aboutsummaryrefslogtreecommitdiff
path: root/Python/pywarpx/PICMI.py
blob: 19fa665c6fbc2f26489ff293f9666a983fd10bfe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""Classes following the PICMI standard
"""
import PICMI_Base
import numpy as np
import pywarpx

codename = 'WarpX'

# --- Values from WarpXConst.H
c = 299792458.
ep0 = 8.854187817e-12
mu0 = 1.2566370614359173e-06
q_e = 1.602176462e-19
m_e = 9.10938291e-31
m_p = 1.6726231e-27


class Species(PICMI_Base.PICMI_Species):
    def init(self, **kw):

        if self.type == 'electron':
            if self.charge is None: self.charge = '-q_e'
            if self.mass is None: self.mass = 'm_e'
        elif self.type == 'positron':
            if self.charge is None: self.charge = 'q_e'
            if self.mass is None: self.mass = 'm_e'
        elif self.type == 'proton':
            if self.charge is None: self.charge = 'q_e'
            if self.mass is None: self.mass = 'm_p'
        elif self.type == 'anti-proton':
            if self.charge is None: self.charge = '-q_e'
            if self.mass is None: self.mass = 'm_p'

        self.species_number = pywarpx.particles.nspecies
        pywarpx.particles.nspecies += 1

        if self.name is None:
            self.name = 'species{}'.format(self.species_number)

        if pywarpx.particles.species_names is None:
            pywarpx.particles.species_names = self.name
        else:
            pywarpx.particles.species_names += ' ' + self.name

        self.bucket = pywarpx.Bucket.Bucket(self.name, mass=self.mass, charge=self.charge, injection_style = 'python')
        pywarpx.Particles.particles_list.append(self.bucket)


class GaussianBeam(PICMI_Base.PICMI_GaussianBeam):
    def init(self, **kw):

        self.species.bucket.injection_style = "gaussian_beam"
        self.species.bucket.x_m = self.Xmean
        self.species.bucket.y_m = self.Ymean
        self.species.bucket.z_m = self.Zmean
        self.species.bucket.x_rms = self.Xrms
        self.species.bucket.y_rms = self.Yrms
        self.species.bucket.z_rms = self.Zrms
        self.species.bucket.npart = self.number_sim_particles

        # --- Calculate the total charge. Note that charge might be a string instead of a number.
        charge = self.species.bucket.charge
        if charge == 'q_e' or charge == '+q_e':
            charge = q_e
        elif charge == '-q_e':
            charge = -q_e
        self.species.bucket.q_tot = self.number_real_particles*charge

        # --- These need to be defined even though they are not used
        self.species.bucket.profile = "constant"
        self.species.bucket.density = 1

        # --- The PICMI standard doesn't yet have a way of specifying these values.
        # --- They should default to the size of the domain. They are not typically
        # --- necessary though since any particles outside the domain are rejected.
        #self.species.bucket.xmin
        #self.species.bucket.xmax
        #self.species.bucket.ymin
        #self.species.bucket.ymax
        #self.species.bucket.zmin
        #self.species.bucket.zmax

        if self.UXdiv != 0. and self.UYdiv != 0. and self.UZdiv != 0.:
            self.species.bucket.momentum_distribution_type = "radial_expansion"
            self.species.bucket.u_over_r = self.UXdiv
            #self.species.bucket.u_over_y = self.UYdiv
            #self.species.bucket.u_over_z = self.UZdiv
        elif self.UXrms != 0. or self.UYrms != 0. or self.UZrms != 0.:
            self.species.bucket.momentum_distribution_type = "gaussian"
            self.species.bucket.ux_m = self.UXmean
            self.species.bucket.uy_m = self.UYmean
            self.species.bucket.uz_m = self.UZmean
            self.species.bucket.ux_th = self.UXrms
            self.species.bucket.uy_th = self.UYrms
            self.species.bucket.uz_th = self.UZrms
        else:
            self.species.bucket.momentum_distribution_type = "constant"
            self.species.bucket.ux = self.UXmean
            self.species.bucket.uy = self.UYmean
            self.species.bucket.uz = self.UZmean


class Plasma(PICMI_Base.PICMI_Plasma):
    def init(self, **kw):

        for species in self.species:
            if self.number_per_cell_each_dim is not None:
                species.bucket.injection_style = "nuniformpercell"
                species.bucket.num_particles_per_cell_each_dim = self.number_per_cell_each_dim
            elif self.number_per_cell is not None:
                species.bucket.injection_style = "nrandompercell"
                species.bucket.num_particles_per_cell = self.number_per_cell
            else:
                raise Exception('Either nuniformpercell or nrandompercell must be specified')

            species.bucket.xmin = self.xmin
            species.bucket.xmax = self.xmax
            species.bucket.ymin = self.ymin
            species.bucket.ymax = self.ymax
            species.bucket.zmin = self.zmin
            species.bucket.zmax = self.zmax

            # --- Only constant density is supported at this time
            species.bucket.profile = "constant"
            species.bucket.density = self.density

            if self.vthx != 0. or self.vthy != 0. or self.vthz != 0.:
                species.bucket.momentum_distribution_type = "gaussian"
                species.bucket.ux_m = self.vxmean
                species.bucket.uy_m = self.vymean
                species.bucket.uz_m = self.vzmean
                species.bucket.ux_th = self.vthx
                species.bucket.uy_th = self.vthy
                species.bucket.uz_th = self.vthz
            else:
                species.bucket.momentum_distribution_type = "constant"
                species.bucket.ux = self.vxmean
                species.bucket.uy = self.vymean
                species.bucket.uz = self.vzmean

            if self.fill_in:
                pywarpx.warpx.do_plasma_injection = 1
                if not hasattr(pywarpx.warpx, 'injected_plasma_species'):
                    pywarpx.warpx.injected_plasma_species = []

                pywarpx.warpx.injected_plasma_species.append(species.species_number)
                pywarpx.warpx.num_injected_species = len(pywarpx.warpx.injected_plasma_species)


class ParticleList(PICMI_Base.PICMI_ParticleList):
    def init(self, **kw):

        if len(x) > 1:
            raise Exception('Only a single particle can be loaded')

        self.species.bucket.injection_style = "singleparticle"
        self.species.bucket.single_particle_pos = [self.x[0], self.y[0], self.z[0]]
        self.species.bucket.single_particle_vel = [self.ux[0]/c, self.uy[0]/c, self.uz[0]/c]
        self.species.bucket.single_particle_weight = self.weight

        # --- These need to be defined even though they are not used
        self.species.bucket.profile = "constant"
        self.species.bucket.density = 1
        self.species.bucket.momentum_distribution_type = 'constant'


class Grid(PICMI_Base.PICMI_Grid):
    def init(self, **kw):

        pywarpx.amr.n_cell = [self.nx, self.ny, self.nz]

        # Maximum allowable size of each subdomain in the problem domain;
        #    this is used to decompose the domain for parallel calculations.
        pywarpx.amr.max_grid_size = kw.get('max_grid_size', 32)

        # Maximum level in hierarchy (for now must be 0, i.e., one level in total)
        pywarpx.amr.max_level = kw.get('max_level', 0)

        # Geometry
        pywarpx.geometry.coord_sys = kw.get('coord_sys', 0)  # 0: Cartesian
        pywarpx.geometry.is_periodic = '%d %d %d'%(self.bcxmin=='periodic', self.bcymin=='periodic', self.bczmin=='periodic')  # Is periodic?
        pywarpx.geometry.prob_lo = [self.xmin, self.ymin, self.zmin]  # physical domain
        pywarpx.geometry.prob_hi = [self.xmax, self.ymax, self.zmax]

        if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)):
            pywarpx.warpx.do_moving_window = 1
            if self.moving_window_velocity[0] != 0.:
                pywarpx.warpx.moving_window_dir = 'x'
                pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/c  # in units of the speed of light
            if self.moving_window_velocity[1] != 0.:
                pywarpx.warpx.moving_window_dir = 'y'
                pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/c  # in units of the speed of light
            if self.moving_window_velocity[2] != 0.:
                pywarpx.warpx.moving_window_dir = 'z'
                pywarpx.warpx.moving_window_v = self.moving_window_velocity[2]/c  # in units of the speed of light

    def getmins(self, **kw):
        return np.array([pywarpx.warpx.getProbLo(0), pywarpx.warpx.getProbLo(1), pywarpx.warpx.getProbLo(2)])

    def getmaxs(self, **kw):
        return np.array([pywarpx.warpx.getProbHi(0), pywarpx.warpx.getProbHi(1), pywarpx.warpx.getProbHi(2)])

    def getxmin(self):
        return pywarpx.warpx.getProbLo(0)

    def getxmax(self):
        return pywarpx.warpx.getProbHi(0)

    def getymin(self):
        return pywarpx.warpx.getProbLo(1)

    def getymax(self):
        return pywarpx.warpx.getProbHi(1)

    def getzmin(self):
        return pywarpx.warpx.getProbLo(2)

    def getzmax(self):
        return pywarpx.warpx.getProbHi(2)


class EM_solver(PICMI_Base.PICMI_EM_solver):
    def init(self, **kw):

        if self.method is None:
            self.method = 'Yee'

        assert self.method in ['Yee'], Exception("Only 'Yee' FDTD is supported")

        if 'current_deposition_algo' in kw:
            pywarpx.algo.current_deposition = kw['current_deposition_algo']
        if 'charge_deposition_algo' in kw:
            pywarpx.algo.charge_deposition = kw['charge_deposition_algo']
        if 'field_gathering_algo' in kw:
            pywarpx.algo.field_gathering = kw['field_gathering_algo']
        if 'particle_pusher_algo' in kw:
            pywarpx.algo.particle_pusher = kw['particle_pusher_algo']

        pywarpx.interpolation.nox = self.norderx
        pywarpx.interpolation.noy = self.nordery
        pywarpx.interpolation.noz = self.norderz

class Simulation(PICMI_Base.PICMI_Simulation):
    def init(self, **kw):

        pywarpx.warpx.verbose = self.verbose
        pywarpx.warpx.cfl = self.timestep_over_cfl
        if self.timestep == 0.:
            pywarpx.warpx.cfl = self.timestep_over_cfl
        else:
            pywarpx.warpx.const_dt = self.timestep

        if 'plot_int' in kw:
            pywarpx.amr.plot_int = kw['plot_int']

        self.initialized = False

    def initialize(self, inputs_name=None):
        if not self.initialized:
            self.initialized = True
            pywarpx.warpx.init()

    def write_inputs(self, inputs_name='inputs'):
        kw = {}
        if self.max_step is not None:
            kw['max_step'] = self.max_step
        if self.max_time is not None:
            kw['stop_time'] = self.max_time
        pywarpx.warpx.write_inputs(inputs_name, **kw)

    def step(self, nsteps=None):
        self.initialize()
        if nsteps is None:
            if self.max_step is not None:
                nsteps = self.max_step
            else:
                nsteps = -1
        pywarpx.warpx.evolve(nsteps)

    def finalize(self):
        if self.initialized:
            self.initialized = False
            pywarpx.warpx.finalize()


class Gaussian_laser(PICMI_Base.PICMI_Gaussian_laser):
    def init(self, **kw):

        pywarpx.warpx.use_laser = 1
        pywarpx.laser.profile = "Gaussian"
        pywarpx.laser.wavelength = self.wavelength  # The wavelength of the laser (in meters)
        pywarpx.laser.e_max = self.E0  # Maximum amplitude of the laser field (in V/m)
        pywarpx.laser.polarization = [np.cos(self.pol_angle), np.sin(self.pol_angle), 0.]  # The main polarization vector
        pywarpx.laser.profile_waist = self.waist  # The waist of the laser (in meters)
        pywarpx.laser.profile_duration = self.duration  # The duration of the laser (in seconds)
        pywarpx.laser.profile_t_peak = (self.focal_position - self.z0)/c  # The time at which the laser reaches its peak (in seconds)


class Laser_antenna(PICMI_Base.PICMI_Laser_antenna):
    def init(self, **kw):

        pywarpx.laser.position = [self.antenna_x0, self.antenna_y0, self.antenna_z0]  # This point is on the laser plane
        pywarpx.laser.direction = [self.antenna_xvec, self.antenna_yvec, self.antenna_zvec]  # The plane normal direction
        pywarpx.laser.profile_focal_distance = self.laser.focal_position - self.antenna_z0  # Focal distance from the antenna (in meters)