blob: ba029760e8bb6ae81c8833fd5eef72fa74b799ef (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
#!/usr/bin/env python3
# This script tests the collision module
# using isotropization relaxation in 3D.
# Initially, electrons have different temperatures in different directions.
# Relaxation occurs to bring the two temperatures to be
# a final same temperature through collisions.
# The result is compared with an analytical solution.
# A good reference is given by the code Smilei:
# https://github.com/SmileiPIC/Smilei/tree/master/benchmarks/collisions
# https://smileipic.github.io/tutorials/advanced_collisions.html
# https://smileipic.github.io/Smilei/Understand/collisions.html#test-cases-for-collisions
import os
import sys
import numpy as np
import scipy.constants as sc
import yt
sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
import checksumAPI
e = sc.e
pi = sc.pi
ep0 = sc.epsilon_0
m = sc.m_e
dt = 1.4e-17
ne = 1.116e28
log = 2.0
T_par = 5.62*e
T_per = 5.1*e
A = 1.0 - T_per/T_par
mu = (e**4*ne*log/(8.0*pi**1.5*ep0**2*m**0.5*T_par**1.5)
*A**(-2)*(-3.0+(3.0-A)*np.arctanh(A**0.5)/A**0.5))
fn = sys.argv[1]
ds = yt.load(fn)
ad = ds.all_data()
vx = ad['electron', 'particle_momentum_x'].to_ndarray()/m
vy = ad['electron', 'particle_momentum_y'].to_ndarray()/m
Tx = np.mean(vx**2)*m/e
Ty = np.mean(vy**2)*m/e
nt = 100
Tx0 = T_par
Ty0 = T_per
for _ in range(nt-1):
Tx0 = Tx0 + dt*mu*(Ty0-Tx0)*2.0
Ty0 = Ty0 + dt*mu*(Tx0-Ty0)
tolerance = 0.05
error = np.maximum(abs(Tx-Tx0/e)/Tx, abs(Ty-Ty0/e)/Ty)
print(f'error = {error}')
print(f'tolerance = {tolerance}')
assert(error < tolerance)
test_name = os.path.split(os.getcwd())[1]
checksumAPI.evaluate_checksum(test_name, fn)
|