aboutsummaryrefslogtreecommitdiff
path: root/Examples/Tests/nuclear_fusion/analysis_deuterium_deuterium_3d_intraspecies.py
blob: 70178fe97a626eeebd449f1178adc962dfe963ba (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python3

# Copyright 2019-2023
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL
#
# Initialize a deuterium-deuterium thermal plasma similar to that in
# section 4.1 of [1], with fusion multiplication factor 1e10,
# 1e4 particles per cell, density 1e20/cm^3, temperature 20 keV.
# Check that the simulation reactivity matches the analytical value
# reported in Table VIII of [2], namely 2.603e-18 cm^3/s.
#
# Reference:
# [1] Higginson, D.P., Link, A. and Schmidt, A., 2019.
#     A pairwise nuclear fusion algorithm for weighted particle-in-cell
#     plasma simulations. Journal of Computational Physics, 388, pp.439-453.
#     DOI: https://doi.org/10.1016/j.jcp.2019.03.020
#
# [2] Bosch, H.S. and Hale, G.M., 1992.
#     Improved formulas for fusion cross-sections and thermal reactivities.
#     Nuclear fusion, 32(4), p.611.
#     DOI: https://doi.org/10.1088/0029-5515/32/4/I07

import os
import sys

import numpy as np

sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
import checksumAPI

# Name of the plotfile
fn = sys.argv[1]

# Load data from reduced diagnostics (physical time and neutron weights)
time = np.loadtxt('./reduced_diags/particle_number.txt', usecols=1)
neutron = np.loadtxt('./reduced_diags/particle_number.txt', usecols=9)

# Compute reactivity in units of cm^3/s as in equation (61) of [1]
dY_dt = np.abs(neutron[-1]-neutron[0])/(time[-1]-time[0])
delta_ij = 1 # reactants of the same species
nD = 1e26 # density in 1/m^3
V = (2e-3)**3 # simulation volume in m^3
sigma = dY_dt*(1+delta_ij)/(nD**2)/V*(1e2)**3

sigma_th = 2.603e-18
error = np.abs(sigma-sigma_th)/sigma_th
tolerance = 1e-2
assert error < tolerance

# Compare checksums with benchmark
test_name = os.path.split(os.getcwd())[1]
checksumAPI.evaluate_checksum(test_name, fn)