diff options
Diffstat (limited to 'Source/Particles/Collision/BinaryCollision/Coulomb/ElasticCollisionPerez.H')
-rw-r--r-- | Source/Particles/Collision/BinaryCollision/Coulomb/ElasticCollisionPerez.H | 157 |
1 files changed, 157 insertions, 0 deletions
diff --git a/Source/Particles/Collision/BinaryCollision/Coulomb/ElasticCollisionPerez.H b/Source/Particles/Collision/BinaryCollision/Coulomb/ElasticCollisionPerez.H new file mode 100644 index 000000000..5e94a0f93 --- /dev/null +++ b/Source/Particles/Collision/BinaryCollision/Coulomb/ElasticCollisionPerez.H @@ -0,0 +1,157 @@ +/* Copyright 2019 Yinjian Zhao + * + * This file is part of WarpX. + * + * License: BSD-3-Clause-LBNL + */ +#ifndef WARPX_PARTICLES_COLLISION_ELASTIC_COLLISION_PEREZ_H_ +#define WARPX_PARTICLES_COLLISION_ELASTIC_COLLISION_PEREZ_H_ + +#include "ComputeTemperature.H" +#include "UpdateMomentumPerezElastic.H" +#include "Particles/WarpXParticleContainer.H" +#include "Utils/WarpXConst.H" + +#include <AMReX_Random.H> + + +/** Prepare information for and call UpdateMomentumPerezElastic(). + * + * @tparam T_index type of index arguments + * @tparam T_R type of floating point arguments + * @tparam SoaData_type type of the "struct of array" for the two involved species + * @param[in] I1s,I2s is the start index for I1,I2 (inclusive). + * @param[in] I1e,I2e is the stop index for I1,I2 (exclusive). + * @param[in] I1,I2 the index arrays. They determine all elements that will be used. + * @param[in,out] soa_1,soa_2 the struct of array for species 1/2 + * @param[in] q1,q2 charge of species 1/2 + * @param[in] m1,m2 mass of species 1/2 + * @param[in] T1 temperature (Joule) of species 1 + * and will be used if greater than zero, + * otherwise will be computed. + * @param[in] T2 temperature (Joule) of species 2, @see T1 + * @param[in] dt is the time step length between two collision calls. + * @param[in] L is the Coulomb log and will be used if greater than zero, + * otherwise will be computed. + * @param[in] dV is the volume of the corresponding cell. + * @param[in] engine the random number generator state & factory +*/ + +template <typename T_index, typename T_R, typename SoaData_type> +AMREX_GPU_HOST_DEVICE AMREX_INLINE +void ElasticCollisionPerez ( + T_index const I1s, T_index const I1e, + T_index const I2s, T_index const I2e, + T_index *I1, T_index *I2, + SoaData_type soa_1, SoaData_type soa_2, + T_R const q1, T_R const q2, + T_R const m1, T_R const m2, + T_R const T1, T_R const T2, + T_R const dt, T_R const L, T_R const dV, + amrex::RandomEngine const& engine) +{ + int NI1 = I1e - I1s; + int NI2 = I2e - I2s; + + T_R * const AMREX_RESTRICT w1 = soa_1.m_rdata[PIdx::w]; + T_R * const AMREX_RESTRICT u1x = soa_1.m_rdata[PIdx::ux]; + T_R * const AMREX_RESTRICT u1y = soa_1.m_rdata[PIdx::uy]; + T_R * const AMREX_RESTRICT u1z = soa_1.m_rdata[PIdx::uz]; + + T_R * const AMREX_RESTRICT w2 = soa_2.m_rdata[PIdx::w]; + T_R * const AMREX_RESTRICT u2x = soa_2.m_rdata[PIdx::ux]; + T_R * const AMREX_RESTRICT u2y = soa_2.m_rdata[PIdx::uy]; + T_R * const AMREX_RESTRICT u2z = soa_2.m_rdata[PIdx::uz]; + + // get local T1t and T2t + T_R T1t; T_R T2t; + if ( T1 <= T_R(0.0) && L <= T_R(0.0) ) + { + T1t = ComputeTemperature(I1s,I1e,I1,u1x,u1y,u1z,m1); + } + else { T1t = T1; } + if ( T2 <= T_R(0.0) && L <= T_R(0.0) ) + { + T2t = ComputeTemperature(I2s,I2e,I2,u2x,u2y,u2z,m2); + } + else { T2t = T2; } + + // local density + T_R n1 = T_R(0.0); + T_R n2 = T_R(0.0); + T_R n12 = T_R(0.0); + for (int i1=I1s; i1<static_cast<int>(I1e); ++i1) { n1 += w1[ I1[i1] ]; } + for (int i2=I2s; i2<static_cast<int>(I2e); ++i2) { n2 += w2[ I2[i2] ]; } + n1 = n1 / dV; n2 = n2 / dV; + { + int i1 = I1s; int i2 = I2s; + for (int k = 0; k < amrex::max(NI1,NI2); ++k) + { + n12 += amrex::min( w1[ I1[i1] ], w2[ I2[i2] ] ); + ++i1; if ( i1 == static_cast<int>(I1e) ) { i1 = I1s; } + ++i2; if ( i2 == static_cast<int>(I2e) ) { i2 = I2s; } + } + n12 = n12 / dV; + } + + // compute Debye length lmdD + T_R lmdD; + if ( T1t < T_R(0.0) || T2t < T_R(0.0) ) { + lmdD = T_R(0.0); + } + else { + lmdD = T_R(1.0)/std::sqrt( n1*q1*q1/(T1t*PhysConst::ep0) + + n2*q2*q2/(T2t*PhysConst::ep0) ); + } + T_R rmin = std::pow( T_R(4.0) * MathConst::pi / T_R(3.0) * + amrex::max(n1,n2), T_R(-1.0/3.0) ); + lmdD = amrex::max(lmdD, rmin); + +#if (defined WARPX_DIM_RZ) + T_R * const AMREX_RESTRICT theta1 = soa_1.m_rdata[PIdx::theta]; + T_R * const AMREX_RESTRICT theta2 = soa_2.m_rdata[PIdx::theta]; +#endif + + // call UpdateMomentumPerezElastic() + { + int i1 = I1s; int i2 = I2s; + for (int k = 0; k < amrex::max(NI1,NI2); ++k) + { + +#if (defined WARPX_DIM_RZ) + /* In RZ geometry, macroparticles can collide with other macroparticles + * in the same *cylindrical* cell. For this reason, collisions between macroparticles + * are actually not local in space. In this case, the underlying assumption is that + * particles within the same cylindrical cell represent a cylindrically-symmetry + * momentum distribution function. Therefore, here, we temporarily rotate the + * momentum of one of the macroparticles in agreement with this cylindrical symmetry. + * (This is technically only valid if we use only the m=0 azimuthal mode in the simulation; + * there is a corresponding assert statement at initialization.) */ + T_R const theta = theta2[I2[i2]]-theta1[I1[i1]]; + T_R const u1xbuf = u1x[I1[i1]]; + u1x[I1[i1]] = u1xbuf*std::cos(theta) - u1y[I1[i1]]*std::sin(theta); + u1y[I1[i1]] = u1xbuf*std::sin(theta) + u1y[I1[i1]]*std::cos(theta); +#endif + + UpdateMomentumPerezElastic( + u1x[ I1[i1] ], u1y[ I1[i1] ], u1z[ I1[i1] ], + u2x[ I2[i2] ], u2y[ I2[i2] ], u2z[ I2[i2] ], + n1, n2, n12, + q1, m1, w1[ I1[i1] ], q2, m2, w2[ I2[i2] ], + dt, L, lmdD, + engine); + +#if (defined WARPX_DIM_RZ) + T_R const u1xbuf_new = u1x[I1[i1]]; + u1x[I1[i1]] = u1xbuf_new*std::cos(-theta) - u1y[I1[i1]]*std::sin(-theta); + u1y[I1[i1]] = u1xbuf_new*std::sin(-theta) + u1y[I1[i1]]*std::cos(-theta); +#endif + + ++i1; if ( i1 == static_cast<int>(I1e) ) { i1 = I1s; } + ++i2; if ( i2 == static_cast<int>(I2e) ) { i2 = I2s; } + } + } + +} + +#endif // WARPX_PARTICLES_COLLISION_ELASTIC_COLLISION_PEREZ_H_ |