1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
Introduction
============
.. figure:: Plasma_acceleration_sim.png
:alt: [fig:Plasma_acceleration_sim] Plasma laser-driven (top) and charged-particles-driven (bottom) acceleration (rendering from 3-D Particle-In-Cell simulations). A laser beam (red and blue disks in top picture) or a charged particle beam (red dots in bottom picture) propagating (from left to right) through an under-dense plasma (not represented) displaces electrons, creating a plasma wakefield that supports very high electric fields (pale blue and yellow). These electric fields, which can be orders of magnitude larger than with conventional techniques, can be used to accelerate a short charged particle beam (white) to high-energy over a very short distance.
[fig:Plasma_acceleration_sim] Plasma laser-driven (top) and charged-particles-driven (bottom) acceleration (rendering from 3-D Particle-In-Cell simulations). A laser beam (red and blue disks in top picture) or a charged particle beam (red dots in bottom picture) propagating (from left to right) through an under-dense plasma (not represented) displaces electrons, creating a plasma wakefield that supports very high electric fields (pale blue and yellow). These electric fields, which can be orders of magnitude larger than with conventional techniques, can be used to accelerate a short charged particle beam (white) to high-energy over a very short distance.
Computer simulations have had a profound impact on the design and understanding of past and present plasma acceleration experiments (Tsung et al. 2006; Geddes et al. 2008; C. Geddes et al. 2009; Huang et al. 2009), with
accurate modeling of wake formation, electron self-trapping and acceleration requiring fully kinetic methods (usually Particle-In-Cell) using large computational resources due to the wide range of space and time scales involved. Numerical modeling complements and guides the design and analysis of advanced accelerators, and can reduce development costs significantly. Despite the major recent experimental successes(Leemans et al. 2014; Blumenfeld et al. 2007; Bulanov S V and Wilkens J J and Esirkepov T Zh and Korn G and Kraft G and Kraft S D and Molls M and Khoroshkov V S 2014; Steinke et al. 2016), the various advanced acceleration concepts need significant progress to fulfill their potential. To this end, large-scale simulations will continue to be a key component toward reaching a detailed understanding of the complex interrelated physics phenomena at play.
For such simulations,
the most popular algorithm is the Particle-In-Cell (or PIC) technique,
which represents electromagnetic fields on a grid and particles by
a sample of macroparticles.
However, these simulations are extremely computationally intensive, due to the need to resolve the evolution of a driver (laser or particle beam) and an accelerated beam into a structure that is orders of magnitude longer and wider than the accelerated beam.
Various techniques or reduced models have been developed to allow multidimensional simulations at manageable computational costs: quasistatic approximation (Sprangle, Esarey, and Ting 1990; Antonsen and Mora 1992; Krall et al. 1993; Mora and Antonsen 1997; Huang et al. 2006),
ponderomotive guiding center (PGC) models (Antonsen and Mora 1992; Krall et al. 1993; Huang et al. 2006; Benedetti et al. 2010; Cowan et al. 2011), simulation in an optimal Lorentz boosted frame (Vay 2007; Bruhwiler et al. 2009; Vay et al. 2009, 2010; Vay et al. 2009; Martins et al. 2009; Martins, Fonseca, Lu, et al. 2010; Martins, Fonseca, Vieira, et al. 2010; S. F. Martins et al. 2010; J L Vay et al. 2011; J. Vay et al. 2011; J -L. Vay et al. 2011; Yu et al. 2016),
expanding the fields into a truncated series of azimuthal modes
(Godfrey 1985; Lifschitz et al. 2009; Davidson et al. 2015; Lehe et al. 2016; Andriyash, Lehe, and Lifschitz 2016), fluid approximation (Krall et al. 1993; Shadwick, Schroeder, and Esarey 2009; Benedetti et al. 2010) and scaled parameters (Cormier-Michel et al. 2009; C. G. R. Geddes et al. 2009).
.. container:: references
:name: refs
.. container::
:name: ref-AndriyashPoP2016
Andriyash, Igor A., Remi Lehe, and Agustin Lifschitz. 2016. “Laser-Plasma Interactions with a Fourier-Bessel Particle-in-Cell Method.” *Physics of Plasmas* 23 (3). https://doi.org/http://dx.doi.org/10.1063/1.4943281.
.. container::
:name: ref-Antonsenprl1992
Antonsen, T M, and P Mora. 1992. “Self-Focusing and Raman-Scattering of Laser-Pulses in Tenuous Plasmas.” *Physical Review Letters* 69 (15): 2204–7. https://doi.org/10.1103/Physrevlett.69.2204.
.. container::
:name: ref-Benedettiaac2010
Benedetti, C, C B Schroeder, E Esarey, C G R Geddes, and W P Leemans. 2010. “Efficient Modeling of Laser-Plasma Accelerators with Inf&Rno.” *Aip Conference Proceedings* 1299: 250–55. https://doi.org/10.1063/1.3520323.
.. container::
:name: ref-Blumenfeld2007
Blumenfeld, Ian, Christopher E Clayton, Franz-Josef Decker, Mark J Hogan, Chengkun Huang, Rasmus Ischebeck, Richard Iverson, et al. 2007. “Energy doubling of 42[thinsp]GeV electrons in a metre-scale plasma wakefield accelerator.” *Nature* 445 (7129): 741–44. http://dx.doi.org/10.1038/nature05538.
.. container::
:name: ref-Bruhwileraac08
Bruhwiler, D L, J R Cary, B M Cowan, K Paul, C G R Geddes, P J Mullowney, P Messmer, et al. 2009. “New Developments in the Simulation of Advanced Accelerator Concepts.” In *Aip Conference Proceedings*, 1086:29–37.
.. container::
:name: ref-BulanovSV2014
Bulanov S V and Wilkens J J and Esirkepov T Zh and Korn G and Kraft G and Kraft S D and Molls M and Khoroshkov V S. 2014. “Laser ion acceleration for hadron therapy.” *Physics-Uspekhi* 57 (12): 1149. http://stacks.iop.org/1063-7869/57/i=12/a=1149.
.. container::
:name: ref-Cormieraac08
Cormier-Michel, E, C G R Geddes, E Esarey, C B Schroeder, D L Bruhwiler, K Paul, B Cowan, and W P Leemans. 2009. “Scaled Simulations of A 10 Gev Accelerator.” In *Aip Conference Proceedings*, 1086:297–302.
.. container::
:name: ref-Cowanjcp11
Cowan, Benjamin M, David L Bruhwiler, Estelle Cormier-Michel, Eric Esarey, Cameron G R Geddes, Peter Messmer, and Kevin M Paul. 2011. “Characteristics of an Envelope Model for Laser-Plasma Accelerator Simulation.” *Journal of Computational Physics* 230 (1): 61–86. https://doi.org/Doi:%2010.1016/J.Jcp.2010.09.009.
.. container::
:name: ref-DavidsonJCP2015
Davidson, A., A. Tableman, W. An, F. S. Tsung, W. Lu, J. Vieira, R. A. Fonseca, L. O. Silva, and W. B. Mori. 2015. “Implementation of a hybrid particle code with a PIC description in r–z and a gridless description in ϕ into OSIRIS.” *Journal of Computational Physics* 281: 1063–77. https://doi.org/10.1016/j.jcp.2014.10.064.
.. container::
:name: ref-Geddesjp08
Geddes, C G R, D L Bruhwiler, J R Cary, W B Mori, J.-L. Vay, S F Martins, T Katsouleas, et al. 2008. “Computational Studies and Optimization of Wakefield Accelerators.” In *Journal of Physics: Conference Series*, 125:012002 (11 Pp.).
.. container::
:name: ref-Geddesscidac09
Geddes et al., Cgr. 2009. “Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources.” In *Scidac Review 13*, 13.
.. container::
:name: ref-Geddespac09
Geddes et al., C G R. 2009. “Scaled Simulation Design of High Quality Laser Wakefield Accelerator Stages.” In *Proc. Particle Accelerator Conference*. Vancouver, Canada.
.. container::
:name: ref-godfrey1985iprop
Godfrey, B. B. 1985. *The Iprop Three-Dimensional Beam Propagation Code*. Defense Technical Information Center. `https://books.google.com/books?id=hos\_OAAACAAJ <https://books.google.com/books?id=hos\_OAAACAAJ>`__.
.. container::
:name: ref-Huangscidac09
Huang, C, W An, V K Decyk, W Lu, W B Mori, F S Tsung, M Tzoufras, et al. 2009. “Recent Results and Future Challenges for Large Scale Particle-in-Cell Simulations of Plasma-Based Accelerator Concepts.” *Journal of Physics: Conference Series* 180 (1): 012005 (11 Pp.).
.. container::
:name: ref-Quickpic
Huang, C, V K Decyk, C Ren, M Zhou, W Lu, W B Mori, J H Cooley, T M Antonsen Jr., and T Katsouleas. 2006. “Quickpic: A Highly Efficient Particle-in-Cell Code for Modeling Wakefield Acceleration in Plasmas.” *Journal of Computational Physics* 217 (2): 658–79. https://doi.org/10.1016/J.Jcp.2006.01.039.
.. container::
:name: ref-Krallpre1993
Krall, J, A Ting, E Esarey, and P Sprangle. 1993. “Enhanced Acceleration in A Self-Modulated-Laser Wake-Field Accelerator.” *Physical Review E* 48 (3): 2157–61. https://doi.org/10.1103/Physreve.48.2157.
.. container::
:name: ref-LeemansPRL2014
Leemans, W P, A J Gonsalves, H.-S. Mao, K Nakamura, C Benedetti, C B Schroeder, Cs. Tóth, et al. 2014. “Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime.” *Phys. Rev. Lett.* 113 (24): 245002. https://doi.org/10.1103/PhysRevLett.113.245002.
.. container::
:name: ref-Lehe2016
Lehe, Rémi, Manuel Kirchen, Igor A. Andriyash, Brendan B. Godfrey, and Jean-Luc Vay. 2016. “A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm.” *Computer Physics Communications* 203: 66–82. https://doi.org/10.1016/j.cpc.2016.02.007.
.. container::
:name: ref-LifschitzJCP2009
Lifschitz, A F, X Davoine, E Lefebvre, J Faure, C Rechatin, and V Malka. 2009. “Particle-in-Cell modelling of laser{â}plasma interaction using Fourier decomposition.” *Journal of Computational Physics* 228 (5): 1803–14. https://doi.org/http://dx.doi.org/10.1016/j.jcp.2008.11.017.
.. container::
:name: ref-Martinscpc10
Martins, Samuel F, Ricardo A Fonseca, Luis O Silva, Wei Lu, and Warren B Mori. 2010. “Numerical Simulations of Laser Wakefield Accelerators in Optimal Lorentz Frames.” *Computer Physics Communications* 181 (5): 869–75. https://doi.org/10.1016/J.Cpc.2009.12.023.
.. container::
:name: ref-Martinsnaturephysics10
Martins, S F, R A Fonseca, W Lu, W B Mori, and L O Silva. 2010. “Exploring Laser-Wakefield-Accelerator Regimes for Near-Term Lasers Using Particle-in-Cell Simulation in Lorentz-Boosted Frames.” *Nature Physics* 6 (4): 311–16. https://doi.org/10.1038/Nphys1538.
.. container::
:name: ref-Martinspop10
Martins, S F, R A Fonseca, J Vieira, L O Silva, W Lu, and W B Mori. 2010. “Modeling Laser Wakefield Accelerator Experiments with Ultrafast Particle-in-Cell Simulations in Boosted Frames.” *Physics of Plasmas* 17 (5): 56705. https://doi.org/10.1063/1.3358139.
.. container::
:name: ref-Martinspac09
Martins et al., S F. 2009. “Boosted Frame Pic Simulations of Lwfa: Towards the Energy Frontier.” In *Proc. Particle Accelerator Conference*. Vancouver, Canada.
.. container::
:name: ref-Morapop1997
Mora, P, and Tm Antonsen. 1997. “Kinetic Modeling of Intense, Short Laser Pulses Propagating in Tenuous Plasmas.” *Phys. Plasmas* 4 (1): 217–29. https://doi.org/10.1063/1.872134.
.. container::
:name: ref-Shadwickpop09
Shadwick, B A, C B Schroeder, and E Esarey. 2009. “Nonlinear Laser Energy Depletion in Laser-Plasma Accelerators.” *Physics of Plasmas* 16 (5): 56704. https://doi.org/10.1063/1.3124185.
.. container::
:name: ref-Sprangleprl90
Sprangle, P, E Esarey, and A Ting. 1990. “Nonlinear-Theory of Intense Laser-Plasma Interactions.” *Physical Review Letters* 64 (17): 2011–4.
.. container::
:name: ref-Steinke2016
Steinke, S, J van Tilborg, C Benedetti, C G R Geddes, C B Schroeder, J Daniels, K K Swanson, et al. 2016. “Multistage coupling of independent laser-plasma accelerators.” *Nature* 530 (7589): 190–93. http://dx.doi.org/10.1038/nature16525%20http://10.1038/nature16525.
.. container::
:name: ref-Tsungpop06
Tsung, Fs, W Lu, M Tzoufras, Wb Mori, C Joshi, Jm Vieira, Lo Silva, and Ra Fonseca. 2006. “Simulation of Monoenergetic Electron Generation via Laser Wakefield Accelerators for 5-25 Tw Lasers.” *Physics of Plasmas* 13 (5): 56708. https://doi.org/10.1063/1.2198535.
.. container::
:name: ref-Vayprl07
Vay, J.-L. 2007. “Noninvariance of Space- and Time-Scale Ranges Under A Lorentz Transformation and the Implications for the Study of Relativistic Interactions.” *Physical Review Letters* 98 (13): 130405/1–4.
.. container::
:name: ref-Vayscidac09
Vay, J.-L., D L Bruhwiler, C G R Geddes, W M Fawley, S F Martins, J R Cary, E Cormier-Michel, et al. 2009. “Simulating Relativistic Beam and Plasma Systems Using an Optimal Boosted Frame.” *Journal of Physics: Conference Series* 180 (1): 012006 (5 Pp.).
.. container::
:name: ref-VayAAC2010
Vay, J -. L, C G R Geddes, C Benedetti, D L Bruhwiler, E Cormier-Michel, B M Cowan, J R Cary, and D P Grote. 2010. “Modeling Laser Wakefield Accelerators in A Lorentz Boosted Frame.” *Aip Conference Proceedings* 1299: 244–49. https://doi.org/10.1063/1.3520322.
.. container::
:name: ref-Vayjcp2011
Vay, J L, C G R Geddes, E Cormier-Michel, and D P Grote. 2011. “Numerical Methods for Instability Mitigation in the Modeling of Laser Wakefield Accelerators in A Lorentz-Boosted Frame.” *Journal of Computational Physics* 230 (15): 5908–29. https://doi.org/10.1016/J.Jcp.2011.04.003.
.. container::
:name: ref-VayPOPL2011
Vay, Jl, C G R Geddes, E Cormier-Michel, and D P Grote. 2011. “Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in A Lorentz Boosted Frame.” *Physics of Plasmas* 18 (3): 30701. https://doi.org/10.1063/1.3559483.
.. container::
:name: ref-Vaypop2011
Vay, J -L., C G R Geddes, E Esarey, C B Schroeder, W P Leemans, E Cormier-Michel, and D P Grote. 2011. “Modeling of 10 Gev-1 Tev Laser-Plasma Accelerators Using Lorentz Boosted Simulations.” *Physics of Plasmas* 18 (12). https://doi.org/10.1063/1.3663841.
.. container::
:name: ref-Vaypac09
Vay et al., J.-L. 2009. “Application of the Reduction of Scale Range in A Lorentz Boosted Frame to the Numerical Simulation of Particle Acceleration Devices.” In *Proc. Particle Accelerator Conference*. Vancouver, Canada.
.. container::
:name: ref-Yu2016
Yu, Peicheng, Xinlu Xu, Asher Davidson, Adam Tableman, Thamine Dalichaouch, Fei Li, Michael D. Meyers, et al. 2016. “Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry.” *Journal of Computational Physics*. https://doi.org/10.1016/j.jcp.2016.04.014.
|