diff options
Diffstat (limited to 'Source/FieldSolver/SpectralSolver/SpectralHankelTransform/BesselRoots.cpp')
-rw-r--r-- | Source/FieldSolver/SpectralSolver/SpectralHankelTransform/BesselRoots.cpp | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/Source/FieldSolver/SpectralSolver/SpectralHankelTransform/BesselRoots.cpp b/Source/FieldSolver/SpectralSolver/SpectralHankelTransform/BesselRoots.cpp new file mode 100644 index 000000000..210a4baff --- /dev/null +++ b/Source/FieldSolver/SpectralSolver/SpectralHankelTransform/BesselRoots.cpp @@ -0,0 +1,153 @@ +/* Copyright 2019 David Grote + * + * This file is part of WarpX. + * + * License: BSD-3-Clause-LBNL + */ +/* ------------------------------------------------------------------------- +! program to calculate the first zeroes (root abscissas) of the first +! kind bessel function of integer order n using the subroutine rootj. +! -------------------------------------------------------------------------- +! sample run: +! +! (calculate the first 10 zeroes of 1st kind bessel function of order 2). +! +! zeroes of bessel function of order: 2 +! +! number of calculated zeroes: 10 +! +! table of root abcissas (5 items per line) +! 5.135622 8.417244 11.619841 14.795952 17.959819 + 21.116997 24.270112 27.420574 30.569204 33.716520 +! +! table of error codes (5 items per line) +! 0 0 0 0 0 +! 0 0 0 0 0 +! +! -------------------------------------------------------------------------- +! reference: from numath library by tuan dang trong in fortran 77 +! [bibli 18]. +! +! c++ release 1.0 by j-p moreau, paris +! (www.jpmoreau.fr) +! ------------------------------------------------------------------------ */ + +#include "BesselRoots.H" + +#include "Utils/WarpXConst.H" + +#include <cmath> + +namespace{ + + void SecantRootFinder(int n, int nitmx, amrex::Real tol, amrex::Real *zeroj, int *ier) { + using namespace amrex::literals; + + amrex::Real p0, p1, q0, q1, dp, p; + amrex::Real c[2]; + + c[0] = 0.95_rt; + c[1] = 0.999_rt; + *ier = 0; + + p = *zeroj; + for (int ntry=0 ; ntry <= 1 ; ntry++) { + p0 = c[ntry]*(*zeroj); + + p1 = *zeroj; + q0 = jn(n, p0); + q1 = jn(n, p1); + for (int it=1; it <= nitmx; it++) { + if (q1 == q0) break; + p = p1 - q1*(p1 - p0)/(q1 - q0); + dp = p - p1; + if (it > 1 && std::abs(dp) < tol) { + *zeroj = p; + return; + } + p0 = p1; + q0 = q1; + p1 = p; + q1 = jn(n, p1); + } + } + *ier = 3; + *zeroj = p; + } + +} + +void GetBesselRoots(int n, int nk, amrex::Vector<amrex::Real>& roots, amrex::Vector<int> &ier) { + using namespace amrex::literals; + + amrex::Real zeroj; + int ierror, ik, k; + + const amrex::Real tol = 1e-14_rt; + const amrex::Real nitmx = 10; + + const amrex::Real c1 = 1.8557571_rt; + const amrex::Real c2 = 1.033150_rt; + const amrex::Real c3 = 0.00397_rt; + const amrex::Real c4 = 0.0908_rt; + const amrex::Real c5 = 0.043_rt; + + const amrex::Real t0 = 4.0_rt*n*n; + const amrex::Real t1 = t0 - 1.0_rt; + const amrex::Real t3 = 4.0_rt*t1*(7.0_rt*t0 - 31.0_rt); + const amrex::Real t5 = 32.0_rt*t1*((83.0_rt*t0 - 982.0_rt)*t0 + 3779.0_rt); + const amrex::Real t7 = 64.0_rt*t1*(((6949.0_rt*t0 - 153855.0_rt)*t0 + 1585743.0_rt)*t0 - 6277237.0_rt); + + roots.resize(nk); + ier.resize(nk); + + // first zero + if (n == 0) { + zeroj = c1 + c2 - c3 - c4 + c5; + ::SecantRootFinder(n, nitmx, tol, &zeroj, &ierror); + ier[0] = ierror; + roots[0] = zeroj; + ik = 1; + } + else { + // Include the trivial root + ier[0] = 0; + roots[0] = 0.; + const amrex::Real f1 = std::pow(n, (1.0_rt/3.0_rt)); + const amrex::Real f2 = f1*f1*n; + const amrex::Real f3 = f1*n*n; + zeroj = n + c1*f1 + (c2/f1) - (c3/n) - (c4/f2) + (c5/f3); + ::SecantRootFinder(n, nitmx, tol, &zeroj, &ierror); + ier[1] = ierror; + roots[1] = zeroj; + ik = 2; + } + + // other zeroes + // k counts the nontrivial roots + // ik counts all roots + k = 2; + while (ik < nk) { + + // mac mahon's series for k >> n + const amrex::Real b0 = (k + 0.5_rt*n - 0.25_rt)*MathConst::pi; + const amrex::Real b1 = 8.0_rt*b0; + const amrex::Real b2 = b1*b1; + const amrex::Real b3 = 3.0_rt*b1*b2; + const amrex::Real b5 = 5.0_rt*b3*b2; + const amrex::Real b7 = 7.0_rt*b5*b2; + + zeroj = b0 - (t1/b1) - (t3/b3) - (t5/b5) - (t7/b7); + + const amrex::Real errj = std::abs(jn(n, zeroj)); + + // improve solution using procedure SecantRootFinder + if (errj > tol) ::SecantRootFinder(n, nitmx, tol, &zeroj, &ierror); + + roots[ik] = zeroj; + ier[ik] = ierror; + + k++; + ik++; + } +} |