1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
.. _usage-picmi:
Python (PICMI)
==============
WarpX uses the `PICMI standard <https://github.com/picmi-standard/picmi>`__ for its Python input files.
Python version 3.6 or newer is required.
Example input files can be found in :ref:`the examples section <usage-examples>`.
The examples support running in both modes by commenting and uncommenting the appropriate lines.
.. _usage-picmi-parameters:
Parameters
----------
Simulation and grid setup
^^^^^^^^^^^^^^^^^^^^^^^^^
The `Simulation` object is the central object in a PICMI script.
It defines the simulation time, field solver, registered species, etc.
.. autoclass:: picmistandard.PICMI_Simulation
:members: step, add_species, add_laser, write_input_file
Field solvers define the updates of electric and magnetic fields.
.. autoclass:: picmistandard.PICMI_ElectromagneticSolver
.. autoclass:: picmistandard.PICMI_ElectrostaticSolver
Grid define the geometry and discretization.
.. autoclass:: picmistandard.PICMI_Cartesian3DGrid
.. autoclass:: picmistandard.PICMI_Cartesian2DGrid
.. autoclass:: picmistandard.PICMI_Cartesian1DGrid
.. autoclass:: picmistandard.PICMI_CylindricalGrid
For convenience, the PICMI interface defines the following constants,
which can be used directly inside any PICMI script. The values are in SI units.
- ``picmi.constants.c``: The speed of light in vacuum.
- ``picmi.constants.ep0``: The vacuum permittivity :math:`\epsilon_0`
- ``picmi.constants.mu0``: The vacuum permeability :math:`\mu_0`
- ``picmi.constants.q_e``: The elementary charge (absolute value of the charge of an electron).
- ``picmi.constants.m_e``: The electron mass
- ``picmi.constants.m_p``: The proton mass
Additionally to self-consistent fields from the field solver, external fields can be applied.
.. autoclass:: picmistandard.PICMI_ConstantAppliedField
.. autoclass:: picmistandard.PICMI_AnalyticAppliedField
.. autoclass:: picmistandard.PICMI_Mirror
Diagnostics can be used to output data.
.. autoclass:: picmistandard.PICMI_ParticleDiagnostic
.. autoclass:: picmistandard.PICMI_FieldDiagnostic
.. autoclass:: picmistandard.PICMI_ElectrostaticFieldDiagnostic
Lab-frame diagnostics diagnostics are used when running boosted-frame simulations.
.. autoclass:: picmistandard.PICMI_LabFrameParticleDiagnostic
.. autoclass:: picmistandard.PICMI_LabFrameFieldDiagnostic
Particles
^^^^^^^^^
Species objects are a collection of particles with similar properties.
For instance, background plasma electrons, background plasma ions and an externally injected beam could each be their own particle species.
.. autoclass:: picmistandard.PICMI_Species
.. autoclass:: picmistandard.PICMI_MultiSpecies
Particle distributions can be used for to initialize particles in a particle species.
.. autoclass:: picmistandard.PICMI_GaussianBunchDistribution
.. autoclass:: picmistandard.PICMI_UniformDistribution
.. autoclass:: picmistandard.PICMI_AnalyticDistribution
.. autoclass:: picmistandard.PICMI_ParticleListDistribution
Particle layouts determine how to microscopically place macro particles in a grid cell.
.. autoclass:: picmistandard.PICMI_GriddedLayout
.. autoclass:: picmistandard.PICMI_PseudoRandomLayout
Lasers
^^^^^^
Laser profiles can be used to initialize laser pulses in the simulation.
.. autoclass:: picmistandard.PICMI_GaussianLaser
.. autoclass:: picmistandard.PICMI_AnalyticLaser
Laser injectors control where to initialize laser pulses on the simulation grid.
.. autoclass:: picmistandard.PICMI_LaserAntenna
.. _usage-picmi-run:
Running
-------
WarpX can be run in one of two modes. It can run as a preprocessor, using the
Python input file to generate an input file to be used by the C++ version, or
it can be run directly from Python.
In either mode, if using a `virtual environment <https://docs.python.org/3/tutorial/venv.html>`__, be sure to activate it before compiling and running WarpX.
Running WarpX directly from Python
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For this, a full Python installation of WarpX is required, as described in :ref:`the install documentation <install-users>` (:ref:`developers <install-developers>`).
In order to run a new simulation:
* Create a **new directory**, where the simulation will be run.
* Add a **Python script** in the directory.
The input file should have the line ``sim.step()`` which runs the simulation.
* **Run** the script with Python:
.. code-block:: bash
mpirun -np <n_ranks> python <python_script>
where ``<n_ranks>`` is the number of MPI ranks used, and ``<python_script>``
is the name of the script.
Using Python input as a preprocessor
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In this case, only the pure Python version needs to be installed, as described :ref:`here <developers-gnumake-python>`.
In order to run a new simulation:
* Create a **new directory**, where the simulation will be run.
* Add a **Python script** in the directory.
The input file should have the line like ``sim.write_input_file(file_name = 'inputs_from_PICMI')``
which runs the preprocessor, generating the AMReX inputs file.
* **Run** the script with Python:
.. code-block:: bash
python <python_script>
where ``<python_script>`` is the name of the script.
This creates the WarpX input file that you can run as normal with the WarpX executable.
|