1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
#!/usr/bin/env python3
from pywarpx import picmi
# Physical constants
c = picmi.constants.c
q_e = picmi.constants.q_e
# Number of time steps
max_steps = 10
# Number of cells
nr = 64
nz = 512
# Physical domain
rmin = 0
rmax = 30e-06
zmin = -56e-06
zmax = 12e-06
# Domain decomposition
max_grid_size = 64
blocking_factor = 32
# Create grid
grid = picmi.CylindricalGrid(
number_of_cells = [nr, nz],
n_azimuthal_modes = 2,
lower_bound = [rmin, zmin],
upper_bound = [rmax, zmax],
lower_boundary_conditions = ['none', 'dirichlet'],
upper_boundary_conditions = ['dirichlet', 'dirichlet'],
lower_boundary_conditions_particles = ['absorbing', 'absorbing'],
upper_boundary_conditions_particles = ['absorbing', 'absorbing'],
moving_window_velocity = [0., c],
warpx_max_grid_size = max_grid_size,
warpx_blocking_factor = blocking_factor)
# Particles: plasma electrons
plasma_density = 2e23
plasma_xmin = -20e-06
plasma_ymin = None
plasma_zmin = 10e-06
plasma_xmax = 20e-06
plasma_ymax = None
plasma_zmax = None
uniform_distribution = picmi.UniformDistribution(
density = plasma_density,
lower_bound = [plasma_xmin, plasma_ymin, plasma_zmin],
upper_bound = [plasma_xmax, plasma_ymax, plasma_zmax],
fill_in = True)
electrons = picmi.Species(
particle_type = 'electron',
name = 'electrons',
initial_distribution = uniform_distribution)
# Particles: beam electrons
q_tot = 1e-12
x_m = 0.
y_m = 0.
z_m = -28e-06
x_rms = 0.5e-06
y_rms = 0.5e-06
z_rms = 0.5e-06
ux_m = 0.
uy_m = 0.
uz_m = 500.
ux_th = 2.
uy_th = 2.
uz_th = 50.
gaussian_bunch_distribution = picmi.GaussianBunchDistribution(
n_physical_particles = q_tot / q_e,
rms_bunch_size = [x_rms, y_rms, z_rms],
rms_velocity = [c*ux_th, c*uy_th, c*uz_th],
centroid_position = [x_m, y_m, z_m],
centroid_velocity = [c*ux_m, c*uy_m, c*uz_m])
beam = picmi.Species(
particle_type = 'electron',
name = 'beam',
initial_distribution = gaussian_bunch_distribution)
# Laser
e_max = 16e12
position_z = 9e-06
profile_t_peak = 30.e-15
profile_focal_distance = 100e-06
laser = picmi.GaussianLaser(
wavelength = 0.8e-06,
waist = 5e-06,
duration = 15e-15,
focal_position = [0, 0, profile_focal_distance + position_z],
centroid_position = [0, 0, position_z - c*profile_t_peak],
propagation_direction = [0, 0, 1],
polarization_direction = [0, 1, 0],
E0 = e_max,
fill_in = False)
laser_antenna = picmi.LaserAntenna(
position = [0., 0., position_z],
normal_vector = [0, 0, 1])
# Electromagnetic solver
solver = picmi.ElectromagneticSolver(
grid = grid,
method = 'Yee',
cfl = 1.,
divE_cleaning = 0)
# Diagnostics
diag_field_list = ['B', 'E', 'J', 'rho']
field_diag = picmi.FieldDiagnostic(
name = 'diag1',
grid = grid,
period = 10,
data_list = diag_field_list,
warpx_dump_rz_modes = 1,
write_dir = '.',
warpx_file_prefix = 'Python_LaserAccelerationRZ_plt')
diag_particle_list = ['weighting', 'momentum']
particle_diag = picmi.ParticleDiagnostic(
name = 'diag1',
period = 10,
species = [electrons, beam],
data_list = diag_particle_list,
write_dir = '.',
warpx_file_prefix = 'Python_LaserAccelerationRZ_plt')
# Set up simulation
sim = picmi.Simulation(
solver = solver,
max_steps = max_steps,
verbose = 1,
particle_shape = 'cubic',
warpx_use_filter = 1)
# Add plasma electrons
sim.add_species(
electrons,
layout = picmi.GriddedLayout(grid = grid, n_macroparticle_per_cell = [1, 4, 1]))
# Add beam electrons
sim.add_species(
beam,
layout = picmi.PseudoRandomLayout(grid = grid, n_macroparticles = 100))
# Add laser
sim.add_laser(
laser,
injection_method = laser_antenna)
# Add diagnostics
sim.add_diagnostic(field_diag)
sim.add_diagnostic(particle_diag)
# Write input file that can be used to run with the compiled version
sim.write_input_file(file_name = 'inputs_rz_picmi')
# Initialize inputs and WarpX instance
sim.initialize_inputs()
sim.initialize_warpx()
# Advance simulation until last time step
sim.step(max_steps)
|