1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
import numpy as np
from . import WarpX
from . import warpxC
class PGroup(object):
"""Implements a class that has the same API as a warp ParticleGroup instance.
"""
def __init__(self):
self.ns = 1 # Number of species
self.npmax = 0 # Size of data arrays
self.npid = 0 # number of columns for pid.
self.gallot()
def name(self):
return 'WarpXParticleGroup'
def gallot(self):
self.lebcancel_pusher = 0 # turns on/off cancellation of E+VxB within V push (logical type)
self.lebcancel = 0 # turns on/off cancellation of E+VxB before V push (logical type)
self.sm = np.zeros(self.ns) # Species mass [kg]
self.sq = np.zeros(self.ns) # Species charge [C]
self.sw = np.zeros(self.ns) # Species weight, (real particles per simulation particles)
self.ins = np.ones(self.ns, dtype=int) # Index of first particle in species
self.nps = np.zeros(self.ns, dtype=int) # Number of particles in species
self.ipmax = np.zeros(self.ns+1, dtype=int) # Max extent within the arrays of each species
self.sid = np.arange(self.ns, dtype=int) # Global species index for each species
self.ndts = np.ones(self.ns, dtype=int) # Stride for time step advance for each species
self.ldts = np.ones(self.ns, dtype=int) # (logical type)
self.lvdts = np.ones(self.ns, dtype=int) # (logical type)
self.iselfb = np.zeros(self.ns, dtype=int) # Group number for particles that are affected by
# their own magnetic field, using the 1/gamma**2
# approximation. The correction is not applied to
# group number -1.
self.fselfb = np.zeros(self.ns) # The scaling factor, vz.
self.l_maps = np.zeros(self.ns)
self.dtscale = np.ones(self.ns) # Scale factor applied to time step size for each
# species. Only makes sense in steaday and and
# transverse slice modes.
self.limplicit = np.zeros(self.ns, dtype=int) # Flags implicit particle species (logical type)
self.iimplicit = np.full(self.ns, -1, dtype=int) # Group number for implicit particles
self.ldoadvance = np.ones(self.ns, dtype=int) # Flags whether particles are time advanced (logical type)
self.lboundaries = np.ones(self.ns, dtype=int) # Flags whether boundary conditions need to be applied (logical type)
self.lparaxial = np.zeros(self.ns, dtype=int) # Flags to turn on/off paraxial approximation (logical type)
self.zshift = np.zeros(self.ns)
self.gamma_ebcancel_max = np.ones(self.ns) # maximum value allowed for ExB cancellation
self.gaminv = np.ones(self.npmax) # inverse relativistic gamma factor
self._xp = np.zeros(self.npmax) # X-positions of particles [m]
self._yp = np.zeros(self.npmax) # Y-positions of particles [m]
self._zp = np.zeros(self.npmax) # Z-positions of particles [m]
self._uxp = np.zeros(self.npmax) # gamma * X-velocities of particles [m/s]
self._uyp = np.zeros(self.npmax) # gamma * Y-velocities of particles [m/s]
self._uzp = np.zeros(self.npmax) # gamma * Z-velocities of particles [m/s]
self._ex = np.zeros(self.npmax) # Ex of particles [V/m]
self._ey = np.zeros(self.npmax) # Ey of particles [V/m]
self._ez = np.zeros(self.npmax) # Ez of particles [V/m]
self._bx = np.zeros(self.npmax) # Bx of particles [T]
self._by = np.zeros(self.npmax) # By of particles [T]
self._bz = np.zeros(self.npmax) # Bz of particles [T]
self._pid = np.zeros((self.npmax, self.npid)) # Particle ID - used for various purposes
# --- Temporary fix
gchange = gallot
def allocated(self, name):
return (getattr(self, name, None) is not None)
def addspecies(self):
pass
def _updatelocations(self):
warpx = WarpX.warpx.warpx
mypc = warpx.GetPartContainer()
xplist = []
yplist = []
zplist = []
for ispecie in range(mypc.nSpecies()):
pc = mypc.GetParticleContainer(ispecie)
xx = pc.getLocations()
xplist.append(xx[0,:])
yplist.append(xx[1,:])
zplist.append(xx[2,:])
self.nps[ispecie] = len(xplist[-1])
if ispecie > 0:
self.ins[ispecie] = self.ins[ispecie-1] + self.nps[ispecie-1]
self.ipmax[ispecie+1] = self.ins[ispecie] + self.nps[ispecie] - 1
self._xp = np.concatenate(xplist)
self._yp = np.concatenate(yplist)
self._zp = np.concatenate(zplist)
self.npmax = len(self._xp)
def _updatevelocities(self):
warpx = WarpX.warpx.warpx
mypc = warpx.GetPartContainer()
uxplist = []
uyplist = []
uzplist = []
for ispecie in range(mypc.nSpecies()):
pc = mypc.GetParticleContainer(ispecie)
vv = pc.getData(0, 3)
uxplist.append(vv[0,:])
uyplist.append(vv[1,:])
uzplist.append(vv[2,:])
self.nps[ispecie] = len(uxplist[-1])
if ispecie > 0:
self.ins[ispecie] = self.ins[ispecie-1] + self.nps[ispecie-1]
self.ipmax[ispecie+1] = self.ins[ispecie] + self.nps[ispecie] - 1
self._uxp = np.concatenate(uxplist)
self._uyp = np.concatenate(uyplist)
self._uzp = np.concatenate(uzplist)
self.npmax = len(self._xp)
def _updatepids(self):
warpx = WarpX.warpx.warpx
mypc = warpx.GetPartContainer()
pidlist = []
for ispecie in range(mypc.nSpecies()):
pc = mypc.GetParticleContainer(ispecie)
self.npid = pc.nAttribs - 3
vv = pc.getData(3, self.npid)
pidlist.append(vv)
self.nps[ispecie] = len(uxplist[-1])
if ispecie > 0:
self.ins[ispecie] = self.ins[ispecie-1] + self.nps[ispecie-1]
self.ipmax[ispecie+1] = self.ins[ispecie] + self.nps[ispecie] - 1
self._pid = np.concatenate(pidlist.T, axis=0)
self.npmax = self._pid.shape[0]
def getxp(self):
self._updatelocations()
return self._xp
xp = property(getxp)
def getyp(self):
self._updatelocations()
return self._yp
yp = property(getyp)
def getzp(self):
self._updatelocations()
return self._zp
zp = property(getzp)
def getuxp(self):
self._updatevelocities()
return self._uxp
uxp = property(getuxp)
def getuyp(self):
self._updatevelocities()
return self._uyp
uyp = property(getuyp)
def getuzp(self):
self._updatevelocities()
return self._uzp
uzp = property(getuzp)
def getpid(self):
self._updatepids()
return self._pid
pid = property(getpid)
def getgaminv(self):
uxp = self.uxp
uyp = self.uyp
uzp = self.uzp
return sqrt(1. - (uxp**2 + uyp**2 + uzp**2)/warpxC.c**2)
gaminv = property(getgaminv)
def getex(self):
return np.zeros(self.npmax)
ex = property(getex)
def getey(self):
return np.zeros(self.npmax)
ey = property(getey)
def getez(self):
return np.zeros(self.npmax)
ez = property(getez)
def getbx(self):
return np.zeros(self.npmax)
bx = property(getbx)
def getby(self):
return np.zeros(self.npmax)
by = property(getby)
def getbz(self):
return np.zeros(self.npmax)
bz = property(getbz)
|