aboutsummaryrefslogtreecommitdiff
path: root/Examples/Tests/pec/inputs_particle_PEC_3d
blob: ded8582b02c15457930e82542caf21c8033a4827 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Set-up to test PEC boundary condition with particles.
# A proton and negatively charged particle with equal mass as a proton are initialized
# near the boundary. The proton is given a finite bulk velocity in y and the negatively
# charged particle is stationary, initially. Due to the PEC boundary setting zero Ey
# tangential to the PEC surface at x_min and x_max, the Ey field gathered by the particles
# is two orders of magnitude smaller than the periodic boundary.

max_step = 20
amr.n_cell = 128 64 64

amr.blocking_factor = 16
amr.max_grid_size = 1024
amr.max_level = 0

# Geometry
geometry.dims = 3
geometry.prob_lo     = -32.e-6  -32.e-6  -32.e-6      # physical domain
geometry.prob_hi     =  32.e-6   32.e-6   32.e-6

# boundary condition
boundary.field_lo = pec periodic periodic
boundary.field_hi = pec periodic periodic


# Algorithms
algo.current_deposition = esirkepov
algo.charge_deposition = standard
algo.particle_pusher = vay
algo.maxwell_solver = yee
warpx.cfl = 0.9
warpx.use_filter = 1

# Particle species
particles.species_names = electron proton

electron.charge = -q_e
electron.mass = m_p
electron.injection_style = "singleparticle"
electron.single_particle_pos = 31.998e-6 0. 0.
electron.single_particle_u = 0. 0. 0.
electron.single_particle_weight = 1.0

proton.charge = q_e
proton.mass = m_p    # Very heavy ; should not move
proton.injection_style = "singleparticle"
proton.single_particle_pos = 31.998e-6 0.e-6 0.
proton.single_particle_u = 0. -2. 0.
proton.single_particle_weight = 1.0

# Particle shape factor in each direction
algo.particle_shape = 3

# Diagnostics
diagnostics.diags_names = diag1
diag1.intervals = 20
diag1.diag_type = Full
diag1.fields_to_plot = Ex Ey Ez Bx By Bz jx jy jz