 * om2 * om2_mod); + X3(i,j,k) = c2 * (x1 * om2_mod - theta_star * (1._rt - C(i,j,k)) * om2) + / (theta_star - theta) / (ep0 * om2 * om2_mod); + + // X4 multiplies J in the update equation for E + X4(i,j,k) = I * nu * om * X1(i,j,k) - theta * S_ck(i,j,k) / ep0; + } + + // Limits for nu = 0 + if (nu == 0.) { + + // X1 multiplies i*(k \times J) in the update equation for B + X1(i,j,k) = (1._rt - C(i,j,k)) / (ep0 * om2_mod); + + // X2 multiplies rho_new in the update equation for E + // X3 multiplies rho_old in the update equation for E + X2(i,j,k) = c2 * (1._rt - S_ck(i,j,k) / dt) / (ep0 * om2_mod); + X3(i,j,k) = c2 * (C(i,j,k) - S_ck(i,j,k) / dt) / (ep0 * om2_mod); + + // Coefficient multiplying J in update equation for E + X4(i,j,k) = - S_ck(i,j,k) / ep0; + } + + // Limits for nu = omega_mod/omega + if (nu == om_mod/om) { + + // X1 multiplies i*(k \times J) in the update equation for B + X1(i,j,k) = tmp1_sqrt * (1._rt - tmp2 * tmp2 - 2._rt * I * om_mod * dt) / (4._rt * ep0 * om2_mod); + + // X2 multiplies rho_new in the update equation for E + // X3 multiplies rho_old in the update equation for E + X2(i,j,k) = c2 * (- 4._rt + 3._rt * tmp1 + tmp2 - 2._rt * I * om_mod * dt * tmp1) + / (4._rt * ep0 * om2_mod * (tmp1 - 1._rt)); + X3(i,j,k) = c2 * (2._rt - tmp2 - 3._rt * tmp1 + 2._rt * tmp1 * tmp1 - 2._rt * I * om_mod * dt * tmp1) + / (4._rt * ep0 * om2_mod * (tmp1 - 1._rt)); + + // Coefficient multiplying J in update equation for E + X4(i,j,k) = tmp1_sqrt * (I - I * tmp2 * tmp2 - 2._rt * om_mod * dt) / (4._rt * ep0 * om_mod); + } + + // Limits for nu = -omega_mod/omega + if (nu == -om_mod/om) { + + // X1 multiplies i*(k \times J) in the update equation for B + X1(i,j,k) = tmp2_sqrt * (1._rt - tmp1 * tmp1 + 2._rt * I * om_mod * dt) / (4._rt * ep0 * om2_mod); + + // X2 multiplies rho_new in the update equation for E + // X3 multiplies rho_old in the update equation for E + X2(i,j,k) = c2 * (- 3._rt + 4._rt * tmp1 - tmp1 * tmp1 - 2._rt * I * om_mod * dt) + / (4._rt * ep0 * om2_mod * (tmp1 - 1._rt)); + X3(i,j,k) = c2 * (3._rt - 2._rt * tmp2 - 2._rt * tmp1 + tmp1 * tmp1 - 2._rt * I * om_mod * dt) + / (4._rt * ep0 * om2_mod * (tmp1 - 1._rt)); + + // Coefficient multiplying J in update equation for E + X4(i,j,k) = tmp2_sqrt * (- I + I * tmp1 * tmp1 - 2._rt * om_mod * dt) / (4._rt * ep0 * om_mod); + } + } + + // Limits for omega = 0 only + else if (knorm_mod != 0. && knorm == 0.) { + + const amrex::Real om_mod = c * knorm_mod; + const amrex::Real om2_mod = om_mod * om_mod; + + C (i,j,k) = std::cos(om_mod * dt); + S_ck(i,j,k) = std::sin(om_mod * dt) / om_mod; + T2(i,j,k) = 1._rt; + + // X1 multiplies i*(k \times J) in the update equation for B + X1(i,j,k) = (1._rt - C(i,j,k)) / (ep0 * om2_mod); + + // X2 multiplies rho_new in the update equation for E + // X3 multiplies rho_old in the update equation for E + X2(i,j,k) = c2 * (1._rt - S_ck(i,j,k) / dt) / (ep0 * om2_mod); + X3(i,j,k) = c2 * (C(i,j,k) - S_ck(i,j,k) / dt) / (ep0 * om2_mod); + + // Coefficient multiplying J in update equation for E + X4(i,j,k) = - S_ck(i,j,k) / ep0; + + } + + // Limits for omega_mod = 0 only + else if (knorm_mod == 0. && knorm != 0.) { + + const amrex::Real om = c * knorm; + const amrex::Real om2 = om * om; + const amrex::Real nu = - kv / om; + const Complex theta = amrex::exp(I * nu * om * dt * 0.5_rt); + const Complex theta_star = amrex::exp(- I * nu * om * dt * 0.5_rt); + + C(i,j,k) = 1._rt; + S_ck(i,j,k) = dt; + T2(i,j,k) = theta * theta; + + if (nu != 0.) { + // X1 multiplies i*(k \times J) in the update equation for B + X1(i,j,k) = (-theta_star + theta - I * nu * om * dt * theta) + / (ep0 * nu * nu * om2); + + // X2 multiplies rho_new in the update equation for E + // X3 multiplies rho_old in the update equation for E + X2(i,j,k) = c2 * (1._rt - T2(i,j,k) + I * nu * om * dt * T2(i,j,k) + + 0.5_rt * nu * nu * om2 * dt * dt * T2(i,j,k)) + / (ep0 * nu * nu * om2 * (T2(i,j,k) - 1._rt)); + X3(i,j,k) = c2 * (1._rt - T2(i,j,k) + I * nu * om * dt * T2(i,j,k) + + 0.5_rt * nu * nu * om2 * dt * dt) + / (ep0 * nu * nu * om2 * (T2(i,j,k) - 1._rt)); + + // Coefficient multiplying J in update equation for E + X4(i,j,k) = I * (theta - theta_star) / (ep0 * nu * om); + } + + else { + // X1 multiplies i*(k \times J) in the update equation for B + X1(i,j,k) = dt2 / (2._rt * ep0); + + // X2 multiplies rho_new in the update equation for E + // X3 multiplies rho_old in the update equation for E + X2(i,j,k) = c2 * dt2 / (6._rt * ep0); + X3(i,j,k) = - c2 * dt2 / (3._rt * ep0); + + // Coefficient multiplying J in update equation for E + X4(i,j,k) = -dt / ep0; + } + } + + // Limits for omega_mod = 0 and omega = 0 + else if (knorm_mod == 0. && knorm == 0.) { + + C(i,j,k) = 1._rt; + S_ck(i,j,k) = dt; + T2(i,j,k) = 1._rt; + + // X1 multiplies i*(k \times J) in the update equation for B + X1(i,j,k) = dt2 / (2._rt * ep0); + + // X2 multiplies rho_new in the update equation for E + // X3 multiplies rho_old in the update equation for E + X2(i,j,k) = c2 * dt2 / (6._rt * ep0); + X3(i,j,k) = - c2 * dt2 / (3._rt * ep0); + + // Coefficient multiplying J in update equation for E + X4(i,j,k) = -dt / ep0; + } + }); + } +} + +void +PsatdAlgorithmComoving::CurrentCorrection (const int lev, + SpectralFieldData& field_data, + std::array<std::unique_ptr<amrex::MultiFab>,3>& current, + const std::unique_ptr<amrex::MultiFab>& rho) +{ + // Profiling + BL_PROFILE("PsatdAlgorithmComoving::CurrentCorrection"); + + const SpectralFieldIndex& Idx = m_spectral_index; + + // Forward Fourier transform of J and rho + field_data.ForwardTransform(lev, *current[0], Idx.Jx, 0); + field_data.ForwardTransform(lev, *current[1], Idx.Jy, 0); + field_data.ForwardTransform(lev, *current[2], Idx.Jz, 0); + field_data.ForwardTransform(lev, *rho, Idx.rho_old, 0); + field_data.ForwardTransform(lev, *rho, Idx.rho_new, 1); + + const amrex::IntVect& fill_guards = m_fill_guards; + + // Loop over boxes + for (amrex::MFIter mfi(field_data.fields); mfi.isValid(); ++mfi){ + + const amrex::Box& bx = field_data.fields[mfi].box(); + + // Extract arrays for the fields to be updated + amrex::Array4<Complex> fields = field_data.fields[mfi].array(); + + // Extract pointers for the k vectors + const amrex::Real* const modified_kx_arr = modified_kx_vec[mfi].dataPtr(); + const amrex::Real* const kx_arr = kx_vec[mfi].dataPtr(); +#if defined(WARPX_DIM_3D) + const amrex::Real* const modified_ky_arr = modified_ky_vec[mfi].dataPtr(); + const amrex::Real* const ky_arr = ky_vec[mfi].dataPtr(); +#endif + const amrex::Real* const modified_kz_arr = modified_kz_vec[mfi].dataPtr(); + const amrex::Real* const kz_arr = kz_vec[mfi].dataPtr(); + + // Local copy of member variables before GPU loop + const amrex::Real dt = m_dt; + + // Comoving velocity + const amrex::Real vx = m_v_comoving[0]; + const amrex::Real vy = m_v_comoving[1]; + const amrex::Real vz = m_v_comoving[2]; + + // Loop over indices within one box + amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE(int i, int j, int k) noexcept + { + // Shortcuts for the values of J and rho + const Complex Jx = fields(i,j,k,Idx.Jx); + const Complex Jy = fields(i,j,k,Idx.Jy); + const Complex Jz = fields(i,j,k,Idx.Jz); + const Complex rho_old = fields(i,j,k,Idx.rho_old); + const Complex rho_new = fields(i,j,k,Idx.rho_new); + + // k vector values, and coefficients + const amrex::Real kx_mod = modified_kx_arr[i]; + const amrex::Real kx = kx_arr[i]; +#if defined(WARPX_DIM_3D) + const amrex::Real ky_mod = modified_ky_arr[j]; + const amrex::Real kz_mod = modified_kz_arr[k]; + const amrex::Real ky = ky_arr[j]; + const amrex::Real kz = kz_arr[k]; +#else + constexpr amrex::Real ky_mod = 0._rt; + const amrex::Real kz_mod = modified_kz_arr[j]; + constexpr amrex::Real ky = 0._rt; + const amrex::Real kz = kz_arr[j]; +#endif + constexpr Complex I = Complex{0._rt,1._rt}; + + const amrex::Real knorm_mod = std::sqrt(kx_mod * kx_mod + ky_mod * ky_mod + kz_mod * kz_mod); + + // Correct J + if (knorm_mod != 0._rt) + { + const Complex kmod_dot_J = kx_mod * Jx + ky_mod * Jy + kz_mod * Jz; + const amrex::Real k_dot_v = kx * vx + ky * vy + kz * vz; + + if ( k_dot_v != 0._rt ) { + + const Complex theta = amrex::exp(- I * k_dot_v * dt * 0.5_rt); + const Complex den = 1._rt - theta * theta; + + fields(i,j,k,Idx.Jx) = Jx - (kmod_dot_J + k_dot_v * theta * (rho_new - rho_old) / den) * kx_mod / (knorm_mod * knorm_mod); + fields(i,j,k,Idx.Jy) = Jy - (kmod_dot_J + k_dot_v * theta * (rho_new - rho_old) / den) * ky_mod / (knorm_mod * knorm_mod); + fields(i,j,k,Idx.Jz) = Jz - (kmod_dot_J + k_dot_v * theta * (rho_new - rho_old) / den) * kz_mod / (knorm_mod * knorm_mod); + + } else { + + fields(i,j,k,Idx.Jx) = Jx - (kmod_dot_J - I * (rho_new - rho_old) / dt) * kx_mod / (knorm_mod * knorm_mod); + fields(i,j,k,Idx.Jy) = Jy - (kmod_dot_J - I * (rho_new - rho_old) / dt) * ky_mod / (knorm_mod * knorm_mod); + fields(i,j,k,Idx.Jz) = Jz - (kmod_dot_J - I * (rho_new - rho_old) / dt) * kz_mod / (knorm_mod * knorm_mod); + } + } + }); + } + + // Backward Fourier transform of J + field_data.BackwardTransform(lev, *current[0], Idx.Jx, 0, fill_guards); + field_data.BackwardTransform(lev, *current[1], Idx.Jy, 0, fill_guards); + field_data.BackwardTransform(lev, *current[2], Idx.Jz, 0, fill_guards); +} + +void +PsatdAlgorithmComoving::VayDeposition (const int /*lev*/, + SpectralFieldData& /*field_data*/, + std::array<std::unique_ptr<amrex::MultiFab>,3>& /*current*/) +{ + amrex::Abort("Vay deposition not implemented for comoving PSATD"); +} + +#endif // WARPX_USE_PSATD |