aboutsummaryrefslogtreecommitdiff
path: root/Examples/Tests/ohm_solver_magnetic_reconnection/analysis.py
blob: e48d5c03fb235188b98e860b92b2715ef205155f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python3
#
# --- Analysis script for the hybrid-PIC example of magnetic reconnection.

import glob

import dill
from matplotlib import colors
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams.update({'font.size': 20})

# load simulation parameters
with open(f'sim_parameters.dpkl', 'rb') as f:
    sim = dill.load(f)

x_idx = 2
z_idx = 4
Ey_idx = 6
Bx_idx = 8

plane_data = np.loadtxt(f'diags/plane.dat', skiprows=1)

steps = np.unique(plane_data[:,0])
num_steps = len(steps)
num_cells = plane_data.shape[0]//num_steps

plane_data = plane_data.reshape((num_steps, num_cells, plane_data.shape[1]))

times = plane_data[:, 0, 1]
dt = np.mean(np.diff(times))

plt.plot(
    times / sim.t_ci,
    np.mean(plane_data[:,:,Ey_idx], axis=1) / (sim.vA * sim.B0),
    'o-'
)

plt.grid()
plt.xlabel(r'$t/\tau_{c,i}$')
plt.ylabel('$<E_y>/v_AB_0$')
plt.title("Reconnection rate")
plt.tight_layout()
plt.savefig("diags/reconnection_rate.png")

if not sim.test:
    from matplotlib.animation import FFMpegWriter, FuncAnimation
    from scipy import interpolate

    # Animate the magnetic reconnection
    fig, axes = plt.subplots(3, 1, sharex=True, figsize=(7, 9))

    for ax in axes.flatten():
        ax.set_aspect('equal')
        ax.set_ylabel('$z/l_i$')

    axes[2].set_xlabel('$x/l_i$')

    datafiles = sorted(glob.glob("diags/fields/*.npz"))
    num_steps = len(datafiles)

    data0 = np.load(datafiles[0])

    sX = axes[0].imshow(
        data0['Jy'].T, origin='lower',
        norm=colors.TwoSlopeNorm(vmin=-0.6, vcenter=0., vmax=1.6),
        extent=[0, sim.LX, -sim.LZ/2, sim.LZ/2],
        cmap=plt.cm.RdYlBu_r
    )
    # axes[0].set_ylim(-5, 5)
    cb = plt.colorbar(sX, ax=axes[0], label='$J_y/J_0$')
    cb.ax.set_yscale('linear')
    cb.ax.set_yticks([-0.5, 0.0, 0.75, 1.5])

    sY = axes[1].imshow(
        data0['By'].T, origin='lower', extent=[0, sim.LX, -sim.LZ/2, sim.LZ/2],
        cmap=plt.cm.plasma
    )
    # axes[1].set_ylim(-5, 5)
    cb = plt.colorbar(sY, ax=axes[1], label='$B_y/B_0$')
    cb.ax.set_yscale('linear')

    sZ = axes[2].imshow(
        data0['Bz'].T, origin='lower', extent=[0, sim.LX, -sim.LZ/2, sim.LZ/2],
        # norm=colors.TwoSlopeNorm(vmin=-0.02, vcenter=0., vmax=0.02),
        cmap=plt.cm.RdBu
    )
    cb = plt.colorbar(sZ, ax=axes[2], label='$B_z/B_0$')
    cb.ax.set_yscale('linear')

    # plot field lines
    x_grid = np.linspace(0, sim.LX, data0['Bx'][:-1].shape[0])
    z_grid = np.linspace(-sim.LZ/2.0, sim.LZ/2.0, data0['Bx'].shape[1])

    n_lines = 10
    start_x = np.zeros(n_lines)
    start_x[:n_lines//2] = sim.LX
    start_z = np.linspace(-sim.LZ/2.0*0.9, sim.LZ/2.0*0.9, n_lines)
    step_size = 1.0 / 100.0

    def get_field_lines(Bx, Bz):
        field_line_coords = []

        Bx_interp = interpolate.interp2d(x_grid, z_grid, Bx[:-1].T)
        Bz_interp = interpolate.interp2d(x_grid, z_grid, Bz[:,:-1].T)

        for kk, z in enumerate(start_z):
            path_x = [start_x[kk]]
            path_z = [z]

            ii = 0
            while ii < 10000:
                ii+=1
                Bx = Bx_interp(path_x[-1], path_z[-1])[0]
                Bz = Bz_interp(path_x[-1], path_z[-1])[0]

                # print(path_x[-1], path_z[-1], Bx, Bz)

                # normalize and scale
                B_mag = np.sqrt(Bx**2 + Bz**2)
                if B_mag == 0:
                    break

                dx = Bx / B_mag * step_size
                dz = Bz / B_mag * step_size

                x_new = path_x[-1] + dx
                z_new = path_z[-1] + dz

                if np.isnan(x_new) or x_new <= 0 or x_new > sim.LX or abs(z_new) > sim.LZ/2:
                    break

                path_x.append(x_new)
                path_z.append(z_new)

            field_line_coords.append([path_x, path_z])
        return field_line_coords

    field_lines = []
    for path in get_field_lines(data0['Bx'], data0['Bz']):
        path_x = path[0]
        path_z = path[1]
        l, = axes[2].plot(path_x, path_z, '--', color='k')
        # draws arrows on the field lines
        # if path_x[10] > path_x[0]:
        axes[2].arrow(
            path_x[50], path_z[50],
            path_x[250]-path_x[50], path_z[250]-path_z[50],
            shape='full', length_includes_head=True, lw=0, head_width=1.0,
            color='g'
        )

        field_lines.append(l)

    def animate(i):
        data = np.load(datafiles[i])
        sX.set_array(data['Jy'].T)
        sY.set_array(data['By'].T)
        sZ.set_array(data['Bz'].T)
        sZ.set_clim(-np.max(abs(data['Bz'])), np.max(abs(data['Bz'])))

        for ii, path in enumerate(get_field_lines(data['Bx'], data['Bz'])):
            path_x = path[0]
            path_z = path[1]
            field_lines[ii].set_data(path_x, path_z)

    anim = FuncAnimation(
        fig, animate, frames=num_steps-1, repeat=True
    )

    writervideo = FFMpegWriter(fps=14)
    anim.save('diags/mag_reconnection.mp4', writer=writervideo)

if sim.test:
    import os
    import sys
    sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
    import checksumAPI

    # this will be the name of the plot file
    fn = sys.argv[1]
    test_name = os.path.split(os.getcwd())[1]
    checksumAPI.evaluate_checksum(test_name, fn)