1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#!/usr/bin/env python3
#
# --- Input file to test the particle scraper and the Python wrappers
# --- to access the buffer of scraped particles.
import pywarpx
from pywarpx import picmi
##########################
# numerics parameters
##########################
# --- Number of time steps
max_steps = 60
diagnostic_intervals = 20
# --- Grid
nx = 64
ny = 64
nz = 128
cfl = 0.99
xmin = -125e-6
ymin = -125e-6
zmin = -149e-6
xmax = 125e-6
ymax = 125e-6
zmax = 1e-6
##########################
# physics components
##########################
uniform_plasma_elec = picmi.UniformDistribution(
density = 1e23, # number of electrons per m^3
lower_bound = [-1e-5, -1e-5, -149e-6],
upper_bound = [1e-5, 1e-5, -129e-6],
directed_velocity = [0., 0., 2000.*picmi.constants.c] # uth the std of the (unitless) momentum
)
electrons = picmi.Species(
particle_type='electron', name='electrons',
initial_distribution=uniform_plasma_elec,
warpx_save_particles_at_xhi=1, warpx_save_particles_at_eb=1
)
##########################
# numerics components
##########################
grid = picmi.Cartesian3DGrid(
number_of_cells = [nx, ny, nz],
lower_bound = [xmin, ymin, zmin],
upper_bound = [xmax, ymax, zmax],
lower_boundary_conditions=['none', 'none', 'none'],
upper_boundary_conditions=['none', 'none', 'none'],
lower_boundary_conditions_particles=['open', 'open', 'open'],
upper_boundary_conditions_particles=['open', 'open', 'open'],
warpx_max_grid_size = 32
)
solver = picmi.ElectromagneticSolver(
grid=grid, cfl=cfl
)
embedded_boundary = picmi.EmbeddedBoundary(
implicit_function="-max(max(max(x-12.5e-6,-12.5e-6-x),max(y-12.5e-6,-12.5e-6-y)),max(z-(-6.15e-5),-8.65e-5-z))"
)
##########################
# diagnostics
##########################
field_diag = picmi.FieldDiagnostic(
name = 'diag1',
grid = grid,
period = diagnostic_intervals,
data_list = ['Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz'],
write_dir = '.',
warpx_file_prefix = 'Python_particle_scrape_plt'
)
##########################
# simulation setup
##########################
sim = picmi.Simulation(
solver = solver,
max_steps = max_steps,
warpx_embedded_boundary=embedded_boundary,
verbose=True,
warpx_load_balance_intervals=40,
warpx_load_balance_efficiency_ratio_threshold=0.9
)
sim.add_species(
electrons,
layout = picmi.GriddedLayout(
n_macroparticle_per_cell=[1, 1, 1], grid=grid
)
)
sim.add_diagnostic(field_diag)
##########################
# simulation run
##########################
# sim.write_input_file(file_name = 'inputs_from_PICMI')
sim.step(max_steps)
################################################
# check that the wrappers to access the particle
# buffer functions as intended
################################################
from mpi4py import MPI as mpi
my_id = pywarpx.getMyProc()
n = pywarpx.get_particle_boundary_buffer_size("electrons", 'eb')
print(f"Number of electrons in buffer (proc #{my_id}): {n}")
assert n == 612
scraped_steps = pywarpx.get_particle_boundary_buffer("electrons", 'eb', 'step_scraped', 0)
for arr in scraped_steps:
assert all(arr > 40)
weights = pywarpx.get_particle_boundary_buffer("electrons", 'eb', 'w', 0)
n = sum(len(arr) for arr in weights)
print(f"Number of electrons in this proc's buffer (proc #{my_id}): {n}")
n_sum = mpi.COMM_WORLD.allreduce(n, op=mpi.SUM)
assert n_sum == 612
# clear the particle buffer
pywarpx.clearParticleBoundaryBuffer()
# confirm that the buffer was cleared
n = pywarpx.get_particle_boundary_buffer_size("electrons", 'eb')
print(f"Number of electrons in buffer (proc #{my_id}): {n}")
assert n == 0
|