aboutsummaryrefslogtreecommitdiff
path: root/Examples/Tests/collider_relevant_diags/analysis_multiple_particles.py
blob: b23bb69d52c5df83f6720e57c61494712e342fce (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3

import os
import sys

import numpy as np
import openpmd_api as io
import pandas as pd
from scipy.constants import c, e, hbar, m_e

sys.path.append('../../../../warpx/Regression/Checksum/')
import checksumAPI

sys.path.append('../../../../warpx/Tools/Parser/')
from input_file_parser import parse_input_file

E_crit = m_e**2*c**3/(e*hbar)
B_crit = m_e**2*c**2/(e*hbar)

def chi(ux, uy, uz, Ex, Ey, Ez, Bx, By, Bz):
    gamma = np.sqrt(1.+ux**2+uy**2+uz**2)
    vx = ux / gamma * c
    vy = uy / gamma * c
    vz = uz / gamma * c
    tmp1x = Ex + vy*Bz - vz*By
    tmp1y = Ey - vx*Bz + vz*Bx
    tmp1z = Ez + vx*By - vy*Bx
    tmp2 = (Ex*vx + Ey*vy + Ez*vz)/c
    chi = gamma/E_crit*np.sqrt(tmp1x**2+tmp1y**2+tmp1z**2 - tmp2**2)
    return chi

def dL_dt():
    series = io.Series("diags/diag2/openpmd_%T.h5",io.Access.read_only)
    iterations = np.asarray(series.iterations)
    lumi = []
    for n,ts in enumerate(iterations):
        it = series.iterations[ts]
        rho1 = it.meshes["rho_beam_e"]
        dV = np.prod(rho1.grid_spacing)
        rho1 = it.meshes["rho_beam_e"][io.Mesh_Record_Component.SCALAR].load_chunk()
        rho2 = it.meshes["rho_beam_p"][io.Mesh_Record_Component.SCALAR].load_chunk()
        beam_e_charge = it.particles["beam_e"]["charge"][io.Mesh_Record_Component.SCALAR].load_chunk()
        beam_p_charge = it.particles["beam_p"]["charge"][io.Mesh_Record_Component.SCALAR].load_chunk()
        q1 = beam_e_charge[0]
        if not np.all(beam_e_charge == q1):
            sys.exit('beam_e particles do not have the same charge')
        q2 = beam_p_charge[0]
        if not np.all(beam_p_charge == q2):
            sys.exit('beam_p particles do not have the same charge')
        series.flush()
        n1 = rho1/q1
        n2 = rho2/q2
        l = 2*np.sum(n1*n2)*dV*c
        lumi.append(l)
    return lumi

input_dict = parse_input_file('inputs_3d_multiple_particles')
Ex, Ey, Ez = [float(w) for w in input_dict['particles.E_external_particle']]
Bx, By, Bz = [float(w) for w in input_dict['particles.B_external_particle']]

CollDiagFname='diags/reducedfiles/ColliderRelevant_beam_e_beam_p.txt'
df = pd.read_csv(CollDiagFname, sep=" ", header=0)

for species in ['beam_p', 'beam_e']:

    ux1, ux2, ux3 = [float(w) for w in input_dict[f'{species}.multiple_particles_ux']]
    uy1, uy2, uy3 = [float(w) for w in input_dict[f'{species}.multiple_particles_uy']]
    uz1, uz2, uz3 = [float(w) for w in input_dict[f'{species}.multiple_particles_uz']]

    x = np.array([float(w) for w in input_dict[f'{species}.multiple_particles_pos_x']])
    y = np.array([float(w) for w in input_dict[f'{species}.multiple_particles_pos_y']])

    w = np.array([float(w) for w in input_dict[f'{species}.multiple_particles_weight']])

    CHI_ANALYTICAL = np.array([chi(ux1, uy1, uz1, Ex, Ey, Ez, Bx, By, Bz),
                               chi(ux2, uy2, uz2, Ex, Ey, Ez, Bx, By, Bz),
                               chi(ux3, uy3, uz3, Ex, Ey, Ez, Bx, By, Bz)])
    THETAX = np.array([np.arctan2(ux1, uz1), np.arctan2(ux2, uz2), np.arctan2(ux3, uz3)])
    THETAY = np.array([np.arctan2(uy1, uz1), np.arctan2(uy2, uz2), np.arctan2(uy3, uz3)])

    # CHI MAX
    fname=f'diags/reducedfiles/ParticleExtrema_{species}.txt'
    chimax_pe = np.loadtxt(fname)[:,19]
    chimax_cr = df[[col for col in df.columns if f'chi_max_{species}' in col]].to_numpy()
    assert np.allclose(np.max(CHI_ANALYTICAL), chimax_cr, rtol=1e-8)
    assert np.allclose(chimax_pe, chimax_cr, rtol=1e-8)

    # CHI MIN
    fname=f'diags/reducedfiles/ParticleExtrema_{species}.txt'
    chimin_pe = np.loadtxt(fname)[:,18]
    chimin_cr = df[[col for col in df.columns if f'chi_min_{species}' in col]].to_numpy()
    assert np.allclose(np.min(CHI_ANALYTICAL), chimin_cr, rtol=1e-8)
    assert np.allclose(chimin_pe, chimin_cr, rtol=1e-8)

    # CHI AVERAGE
    chiave_cr = df[[col for col in df.columns if f'chi_ave_{species}' in col]].to_numpy()
    assert np.allclose(np.average(CHI_ANALYTICAL, weights=w), chiave_cr, rtol=1e-8)

    # X AVE STD
    x_ave_cr = df[[col for col in df.columns if f']x_ave_{species}' in col]].to_numpy()
    x_std_cr = df[[col for col in df.columns if f']x_std_{species}' in col]].to_numpy()
    x_ave = np.average(x, weights=w)
    x_std = np.sqrt(np.average((x-x_ave)**2, weights=w))
    assert np.allclose(x_ave, x_ave_cr, rtol=1e-8)
    assert np.allclose(x_std, x_std_cr, rtol=1e-8)

    # Y AVE STD
    y_ave_cr = df[[col for col in df.columns if f']y_ave_{species}' in col]].to_numpy()
    y_std_cr = df[[col for col in df.columns if f']y_std_{species}' in col]].to_numpy()
    y_ave = np.average(y, weights=w)
    y_std = np.sqrt(np.average((y-y_ave)**2, weights=w))
    assert np.allclose(y_ave, y_ave_cr, rtol=1e-8)
    assert np.allclose(y_std, y_std_cr, rtol=1e-8)

    # THETA X MIN AVE MAX STD
    thetax_min_cr = df[[col for col in df.columns if f'theta_x_min_{species}' in col]].to_numpy()
    thetax_ave_cr = df[[col for col in df.columns if f'theta_x_ave_{species}' in col]].to_numpy()
    thetax_max_cr = df[[col for col in df.columns if f'theta_x_max_{species}' in col]].to_numpy()
    thetax_std_cr = df[[col for col in df.columns if f'theta_x_std_{species}' in col]].to_numpy()
    thetax_min = np.min(THETAX)
    thetax_ave = np.average(THETAX, weights=w)
    thetax_max = np.max(THETAX)
    thetax_std = np.sqrt(np.average((THETAX-thetax_ave)**2, weights=w))
    assert np.allclose(thetax_min, thetax_min_cr, rtol=1e-8)
    assert np.allclose(thetax_ave, thetax_ave_cr, rtol=1e-8)
    assert np.allclose(thetax_max, thetax_max_cr, rtol=1e-8)
    assert np.allclose(thetax_std, thetax_std_cr, rtol=1e-8)

    # THETA Y MIN AVE MAX STD
    thetay_min_cr = df[[col for col in df.columns if f'theta_y_min_{species}' in col]].to_numpy()
    thetay_ave_cr = df[[col for col in df.columns if f'theta_y_ave_{species}' in col]].to_numpy()
    thetay_max_cr = df[[col for col in df.columns if f'theta_y_max_{species}' in col]].to_numpy()
    thetay_std_cr = df[[col for col in df.columns if f'theta_y_std_{species}' in col]].to_numpy()
    thetay_min = np.min(THETAY)
    thetay_ave = np.average(THETAY, weights=w)
    thetay_max = np.max(THETAY)
    thetay_std = np.sqrt(np.average((THETAY-thetay_ave)**2, weights=w))
    assert np.allclose(thetay_min, thetay_min_cr, rtol=1e-8)
    assert np.allclose(thetay_ave, thetay_ave_cr, rtol=1e-8)
    assert np.allclose(thetay_max, thetay_max_cr, rtol=1e-8)
    assert np.allclose(thetay_std, thetay_std_cr, rtol=1e-8)

    # dL/dt
    dL_dt_cr = df[[col for col in df.columns if 'dL_dt' in col]].to_numpy()
    assert np.allclose(dL_dt_cr, dL_dt(), rtol=1e-8)

# Checksum analysis
plotfile = sys.argv[1]
test_name = os.path.split(os.getcwd())[1]
checksumAPI.evaluate_checksum(test_name, plotfile)