1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
# --- Simple example of Langmuir oscillations in a uniform plasma
import numpy as np
from pywarpx import picmi
constants = picmi.constants
nx = 64
ny = 64
nz = 64
xmin = -20.e-6
ymin = -20.e-6
zmin = -20.e-6
xmax = +20.e-6
ymax = +20.e-6
zmax = +20.e-6
uniform_plasma = picmi.UniformDistribution(density = 1.e25,
upper_bound = [0., None, None],
directed_velocity = [0.1*constants.c, 0., 0.])
electrons = picmi.Species(particle_type='electron', name='electrons', initial_distribution=uniform_plasma)
grid = picmi.Cartesian3DGrid(number_of_cells = [nx, ny, nz],
lower_bound = [xmin, ymin, zmin],
upper_bound = [xmax, ymax, zmax],
lower_boundary_conditions = ['periodic', 'periodic', 'periodic'],
upper_boundary_conditions = ['periodic', 'periodic', 'periodic'],
moving_window_velocity = [0., 0., 0.],
warpx_max_grid_size=32)
solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)
sim = picmi.Simulation(solver = solver,
max_steps = 40,
verbose = 1,
warpx_plot_int = 1,
warpx_current_deposition_algo = 'direct',
warpx_charge_deposition_algo = 'standard',
warpx_field_gathering_algo = 'standard',
warpx_particle_pusher_algo = 'boris')
sim.add_species(electrons, layout=picmi.GriddedLayout(n_macroparticle_per_cell=[2,2,2], grid=grid))
# write_inputs will create an inputs file that can be used to run
# with the compiled version.
sim.write_input_file(file_name='inputs_from_PICMI')
# Alternatively, sim.step will run WarpX, controlling it from Python
sim.step()
|