1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
# Copyright 2017-2019 David Grote
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL
import numpy as np
from ._libwarpx import libwarpx
from ._picmi import constants
class PGroup(object):
"""Implements a class that has the same API as a warp ParticleGroup instance.
"""
def __init__(self, igroup, ispecie, level=0):
self.igroup = igroup
self.ispecie = ispecie
self.level = level
self.ns = 1 # Number of species
self.gallot()
def name(self):
return 'WarpXParticleGroup'
def gallot(self):
self.lebcancel_pusher = 0 # turns on/off cancellation of E+VxB within V push (logical type)
self.lebcancel = 0 # turns on/off cancellation of E+VxB before V push (logical type)
self.sm = np.zeros(self.ns) # Species mass [kg]
self.sq = np.zeros(self.ns) # Species charge [C]
self.sw = np.ones(self.ns) # Species weight, (real particles per simulation particles)
self.sid = np.arange(self.ns, dtype=int) # Global species index for each species
self.ndts = np.ones(self.ns, dtype=int) # Stride for time step advance for each species
self.ldts = np.ones(self.ns, dtype=int) # (logical type)
self.lvdts = np.ones(self.ns, dtype=int) # (logical type)
self.iselfb = np.zeros(self.ns, dtype=int) # Group number for particles that are affected by
# their own magnetic field, using the 1/gamma**2
# approximation. The correction is not applied to
# group number -1.
self.fselfb = np.zeros(self.ns) # The scaling factor, vz.
self.l_maps = np.zeros(self.ns)
self.dtscale = np.ones(self.ns) # Scale factor applied to time step size for each
# species. Only makes sense in steaday and and
# transverse slice modes.
self.limplicit = np.zeros(self.ns, dtype=int) # Flags implicit particle species (logical type)
self.iimplicit = np.full(self.ns, -1, dtype=int) # Group number for implicit particles
self.ldoadvance = np.ones(self.ns, dtype=int) # Flags whether particles are time advanced (logical type)
self.lboundaries = np.ones(self.ns, dtype=int) # Flags whether boundary conditions need to be applied (logical type)
self.lparaxial = np.zeros(self.ns, dtype=int) # Flags to turn on/off paraxial approximation (logical type)
self.zshift = np.zeros(self.ns)
self.gamma_ebcancel_max = np.ones(self.ns) # maximum value allowed for ExB cancellation
# --- Temporary fix
gchange = gallot
def allocated(self, name):
return True
def addspecies(self):
pass
def getnpid(self):
return libwarpx.get_nattr()
npid = property(getnpid)
def getnps(self):
return np.array([len(self.xp)], dtype='l')
nps = property(getnps)
def getins(self):
return np.ones(self.ns, dtype='l')
ins = property(getins)
def getipmax(self):
return np.array([0, len(self.xp)], dtype='l')
ipmax = property(getipmax)
def getnpmax(self):
return self.nps.sum()
npmax = property(getnpmax)
def getxp(self):
return libwarpx.get_particle_x(self.ispecie, self.level)[self.igroup]
xp = property(getxp)
def getyp(self):
return libwarpx.get_particle_y(self.ispecie, self.level)[self.igroup]
yp = property(getyp)
def getrp(self):
return libwarpx.get_particle_r(self.ispecie, self.level)[self.igroup]
rp = property(getrp)
def getzp(self):
return libwarpx.get_particle_z(self.ispecie, self.level)[self.igroup]
zp = property(getzp)
def getuxp(self):
return libwarpx.get_particle_ux(self.ispecie, self.level)[self.igroup]
uxp = property(getuxp)
def getuyp(self):
return libwarpx.get_particle_uy(self.ispecie, self.level)[self.igroup]
uyp = property(getuyp)
def getuzp(self):
return libwarpx.get_particle_uz(self.ispecie, self.level)[self.igroup]
uzp = property(getuzp)
def getw(self):
return libwarpx.get_particle_weight(self.ispecie, self.level)[self.igroup]
def getpid(self, id):
pid = libwarpx.get_particle_arrays(self.ispecie, id, self.level)[self.igroup]
return np.array([pid]).T
def getgaminv(self):
uxp = self.getuxp()
uyp = self.getuyp()
uzp = self.getuzp()
return np.sqrt(1. - (uxp**2 + uyp**2 + uzp**2)/constants.c**2)
gaminv = property(getgaminv)
def getex(self):
raise Exception('Particle E fields not supported')
ex = property(getex)
def getey(self):
raise Exception('Particle E fields not supported')
ey = property(getey)
def getez(self):
raise Exception('Particle E fields not supported')
ez = property(getez)
def getbx(self):
raise Exception('Particle B fields not supported')
bx = property(getbx)
def getby(self):
raise Exception('Particle B fields not supported')
by = property(getby)
def getbz(self):
raise Exception('Particle B fields not supported')
bz = property(getbz)
def gettheta(self):
return libwarpx.get_particle_theta(self.ispecie, self.level)[self.igroup]
theta = property(gettheta)
class PGroups(object):
def __init__(self, ispecie=0, level=0):
self.ispecie = ispecie
self.level = level
def setuppgroups(self):
xall = libwarpx.get_particle_x(self.ispecie, self.level)
self.ngroups = len(xall)
self._pgroups = []
for igroup in range(self.ngroups):
self._pgroups.append(PGroup(igroup, self.ispecie, self.level))
def __iter__(self):
self.setuppgroups()
for igroup in range(self.ngroups):
yield self._pgroups[igroup]
def __getitem__(self, key):
self.setuppgroups()
return self._pgroups[key]
def __len__(self):
self.setuppgroups()
return len(self._pgroups)
|