1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
#!/usr/bin/env python3
# Copyright 2020 Andrew Myers, Axel Huebl, Luca Fedeli
# Remi Lehe, Ilian Kara-Mostefa
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL
# This file is part of the WarpX automated test suite. It is used to test the
# injection of a laser pulse from an external lasy file.
#
# - Generate an input lasy file with a gaussian laser pulse.
# - Run the WarpX simulation for time T, when the pulse is fully injected
# - Compute the theory for laser envelope at time T
# - Compare theory and simulation in RZ, for both envelope and central frequency
import glob
import os
import sys
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from scipy.constants import c, epsilon_0
from scipy.signal import hilbert
import yt ; yt.funcs.mylog.setLevel(50)
sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
import checksumAPI
#Maximum acceptable error for this test
relative_error_threshold = 0.065
#Physical parameters
um = 1.e-6
fs = 1.e-15
c = 299792458
#Parameters of the gaussian beam
wavelength = 1.*um
w0 = 12.*um
tt = 10.*fs
t_c = 20.*fs
laser_energy = 1.0
E_max = np.sqrt( 2*(2/np.pi)**(3/2)*laser_energy / (epsilon_0*w0**2*c*tt) )
# Function for the envelope
def gauss_env(T, X, Y, Z):
# Function to compute the theory for the envelope
inv_tau2 = 1./tt/tt
inv_w_2 = 1.0/(w0*w0)
exp_arg = - (X*X)*inv_w_2 - (Y*Y)*inv_w_2- inv_tau2 / c/c * (Z-T*c)*(Z-T*c)
return E_max * np.real(np.exp(exp_arg))
def do_analysis(fname, compname, steps):
ds = yt.load(fname)
dt = ds.current_time.to_value()/steps
# Define 3D meshes
x = np.linspace(
ds.domain_left_edge[0],
ds.domain_right_edge[0],
ds.domain_dimensions[0]).v
y = np.linspace(
ds.domain_left_edge[1],
ds.domain_right_edge[1],
ds.domain_dimensions[1]).v
z = np.linspace(
ds.domain_left_edge[ds.dimensionality-1],
ds.domain_right_edge[ds.dimensionality-1],
ds.domain_dimensions[ds.dimensionality-1]).v
X, Y, Z = np.meshgrid(x, y, z, sparse=False, indexing='ij')
# Compute the theory for envelope
env_theory = gauss_env(+t_c-ds.current_time.to_value(), X,Y,Z)+gauss_env(-t_c+ds.current_time.to_value(), X,Y,Z)
# Read laser field in PIC simulation, and compute envelope
all_data_level_0 = ds.covering_grid(level=0,left_edge=ds.domain_left_edge, dims=ds.domain_dimensions)
F_laser = all_data_level_0['boxlib', 'Et'].v.squeeze()
env = abs(hilbert(F_laser))
extent = [ds.domain_left_edge[ds.dimensionality-1], ds.domain_right_edge[ds.dimensionality-1],
ds.domain_left_edge[0], ds.domain_right_edge[0] ]
env_theory_slice= env_theory[:,env_theory.shape[1]//2, :]
# Plot results
plt.figure(figsize=(8,6))
plt.subplot(221)
plt.title('PIC field')
plt.imshow(F_laser, extent=extent)
plt.colorbar()
plt.subplot(222)
plt.title('PIC envelope')
plt.imshow(env, extent=extent)
plt.colorbar()
plt.subplot(223)
plt.title('Theory envelope')
plt.imshow(env_theory_slice, extent=extent)
plt.colorbar()
plt.subplot(224)
plt.title('Difference')
plt.imshow(env-env_theory_slice, extent=extent)
plt.colorbar()
plt.tight_layout()
plt.savefig(compname, bbox_inches='tight')
relative_error_env = np.sum(np.abs(env-env_theory_slice)) / np.sum(np.abs(env))
print("Relative error envelope: ", relative_error_env)
assert(relative_error_env < relative_error_threshold)
fft_F_laser = np.fft.fftn(F_laser)
freq_x = np.fft.fftfreq(F_laser.shape[0],dt)
freq_z = np.fft.fftfreq(F_laser.shape[1],dt)
pos_max = np.unravel_index(np.abs(fft_F_laser).argmax(), fft_F_laser.shape)
freq = np.sqrt((freq_x[pos_max[0]])**2 + (freq_z[pos_max[1]])**2)
exp_freq = c/wavelength
relative_error_freq = np.abs(freq-exp_freq)/exp_freq
print("Relative error frequency: ", relative_error_freq)
assert(relative_error_freq < relative_error_threshold)
def launch_analysis(executable):
os.system("./" + executable + " inputs.RZ_test diag1.file_prefix=diags/plotfiles/plt")
do_analysis("diags/plotfiles/plt000252/", "comp_unf.pdf", 252)
def main() :
from lasy.laser import Laser
from lasy.profiles import GaussianProfile
# Create a laser using lasy
pol = (1, 0)
profile = GaussianProfile(wavelength, pol, laser_energy, w0, tt, t_peak=0)
dim = "xyt"
lo = (-25e-6, -25e-6, -20e-15)
hi = (+25e-6, +25e-6, +20e-15)
npoints = (100, 100, 100)
laser = Laser(dim, lo, hi, npoints, profile)
laser.normalize(laser_energy, kind="energy")
laser.write_to_file("gaussianlaser3d")
executables = glob.glob("*.ex")
if len(executables) == 1 :
launch_analysis(executables[0])
else :
assert(False)
# Do the checksum test
filename_end = "diags/plotfiles/plt000252/"
test_name = os.path.split(os.getcwd())[1]
checksumAPI.evaluate_checksum(test_name, filename_end)
print('Passed')
if __name__ == "__main__":
main()
|