aboutsummaryrefslogtreecommitdiff
path: root/Examples/analysis_default_restart.py
blob: 612851678fda4c88e066eeba72ead6dac73d4c22 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python3

import numpy as np
import yt


def check_restart(filename, tolerance = 1e-12):
    """
    Compare output data generated from initial run with output data generated after restart.

    Parameters
    ----------
    filename : str
        Name of the plotfile containing the output data generated after restart.
    tolerance : float, optional (default = 1e-12)
        Relative error between restart and original data must be smaller than tolerance.
    """
    # Load output data generated after restart
    ds_restart = yt.load(filename)

    # yt 4.0+ has rounding issues with our domain data:
    # RuntimeError: yt attempted to read outside the boundaries
    # of a non-periodic domain along dimension 0.
    if 'force_periodicity' in dir(ds_restart): ds_restart.force_periodicity()

    ad_restart = ds_restart.covering_grid(level = 0,
            left_edge = ds_restart.domain_left_edge, dims = ds_restart.domain_dimensions)

    # Load output data generated from initial run
    benchmark = 'orig_' + filename
    ds_benchmark = yt.load(benchmark)

    # yt 4.0+ has rounding issues with our domain data:
    # RuntimeError: yt attempted to read outside the boundaries
    # of a non-periodic domain along dimension 0.
    if 'force_periodicity' in dir(ds_benchmark): ds_benchmark.force_periodicity()

    ad_benchmark = ds_benchmark.covering_grid(level = 0,
            left_edge = ds_benchmark.domain_left_edge, dims = ds_benchmark.domain_dimensions)

    # Loop over all fields (all particle species, all particle attributes, all grid fields)
    # and compare output data generated from initial run with output data generated after restart
    print('\ntolerance = {:g}'.format(tolerance))
    print()
    for field in ds_benchmark.field_list:
        dr = ad_restart[field].squeeze().v
        db = ad_benchmark[field].squeeze().v
        error = np.amax(np.abs(dr - db))
        if (np.amax(np.abs(db)) != 0.):
            error /= np.amax(np.abs(db))
        print('field: {}; error = {:g}'.format(field, error))
        assert(error < tolerance)
    print()