1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
#!/usr/bin/env python3
# Copyright 2019 Luca Fedeli, Maxence Thevenet, Weiqun Zhang
#
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL
import os
import sys
import numpy as np
import yt
sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
import checksumAPI
#This script checks if photons initialized with different momenta and
#different initial directions propagate along straight lines at the speed of
#light. The plotfile to be analyzed is passed as a command line argument.
#If the script is run without a command line argument, it regenerates a new
#inputfile according to the initial conditions listed below.
#Physical constants
c = 299792458.
m_e = 9.1093837015e-31
#________________________________________
#Test cases
spec_names = ["p_xp_1", "p_xn_1", "p_yp_1", "p_yn_1",
"p_zp_1", "p_zn_1","p_dp_1", "p_dn_1",
"p_xp_10", "p_xn_10", "p_yp_10", "p_yn_10",
"p_zp_10", "p_zn_10", "p_dp_10", "p_dn_10"]
#photon momenta are in units of m_e c
mxp1 = np.array([1, 0.0, 0.0])
mxn1 = np.array([-1, 0.0, 0.0])
myp1 = np.array([0.0, 1, 0.0])
myn1 = np.array([0.0, -1, 0.0])
mzp1 = np.array([0.0, 0.0, 1])
mzn1 = np.array([0.0, 0.0, -1])
mdp1 = np.array([1, 1, 1])
mdn1 = np.array([-1, -1, -1])
mxp10 = np.array([10, 0.0, 0.0])
mxn10 = np.array([-10, 0.0, 0.0])
myp10 = np.array([0.0, 10, 0.0])
myn10 = np.array([0.0, -10, 0.0])
mzp10 = np.array([0.0, 0.0, 10])
mzn10 = np.array([0.0, 0.0, -10])
mdp10 = np.array([10, 10, 10])
mdn10 = np.array([-10,-10, -10])
gamma_beta_list = np.array([mxp1, mxn1, myp1, myn1, mzp1, mzn1, mdp1, mdn1,
mxp10, mxn10, myp10, myn10, mzp10, mzn10, mdp10, mdn10])
init_pos = np.array([0.0, 0.0, 0.0])
#________________________________________
#Tolerance
tol_pos = 1.0e-14;
tol_mom = 0.0; #momentum should be conserved exactly
#________________________________________
#Input filename
inputname = "inputs"
#________________________________________
# This function reads the WarpX plotfile given as the first command-line
# argument, and check if the position of each photon agrees with theory.
def check():
filename = sys.argv[1]
data_set_end = yt.load(filename)
sim_time = data_set_end.current_time.to_value()
#expected positions list
ll = sim_time*c
answ_pos = init_pos + \
ll*gamma_beta_list/np.linalg.norm(gamma_beta_list,axis=1, keepdims=True)
#expected momenta list
answ_mom = m_e * c *gamma_beta_list #momenta don't change
#simulation results
all_data = data_set_end.all_data()
res_pos = [np.array([
all_data[sp, 'particle_position_x'].v[0],
all_data[sp, 'particle_position_y'].v[0],
all_data[sp, 'particle_position_z'].v[0]])
for sp in spec_names]
res_mom = [np.array([
all_data[sp, 'particle_momentum_x'].v[0],
all_data[sp, 'particle_momentum_y'].v[0],
all_data[sp, 'particle_momentum_z'].v[0]])
for sp in spec_names]
#check discrepancies
disc_pos = [np.linalg.norm(a-b)/np.linalg.norm(b)
for a,b in zip(res_pos, answ_pos)]
disc_mom = [np.linalg.norm(a-b)/np.linalg.norm(b)
for a,b in zip(res_mom, answ_mom)]
print("max(disc_pos) = %s" %max(disc_pos))
print("tol_pos = %s" %tol_pos)
print("max(disc_mom) = %s" %max(disc_mom))
print("tol_mom = %s" %tol_mom)
assert ((max(disc_pos) <= tol_pos) and (max(disc_mom) <= tol_mom))
test_name = os.path.split(os.getcwd())[1]
checksumAPI.evaluate_checksum(test_name, filename)
# This function generates the input file to test the photon pusher.
def generate():
with open(inputname,'w') as f:
f.write("#Automatically generated inputfile\n")
f.write("#Run check.py without arguments to regenerate\n")
f.write("#\n\n")
f.write("max_step = 50\n")
f.write("amr.n_cell = 64 64 64\n")
f.write("amr.max_level = 0\n")
f.write("amr.blocking_factor = 8\n")
f.write("amr.max_grid_size = 8\n")
f.write("amr.plot_int = 1\n")
f.write("geometry.dims = 3\n")
f.write("boundary.field_lo = periodic periodic periodic\n")
f.write("boundary.field_hi = periodic periodic periodic\n")
f.write("geometry.prob_lo = -0.5e-6 -0.5e-6 -0.5e-6\n")
f.write("geometry.prob_hi = 0.5e-6 0.5e-6 0.5e-6\n")
f.write("algo.charge_deposition = standard\n")
f.write("algo.field_gathering = energy-conserving\n")
f.write("warpx.cfl = 1.0\n")
f.write("particles.species_names = {}\n".format(' '.join(spec_names)))
f.write("particles.photon_species = {}\n".format(' '.join(spec_names)))
f.write("\namr.plot_int = 50\n\n")
for name in spec_names:
f.write("diag1.{}.variables = ux uy uz\n".format(name))
f.write("\n")
data = zip(spec_names, gamma_beta_list)
for case in data:
name = case[0]
velx, vely ,velz = case[1]
f.write("{}.species_type = photon\n".format(name))
f.write('{}.injection_style = "SingleParticle"\n'.format(name))
f.write("{}.single_particle_pos = {} {} {}\n".
format(name, init_pos[0], init_pos[1], init_pos[2]))
f.write("{}.single_particle_vel = {} {} {}\n".
format(name, velx, vely, velz))
f.write("{}.single_particle_weight = 1.0\n".format(name))
f.write("\n".format(name))
def main():
if (len(sys.argv) < 2):
generate()
else:
check()
if __name__ == "__main__":
main()
|