blob: 0c0f01df582d1cff6efff51bb902526dfd94e4c3 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
#! /usr/bin/env python
import sys
import re
import yt
import numpy as np
sys.path.insert(1, '../../../../warpx/Regression/Checksum/')
import checksumAPI
tolerance = sys.float_info.epsilon
print('tolerance = ', tolerance)
filename = sys.argv[1]
psatd = True if re.search('psatd', filename) else False
averaged = True if re.search('avg', filename) else False
ds = yt.load( filename )
ad = ds.all_data()
xb = ad['beam', 'particle_position_x'].to_ndarray()
xe = ad['plasma_e', 'particle_position_x'].to_ndarray()
zb = ad['beam', 'particle_position_z'].to_ndarray()
ze = ad['plasma_e', 'particle_position_z'].to_ndarray()
filename = 'orig_restart_plt00010'
if psatd:
filename = 'orig_restart_psatd_plt00010'
if averaged:
filename = 'orig_restart_psatd_time_avg_plt00010'
ds = yt.load( filename )
ad = ds.all_data()
xb0 = ad['beam', 'particle_position_x'].to_ndarray()
xe0 = ad['plasma_e', 'particle_position_x'].to_ndarray()
zb0 = ad['beam', 'particle_position_z'].to_ndarray()
ze0 = ad['plasma_e', 'particle_position_z'].to_ndarray()
xb.sort()
xb0.sort()
assert(np.max(abs(xb-xb0))<tolerance)
xe.sort()
xe0.sort()
assert(np.max(abs(xe-xe0))<tolerance)
zb.sort()
zb0.sort()
assert(np.max(abs(zb-zb0))<tolerance)
ze.sort()
ze0.sort()
assert(np.max(abs(ze-ze0))<tolerance)
filename = sys.argv[1]
test_name = filename[:-9] # Could also be os.path.split(os.getcwd())[1]
checksumAPI.evaluate_checksum(test_name, filename)
|