1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
#!/usr/bin/python3
#ADD COMMENT
#ADD COMMENT
import yt ; yt.funcs.mylog.setLevel(50)
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import hilbert
import glob
import os
#Maximum acceptable error for this test
relative_error_threshold = 0.06
#Physical parameters
um = 1.e-6
fs = 1.e-15
c = 299792458
#Parameters of the gaussian beam
wavelength = 1.*um
w0 = 6.*um
tt = 10.*fs
x_c = 0.*um
t_c = 20.*fs
foc_dist = 10*um
E_max = 1e12
rot_angle = -np.pi/4.0
#Parameters of the tx grid
x_l = -12.0*um
x_r = 12.0*um
x_points = 480
t_l = 0.0*fs
t_r = 40.0*fs
t_points = 400
tcoords = np.linspace(t_l, t_r, t_points)
xcoords = np.linspace(x_l, x_r, x_points)
def gauss(T,X,Y,opt):
k0 = 2.0*np.pi/wavelength
inv_tau2 = 1./tt/tt
osc_phase = k0*c*(T-t_c)
diff_factor = 1.0 + 1.0j* foc_dist * 2/(k0*w0*w0)
inv_w_2 = 1.0/(w0*w0*diff_factor)
pre_fact = np.exp(1.0j * osc_phase)
if opt == '3d':
pre_fact = pre_fact/diff_factor
else:
pre_fact = pre_fact/np.sqrt(diff_factor)
exp_arg = - (X*X + Y*Y)*inv_w_2 - inv_tau2 * (T-t_c)*(T-t_c)
return np.real(pre_fact * np.exp(exp_arg))
# Function for the envelope
def gauss_env(T,XX,ZZ):
X = np.cos(rot_angle)*XX + np.sin(rot_angle)*ZZ
Z = -np.sin(rot_angle)*XX + np.cos(rot_angle)*ZZ
inv_tau2 = 1./tt/tt
inv_w_2 = 1.0/(w0*w0)
exp_arg = - (X*X)*inv_w_2 - inv_tau2 / c/c * (Z-T*c)*(Z-T*c)
return E_max * np.real(np.exp(exp_arg))
def write_file(fname, x, y, t, E):
with open(fname, 'wb') as file:
flag_unif = 0
file.write(flag_unif.to_bytes(1, byteorder='little'))
file.write((len(t)).to_bytes(4, byteorder='little', signed=False))
file.write((len(x)).to_bytes(4, byteorder='little', signed=False))
file.write((len(y)).to_bytes(4, byteorder='little', signed=False))
file.write(t.tobytes())
file.write(x.tobytes())
file.write(y.tobytes())
file.write(E.tobytes())
def write_file_unf(fname, x, y, t, E):
with open(fname, 'wb') as file:
flag_unif = 1
file.write(flag_unif.to_bytes(1, byteorder='little'))
file.write((len(t)).to_bytes(4, byteorder='little', signed=False))
file.write((len(x)).to_bytes(4, byteorder='little', signed=False))
file.write((len(y)).to_bytes(4, byteorder='little', signed=False))
file.write(t[0].tobytes())
file.write(t[-1].tobytes())
file.write(x[0].tobytes())
file.write(x[-1].tobytes())
file.write(y[0].tobytes())
file.write(y[-1].tobytes())
file.write(E.tobytes())
def create_gaussian_2d():
T, X, Y = np.meshgrid(tcoords, xcoords, np.array([0.0]), indexing='ij')
E_t = gauss(T,X,Y,'2d')
write_file("gauss_2d.txye", xcoords, np.array([0.0]), tcoords, E_t)
write_file_unf("gauss_2d_unf.txye", xcoords, np.array([0.0]), tcoords, E_t)
def do_analysis(fname, compname, steps):
ds = yt.load(fname)
dt = ds.current_time.to_value()/steps
# Define 2D meshes
x = np.linspace(
ds.domain_left_edge[0],
ds.domain_right_edge[0],
ds.domain_dimensions[0]).v
z = np.linspace(
ds.domain_left_edge[ds.dimensionality-1],
ds.domain_right_edge[ds.dimensionality-1],
ds.domain_dimensions[ds.dimensionality-1]).v
X, Z = np.meshgrid(x, z, sparse=False, indexing='ij')
# Compute the theory for envelope
env_theory = gauss_env(+t_c-ds.current_time.to_value(), X,Z)+gauss_env(-t_c+ds.current_time.to_value(), X,Z)
# Read laser field in PIC simulation, and compute envelope
all_data_level_0 = ds.covering_grid(level=0,left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)
F_laser = all_data_level_0['boxlib', 'Ey'].v.squeeze()
env = abs(hilbert(F_laser))
extent = [ds.domain_left_edge[ds.dimensionality-1], ds.domain_right_edge[ds.dimensionality-1],
ds.domain_left_edge[0], ds.domain_right_edge[0] ]
# Plot results
plt.figure(figsize=(8,6))
plt.subplot(221)
plt.title('PIC field')
plt.imshow(F_laser, extent=extent)
plt.colorbar()
plt.subplot(222)
plt.title('PIC envelope')
plt.imshow(env, extent=extent)
plt.colorbar()
plt.subplot(223)
plt.title('Theory envelope')
plt.imshow(env_theory, extent=extent)
plt.colorbar()
plt.subplot(224)
plt.title('Difference')
plt.imshow(env-env_theory, extent=extent)
plt.colorbar()
plt.tight_layout()
plt.savefig(compname, bbox_inches='tight')
relative_error_env = np.sum(np.abs(env-env_theory)) / np.sum(np.abs(env))
print("Relative error envelope: ", relative_error_env)
assert(relative_error_env < relative_error_threshold)
fft_F_laser = np.fft.fft2(F_laser)
freq_rows = np.fft.fftfreq(F_laser.shape[0],dt)
freq_cols = np.fft.fftfreq(F_laser.shape[1],dt)
pos_max = np.unravel_index(np.abs(fft_F_laser).argmax(), fft_F_laser.shape)
freq = np.sqrt((freq_rows[pos_max[0]])**2 + (freq_cols[pos_max[1]]**2))
exp_freq = c/wavelength
relative_error_freq = np.abs(freq-exp_freq)/exp_freq
print("Relative error frequency: ", relative_error_freq)
assert(relative_error_freq < relative_error_threshold)
def launch_analysis(executable):
create_gaussian_2d()
os.system("./" + executable + " inputs.2d_test_txye")
do_analysis("diags/plotfiles/plt00250/", "comp_unf.pdf", 250)
os.system("sed 's/gauss_2d_unf.txye/gauss_2d.txye/g' inputs.2d_test_txye > inputs.2d_test_txye_non_unf")
os.system("./" + executable + " inputs.2d_test_txye_non_unf")
do_analysis("diags/plotfiles/plt00250/", "comp_non_unf.pdf", 250)
def main() :
executables = glob.glob("main2d*")
if len(executables) == 1 :
launch_analysis(executables[0])
else :
assert(False)
if __name__ == "__main__":
main()
|