1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
#!/usr/bin/env python3
# Copyright 2022 David Grote
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL
# This script tests the ion stopping model.
# It uses the same stopping power formula that
# is used in the C++ to check the resulting
# particle energies.
import os
import re
import sys
import numpy as np
from scipy.constants import e, epsilon_0, k, m_e, m_p
import yt
sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
import checksumAPI
# Define constants using the WarpX names for the evals below
q_e = e
kb = k
# Tolerance on the error in the final energy (in eV)
tolerance = 1.e-7
last_filename = sys.argv[1]
# Remove trailing '/' from file name, if necessary
last_filename.rstrip('/')
# Find last iteration in file name, such as 'test_name_plt000001' (last_it = '000001')
last_it = re.search('\d+$', last_filename).group()
# Find output prefix in file name, such as 'test_name_plt000001' (prefix = 'test_name_plt')
prefix = last_filename[:-len(last_it)]
def stopping_from_electrons(ne, Te, Zb, ion_mass):
"""Calculate the coefficient in equation 14.13 from
"Introduction to Plasma Physics", Goldston and Rutherford.
ne: electron density
Te: electron temperature (eV)
Zb: ion charge state
ion_mass: (kg)
"""
vthe = np.sqrt(3.*Te*e/m_e)
wpe = np.sqrt(ne*e**2/(epsilon_0*m_e))
lambdadb = vthe/wpe
loglambda = np.log((12.*np.pi/Zb)*(ne*lambdadb**3))
# Goldston's equation 14.13
dEdt = - np.sqrt(2.)*ne*Zb**2*e**4*np.sqrt(m_e)*loglambda/(6.*np.pi**1.5*epsilon_0**2*ion_mass*(Te*e)**1.5)
return dEdt
def stopping_from_ions(dt, ni, Ti, mi, Zi, Zb, ion_mass, ion_energy):
"""
ni: background ion density
Ti: background ion temperature (eV)
mi: background ion mass
Zi: background ion charge state
Zb: ion charge state
ion_mass: (kg)
ion_energy: (eV)
"""
vthi = np.sqrt(3.*Ti*e/mi)
wpi = np.sqrt(ni*e**2/(epsilon_0*mi))
lambdadb = vthi/wpi
loglambda = np.log((12.*np.pi/Zb)*(ni*lambdadb**3))
alpha = np.sqrt(2.)*ni*Zi**2*Zb**2*e**4*np.sqrt(ion_mass)*loglambda/(8.*np.pi*epsilon_0**2*mi)
f1 = np.clip((ion_energy*e)**(3./2.) - 3./2.*alpha*dt, 0., None)
ion_energy = (f1)**(2./3.)/e
return ion_energy
# Fetch background parameters and inital particle data
ds0 = yt.load(f'{prefix}{len(last_it)*"0"}')
ad0 = ds0.all_data()
Zb = 1. # Ion charge state
ne = float(ds0.parameters['stopping_on_electrons_constant.background_density'])
Te = eval(ds0.parameters['stopping_on_electrons_constant.background_temperature'])*kb/e
ion_mass12 = m_p
mi = eval(ds0.parameters['stopping_on_ions_constant.background_mass'])
Zi = float(ds0.parameters['stopping_on_ions_constant.background_charge_state'])
ni = float(ds0.parameters['stopping_on_ions_constant.background_density'])
Ti = eval(ds0.parameters['stopping_on_ions_constant.background_temperature'])*kb/e
ion_mass34 = 4.*m_p
# For ions1, the background parameters are constants
vx = ad0[('ions1', 'particle_momentum_x')].to_ndarray()/ion_mass12
vy = ad0[('ions1', 'particle_momentum_y')].to_ndarray()/ion_mass12
vz = ad0[('ions1', 'particle_momentum_z')].to_ndarray()/ion_mass12
EE1 = 0.5*ion_mass12*(vx**2 + vy**2 + vz**2)/e
# For ions2, the background parameters are parsed
xx = ad0[('ions2', 'particle_position_x')].to_ndarray()/ion_mass12
yy = ad0[('ions2', 'particle_position_y')].to_ndarray()/ion_mass12
ne2 = np.where(xx > 0., 1.e20, 1.e21)
Te2 = np.where(yy > 0., 1., 2.)
vx = ad0[('ions2', 'particle_momentum_x')].to_ndarray()/ion_mass12
vy = ad0[('ions2', 'particle_momentum_y')].to_ndarray()/ion_mass12
vz = ad0[('ions2', 'particle_momentum_z')].to_ndarray()/ion_mass12
EE2 = 0.5*ion_mass12*(vx**2 + vy**2 + vz**2)/e
# For ions3, the background parameters are constants
vx = ad0[('ions3', 'particle_momentum_x')].to_ndarray()/ion_mass34
vy = ad0[('ions3', 'particle_momentum_y')].to_ndarray()/ion_mass34
vz = ad0[('ions3', 'particle_momentum_z')].to_ndarray()/ion_mass34
EE3 = 0.5*ion_mass34*(vx**2 + vy**2 + vz**2)/e
# For ions4, the background parameters are parsed
xx = ad0[('ions4', 'particle_position_x')].to_ndarray()/ion_mass34
yy = ad0[('ions4', 'particle_position_y')].to_ndarray()/ion_mass34
ni4 = np.where(xx > 0., 1.e20, 1.e21)
Ti4 = np.where(yy > 0., 0.05, 0.10)
vx = ad0[('ions4', 'particle_momentum_x')].to_ndarray()/ion_mass34
vy = ad0[('ions4', 'particle_momentum_y')].to_ndarray()/ion_mass34
vz = ad0[('ions4', 'particle_momentum_z')].to_ndarray()/ion_mass34
EE4 = 0.5*ion_mass34*(vx**2 + vy**2 + vz**2)/e
ds = yt.load(last_filename)
ad = ds.all_data()
dt = ds.current_time.to_value()/int(last_it)
# Step through the same number of time steps
a_EE1 = EE1
a_EE2 = EE2
a_EE3 = EE3
a_EE4 = EE4
for it in range(int(last_it)):
dEdt1 = stopping_from_electrons(ne, Te, Zb, ion_mass12)
a_EE1 *= np.exp(dEdt1*dt)
dEdt2 = stopping_from_electrons(ne2, Te2, Zb, ion_mass12)
a_EE2 *= np.exp(dEdt2*dt)
a_EE3 = stopping_from_ions(dt, ni, Ti, mi, Zi, Zb, ion_mass34, a_EE3)
a_EE4 = stopping_from_ions(dt, ni4, Ti4, mi, Zi, Zb, ion_mass34, a_EE4)
# Fetch the final particle data
vx = ad[('ions1', 'particle_momentum_x')].to_ndarray()/ion_mass12
vy = ad[('ions1', 'particle_momentum_y')].to_ndarray()/ion_mass12
vz = ad[('ions1', 'particle_momentum_z')].to_ndarray()/ion_mass12
EE1 = 0.5*ion_mass12*(vx**2 + vy**2 + vz**2)/e
vx = ad[('ions2', 'particle_momentum_x')].to_ndarray()/ion_mass12
vy = ad[('ions2', 'particle_momentum_y')].to_ndarray()/ion_mass12
vz = ad[('ions2', 'particle_momentum_z')].to_ndarray()/ion_mass12
EE2 = 0.5*ion_mass12*(vx**2 + vy**2 + vz**2)/e
vx = ad[('ions3', 'particle_momentum_x')].to_ndarray()/ion_mass34
vy = ad[('ions3', 'particle_momentum_y')].to_ndarray()/ion_mass34
vz = ad[('ions3', 'particle_momentum_z')].to_ndarray()/ion_mass34
EE3 = 0.5*ion_mass34*(vx**2 + vy**2 + vz**2)/e
vx = ad[('ions4', 'particle_momentum_x')].to_ndarray()/ion_mass34
vy = ad[('ions4', 'particle_momentum_y')].to_ndarray()/ion_mass34
vz = ad[('ions4', 'particle_momentum_z')].to_ndarray()/ion_mass34
EE4 = 0.5*ion_mass34*(vx**2 + vy**2 + vz**2)/e
error1 = np.abs(EE1 - a_EE1)
error2 = np.abs(EE2 - a_EE2)
error3 = np.abs(EE3 - a_EE3)
error4 = np.abs(EE4 - a_EE4)
print('stopping on electrons error with constant = ', error1)
print('stopping on electrons error with parsed = ', error2)
print('stopping on ions error with constant = ', error3)
print('stopping on ions error with parsed = ', error4)
print('tolerance = ', tolerance)
assert np.all(error1 < tolerance)
assert np.all(error2 < tolerance)
assert np.all(error3 < tolerance)
assert np.all(error4 < tolerance)
test_name = os.path.split(os.getcwd())[1]
checksumAPI.evaluate_checksum(test_name, last_filename)
|