1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
#!/usr/bin/env python3
import os
import sys
import numpy as np
import openpmd_api as io
import pandas as pd
from scipy.constants import c, e, hbar, m_e
sys.path.append('../../../../warpx/Regression/Checksum/')
import checksumAPI
sys.path.append('../../../../warpx/Tools/Parser/')
from input_file_parser import parse_input_file
E_crit = m_e**2*c**3/(e*hbar)
B_crit = m_e**2*c**2/(e*hbar)
def chi(ux, uy, uz, Ex, Ey, Ez, Bx, By, Bz):
gamma = np.sqrt(1.+ux**2+uy**2+uz**2)
vx = ux / gamma * c
vy = uy / gamma * c
vz = uz / gamma * c
tmp1x = Ex + vy*Bz - vz*By
tmp1y = Ey - vx*Bz + vz*Bx
tmp1z = Ez + vx*By - vy*Bx
tmp2 = (Ex*vx + Ey*vy + Ez*vz)/c
chi = gamma/E_crit*np.sqrt(tmp1x**2+tmp1y**2+tmp1z**2 - tmp2**2)
return chi
def dL_dt():
series = io.Series("diags/diag2/openpmd_%T.h5",io.Access.read_only)
iterations = np.asarray(series.iterations)
lumi = []
for n,ts in enumerate(iterations):
it = series.iterations[ts]
rho1 = it.meshes["rho_beam_e"]
dV = np.prod(rho1.grid_spacing)
rho1 = it.meshes["rho_beam_e"][io.Mesh_Record_Component.SCALAR].load_chunk()
rho2 = it.meshes["rho_beam_p"][io.Mesh_Record_Component.SCALAR].load_chunk()
beam_e_charge = it.particles["beam_e"]["charge"][io.Mesh_Record_Component.SCALAR].load_chunk()
beam_p_charge = it.particles["beam_p"]["charge"][io.Mesh_Record_Component.SCALAR].load_chunk()
q1 = beam_e_charge[0]
if not np.all(beam_e_charge == q1):
sys.exit('beam_e particles do not have the same charge')
q2 = beam_p_charge[0]
if not np.all(beam_p_charge == q2):
sys.exit('beam_p particles do not have the same charge')
series.flush()
n1 = rho1/q1
n2 = rho2/q2
l = 2*np.sum(n1*n2)*dV*c
lumi.append(l)
return lumi
input_dict = parse_input_file('inputs_3d_multiple_particles')
Ex, Ey, Ez = [float(w) for w in input_dict['particles.E_external_particle']]
Bx, By, Bz = [float(w) for w in input_dict['particles.B_external_particle']]
CollDiagFname='diags/reducedfiles/ColliderRelevant_beam_e_beam_p.txt'
df = pd.read_csv(CollDiagFname, sep=" ", header=0)
for species in ['beam_p', 'beam_e']:
ux1, ux2, ux3 = [float(w) for w in input_dict[f'{species}.multiple_particles_ux']]
uy1, uy2, uy3 = [float(w) for w in input_dict[f'{species}.multiple_particles_uy']]
uz1, uz2, uz3 = [float(w) for w in input_dict[f'{species}.multiple_particles_uz']]
x = np.array([float(w) for w in input_dict[f'{species}.multiple_particles_pos_x']])
y = np.array([float(w) for w in input_dict[f'{species}.multiple_particles_pos_y']])
w = np.array([float(w) for w in input_dict[f'{species}.multiple_particles_weight']])
CHI_ANALYTICAL = np.array([chi(ux1, uy1, uz1, Ex, Ey, Ez, Bx, By, Bz),
chi(ux2, uy2, uz2, Ex, Ey, Ez, Bx, By, Bz),
chi(ux3, uy3, uz3, Ex, Ey, Ez, Bx, By, Bz)])
THETAX = np.array([np.arctan2(ux1, uz1), np.arctan2(ux2, uz2), np.arctan2(ux3, uz3)])
THETAY = np.array([np.arctan2(uy1, uz1), np.arctan2(uy2, uz2), np.arctan2(uy3, uz3)])
# CHI MAX
fname=f'diags/reducedfiles/ParticleExtrema_{species}.txt'
chimax_pe = np.loadtxt(fname)[:,19]
chimax_cr = df[[col for col in df.columns if f'chi_max_{species}' in col]].to_numpy()
assert np.allclose(np.max(CHI_ANALYTICAL), chimax_cr, rtol=1e-8)
assert np.allclose(chimax_pe, chimax_cr, rtol=1e-8)
# CHI MIN
fname=f'diags/reducedfiles/ParticleExtrema_{species}.txt'
chimin_pe = np.loadtxt(fname)[:,18]
chimin_cr = df[[col for col in df.columns if f'chi_min_{species}' in col]].to_numpy()
assert np.allclose(np.min(CHI_ANALYTICAL), chimin_cr, rtol=1e-8)
assert np.allclose(chimin_pe, chimin_cr, rtol=1e-8)
# CHI AVERAGE
chiave_cr = df[[col for col in df.columns if f'chi_ave_{species}' in col]].to_numpy()
assert np.allclose(np.average(CHI_ANALYTICAL, weights=w), chiave_cr, rtol=1e-8)
# X AVE STD
x_ave_cr = df[[col for col in df.columns if f']x_ave_{species}' in col]].to_numpy()
x_std_cr = df[[col for col in df.columns if f']x_std_{species}' in col]].to_numpy()
x_ave = np.average(x, weights=w)
x_std = np.sqrt(np.average((x-x_ave)**2, weights=w))
assert np.allclose(x_ave, x_ave_cr, rtol=1e-8)
assert np.allclose(x_std, x_std_cr, rtol=1e-8)
# Y AVE STD
y_ave_cr = df[[col for col in df.columns if f']y_ave_{species}' in col]].to_numpy()
y_std_cr = df[[col for col in df.columns if f']y_std_{species}' in col]].to_numpy()
y_ave = np.average(y, weights=w)
y_std = np.sqrt(np.average((y-y_ave)**2, weights=w))
assert np.allclose(y_ave, y_ave_cr, rtol=1e-8)
assert np.allclose(y_std, y_std_cr, rtol=1e-8)
# THETA X MIN AVE MAX STD
thetax_min_cr = df[[col for col in df.columns if f'theta_x_min_{species}' in col]].to_numpy()
thetax_ave_cr = df[[col for col in df.columns if f'theta_x_ave_{species}' in col]].to_numpy()
thetax_max_cr = df[[col for col in df.columns if f'theta_x_max_{species}' in col]].to_numpy()
thetax_std_cr = df[[col for col in df.columns if f'theta_x_std_{species}' in col]].to_numpy()
thetax_min = np.min(THETAX)
thetax_ave = np.average(THETAX, weights=w)
thetax_max = np.max(THETAX)
thetax_std = np.sqrt(np.average((THETAX-thetax_ave)**2, weights=w))
assert np.allclose(thetax_min, thetax_min_cr, rtol=1e-8)
assert np.allclose(thetax_ave, thetax_ave_cr, rtol=1e-8)
assert np.allclose(thetax_max, thetax_max_cr, rtol=1e-8)
assert np.allclose(thetax_std, thetax_std_cr, rtol=1e-8)
# THETA Y MIN AVE MAX STD
thetay_min_cr = df[[col for col in df.columns if f'theta_y_min_{species}' in col]].to_numpy()
thetay_ave_cr = df[[col for col in df.columns if f'theta_y_ave_{species}' in col]].to_numpy()
thetay_max_cr = df[[col for col in df.columns if f'theta_y_max_{species}' in col]].to_numpy()
thetay_std_cr = df[[col for col in df.columns if f'theta_y_std_{species}' in col]].to_numpy()
thetay_min = np.min(THETAY)
thetay_ave = np.average(THETAY, weights=w)
thetay_max = np.max(THETAY)
thetay_std = np.sqrt(np.average((THETAY-thetay_ave)**2, weights=w))
assert np.allclose(thetay_min, thetay_min_cr, rtol=1e-8)
assert np.allclose(thetay_ave, thetay_ave_cr, rtol=1e-8)
assert np.allclose(thetay_max, thetay_max_cr, rtol=1e-8)
assert np.allclose(thetay_std, thetay_std_cr, rtol=1e-8)
# dL/dt
dL_dt_cr = df[[col for col in df.columns if 'dL_dt' in col]].to_numpy()
assert np.allclose(dL_dt_cr, dL_dt(), rtol=1e-8)
# Checksum analysis
plotfile = sys.argv[1]
test_name = os.path.split(os.getcwd())[1]
checksumAPI.evaluate_checksum(test_name, plotfile)
|