aboutsummaryrefslogtreecommitdiff
path: root/Examples/Modules/laser_injection/analysis_1d.py
blob: 4f4bd505dc878863e4742749a4382cdccbd8f53a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python3

# Copyright 2021 Prabhat Kumar, Remi Lehe
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL

# This file is part of the WarpX automated test suite. Its purpose is to test the
# injection of a Gaussian laser pulse from an antenna in a 1D simulation.
# The test calculates the envelope of each component of the laser pulse at the end of
# the simulation and it compares it with theory. It also checks that the
# central frequency of the Fourier transform is the expected one.

import sys

import matplotlib
import yt

matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import hilbert

sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
import checksumAPI

# Maximum acceptable error for this test
relative_error_threshold = 0.05

# A small number
small_num = 1.0e-8

# Physical parameters
um = 1.e-6
fs = 1.e-15
c = 299792458

# Parameters of the gaussian beam
wavelength = 1.*um
w0 = 5.*um
tt = 10.*fs
t_c = 24.*fs
E_max = 4e12

# laser direction
dir_vector = np.array([0,0,1.0])
dir_vector /= np.linalg.norm(dir_vector)


# polarization vector
pol_vector = np.array([1.0,1.0,0.0])
pol_vector /= np.linalg.norm(pol_vector)

# Calculates the envelope of a Gaussian beam
def gauss_env(T,Z):
    '''Function to compute the theory for the envelope
    '''
    inv_tau2 = 1./tt/tt
    exp_arg = - inv_tau2 / c/c * (Z-T*c)*(Z-T*c)
    return E_max * np.real(np.exp(exp_arg))

# Checks envelope and central frequency for a given laser component
def check_component(data, component, t_env_theory, coeff,Z,dz):
    print("*** Checking " + component + " ***")
    field = data['boxlib', component].v.squeeze()
    env = abs(hilbert(field))

    env_theory = t_env_theory*np.abs(coeff)

    # Plot results
    fig = plt.figure(figsize=(12,6))

    ax1 = fig.add_subplot(221)
    ax1.set_title('PIC field')
    ax1.plot(Z,field)

    ax2 = fig.add_subplot(222)
    ax2.set_title('PIC envelope')
    ax2.plot(Z,env)

    ax3 = fig.add_subplot(223)
    ax3.set_title('Theory envelope')
    ax3.plot(Z,env_theory, label="theory")
    ax3.plot(Z,env, label="simulation")
    ax3.legend(loc="upper right")

    ax4 = fig.add_subplot(224)
    ax4.set_title('Difference')
    ax4.plot(Z,env-env_theory)

    plt.tight_layout()
    plt.savefig("plt_" + component + ".png", bbox_inches='tight')

    if(np.abs(coeff) < small_num):
        is_field_zero = np.sum(np.abs(env)) < small_num
        if is_field_zero :
            print("[OK] Field component expected to be 0 is ~ 0")
        else :
            print("[FAIL] Field component expected to be 0 is NOT ~ 0")
        assert(is_field_zero)
        print("******\n")
        return

    fft_field = np.fft.fft(field)

    freq_cols = np.fft.fftfreq(fft_field.shape[0],dz/c)

    pos_max = np.unravel_index(np.abs(fft_field).argmax(), fft_field.shape)

    freq = np.abs(freq_cols[pos_max[0]])
    exp_freq = c/wavelength

    relative_error_freq = np.abs(freq-exp_freq)/exp_freq
    is_freq_ok = relative_error_freq < relative_error_threshold
    if is_freq_ok :
        print("[OK] Relative error frequency: {:6.3f} %".format(relative_error_freq*100))
    else :
        print("[FAIL] Relative error frequency: {:6.3f} %".format(relative_error_freq*100))
    assert(is_freq_ok)

    print("******\n")

    relative_error_env = np.sum(np.abs(env-env_theory)) / np.sum(np.abs(env_theory))
    is_env_ok = relative_error_env < relative_error_threshold
    if is_env_ok :
        print("[OK] Relative error envelope: {:6.3f} %".format(relative_error_env*100))
    else :
        print("[FAIL] Relative error envelope: {:6.3f} %".format(relative_error_env*100))
    assert(is_env_ok)

def check_laser(filename):
    ds = yt.load(filename)

    # yt 4.0+ has rounding issues with our domain data:
    # RuntimeError: yt attempted to read outside the boundaries
    # of a non-periodic domain along dimension 0.
    if 'force_periodicity' in dir(ds): ds.force_periodicity()

    z = np.linspace(
        ds.domain_left_edge[0].v,
        ds.domain_right_edge[0].v,
        ds.domain_dimensions[0])

    dz = (ds.domain_right_edge[0].v-ds.domain_left_edge[0].v)/(ds.domain_dimensions[0]-1)

    # Compute the theory for envelope
    env_theory = gauss_env(+t_c-ds.current_time.to_value(),z)+gauss_env(-t_c+ds.current_time.to_value(),z)

    # Read laser field in PIC simulation, and compute envelope
    all_data_level_0 = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)

    b_vector = np.cross(dir_vector, pol_vector)

    components = ["Ex", "Ey", "Ez", "Bx", "By", "Bz"]
    coeffs = [
        pol_vector[0],
        pol_vector[1],
        pol_vector[2],
        b_vector[0],
        b_vector[1],
        b_vector[2]]

    field_facts = [1, 1, 1, 1/c, 1/c, 1/c]

    for comp, coeff, field_fact in zip(components, coeffs, field_facts):
        check_component(all_data_level_0, comp, field_fact*env_theory, coeff, z, dz)

def main():
    filename_end = sys.argv[1]

    check_laser(filename_end)

    test_name = filename_end[:-9] # Could also be os.path.split(os.getcwd())[1]
    checksumAPI.evaluate_checksum(test_name, filename_end)

if __name__ == "__main__":
    main()