1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
"""Classes following the PICMI standard
"""
import PICMI_Base
import numpy as np
import pywarpx
codename = 'WarpX'
# --- Values from WarpXConst.H
c = 299792458.
ep0 = 8.854187817e-12
mu0 = 1.2566370614359173e-06
q_e = 1.602176462e-19
m_e = 9.10938291e-31
m_p = 1.6726231e-27
class Species(PICMI_Base.PICMI_Species):
def init(self, **kw):
if self.type == 'electron':
if self.charge is None: self.charge = '-q_e'
if self.mass is None: self.mass = 'm_e'
elif self.type == 'positron':
if self.charge is None: self.charge = 'q_e'
if self.mass is None: self.mass = 'm_e'
elif self.type == 'proton':
if self.charge is None: self.charge = 'q_e'
if self.mass is None: self.mass = 'm_p'
elif self.type == 'anti-proton':
if self.charge is None: self.charge = '-q_e'
if self.mass is None: self.mass = 'm_p'
self.species_number = pywarpx.particles.nspecies
pywarpx.particles.nspecies += 1
if self.name is None:
self.name = 'species{}'.format(self.species_number)
if pywarpx.particles.species_names is None:
pywarpx.particles.species_names = self.name
else:
pywarpx.particles.species_names += ' ' + self.name
self.bucket = pywarpx.Bucket.Bucket(self.name, mass=self.mass, charge=self.charge, injection_style = 'python')
pywarpx.Particles.particles_list.append(self.bucket)
class GaussianBeam(PICMI_Base.PICMI_GaussianBeam):
def init(self, **kw):
self.species.bucket.injection_style = "gaussian_beam"
self.species.bucket.x_m = self.Xmean
self.species.bucket.y_m = self.Ymean
self.species.bucket.z_m = self.Zmean
self.species.bucket.x_rms = self.Xrms
self.species.bucket.y_rms = self.Yrms
self.species.bucket.z_rms = self.Zrms
self.species.bucket.npart = self.number_sim_particles
# --- Calculate the total charge. Note that charge might be a string instead of a number.
charge = self.species.bucket.charge
if charge == 'q_e' or charge == '+q_e':
charge = q_e
elif charge == '-q_e':
charge = -q_e
self.species.bucket.q_tot = self.number_real_particles*charge
# --- These need to be defined even though they are not used
self.species.bucket.profile = "constant"
self.species.bucket.density = 1
# --- The PICMI standard doesn't yet have a way of specifying these values.
# --- They should default to the size of the domain. They are not typically
# --- necessary though since any particles outside the domain are rejected.
#self.species.bucket.xmin
#self.species.bucket.xmax
#self.species.bucket.ymin
#self.species.bucket.ymax
#self.species.bucket.zmin
#self.species.bucket.zmax
if self.UXdiv != 0. and self.UYdiv != 0. and self.UZdiv != 0.:
self.species.bucket.momentum_distribution_type = "radial_expansion"
self.species.bucket.u_over_r = self.UXdiv
#self.species.bucket.u_over_y = self.UYdiv
#self.species.bucket.u_over_z = self.UZdiv
elif self.UXrms != 0. or self.UYrms != 0. or self.UZrms != 0.:
self.species.bucket.momentum_distribution_type = "gaussian"
self.species.bucket.ux_m = self.UXmean
self.species.bucket.uy_m = self.UYmean
self.species.bucket.uz_m = self.UZmean
self.species.bucket.ux_th = self.UXrms
self.species.bucket.uy_th = self.UYrms
self.species.bucket.uz_th = self.UZrms
else:
self.species.bucket.momentum_distribution_type = "constant"
self.species.bucket.ux = self.UXmean
self.species.bucket.uy = self.UYmean
self.species.bucket.uz = self.UZmean
class Plasma(PICMI_Base.PICMI_Plasma):
def init(self, **kw):
for species in self.species:
if self.number_per_cell_each_dim is not None:
species.bucket.injection_style = "nuniformpercell"
species.bucket.num_particles_per_cell_each_dim = self.number_per_cell_each_dim
elif self.number_per_cell is not None:
species.bucket.injection_style = "nrandompercell"
species.bucket.num_particles_per_cell = self.number_per_cell
else:
raise Exception('Either nuniformpercell or nrandompercell must be specified')
species.bucket.xmin = self.xmin
species.bucket.xmax = self.xmax
species.bucket.ymin = self.ymin
species.bucket.ymax = self.ymax
species.bucket.zmin = self.zmin
species.bucket.zmax = self.zmax
# --- Only constant density is supported at this time
species.bucket.profile = "constant"
species.bucket.density = self.density
if self.vthx != 0. or self.vthy != 0. or self.vthz != 0.:
species.bucket.momentum_distribution_type = "gaussian"
species.bucket.ux_m = self.vxmean
species.bucket.uy_m = self.vymean
species.bucket.uz_m = self.vzmean
species.bucket.ux_th = self.vthx
species.bucket.uy_th = self.vthy
species.bucket.uz_th = self.vthz
else:
species.bucket.momentum_distribution_type = "constant"
species.bucket.ux = self.vxmean
species.bucket.uy = self.vymean
species.bucket.uz = self.vzmean
if self.fill_in:
pywarpx.warpx.do_plasma_injection = 1
if not hasattr(pywarpx.warpx, 'injected_plasma_species'):
pywarpx.warpx.injected_plasma_species = []
pywarpx.warpx.injected_plasma_species.append(species.species_number)
pywarpx.warpx.num_injected_species = len(pywarpx.warpx.injected_plasma_species)
class ParticleList(PICMI_Base.PICMI_ParticleList):
def init(self, **kw):
if len(x) > 1:
raise Exception('Only a single particle can be loaded')
self.species.bucket.injection_style = "singleparticle"
self.species.bucket.single_particle_pos = [self.x[0], self.y[0], self.z[0]]
self.species.bucket.single_particle_vel = [self.ux[0]/c, self.uy[0]/c, self.uz[0]/c]
self.species.bucket.single_particle_weight = self.weight
# --- These need to be defined even though they are not used
self.species.bucket.profile = "constant"
self.species.bucket.density = 1
self.species.bucket.momentum_distribution_type = 'constant'
class Grid(PICMI_Base.PICMI_Grid):
def init(self, **kw):
pywarpx.amr.n_cell = [self.nx, self.ny, self.nz]
# Maximum allowable size of each subdomain in the problem domain;
# this is used to decompose the domain for parallel calculations.
pywarpx.amr.max_grid_size = kw.get('max_grid_size', 32)
# Maximum level in hierarchy (for now must be 0, i.e., one level in total)
pywarpx.amr.max_level = kw.get('max_level', 0)
# Geometry
pywarpx.geometry.coord_sys = kw.get('coord_sys', 0) # 0: Cartesian
pywarpx.geometry.is_periodic = '%d %d %d'%(self.bcxmin=='periodic', self.bcymin=='periodic', self.bczmin=='periodic') # Is periodic?
pywarpx.geometry.prob_lo = [self.xmin, self.ymin, self.zmin] # physical domain
pywarpx.geometry.prob_hi = [self.xmax, self.ymax, self.zmax]
if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)):
pywarpx.warpx.do_moving_window = 1
if self.moving_window_velocity[0] != 0.:
pywarpx.warpx.moving_window_dir = 'x'
pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/c # in units of the speed of light
if self.moving_window_velocity[1] != 0.:
pywarpx.warpx.moving_window_dir = 'y'
pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/c # in units of the speed of light
if self.moving_window_velocity[2] != 0.:
pywarpx.warpx.moving_window_dir = 'z'
pywarpx.warpx.moving_window_v = self.moving_window_velocity[2]/c # in units of the speed of light
def getmins(self, **kw):
return np.array([pywarpx.warpx.getProbLo(0), pywarpx.warpx.getProbLo(1), pywarpx.warpx.getProbLo(2)])
def getmaxs(self, **kw):
return np.array([pywarpx.warpx.getProbHi(0), pywarpx.warpx.getProbHi(1), pywarpx.warpx.getProbHi(2)])
def getxmin(self):
return pywarpx.warpx.getProbLo(0)
def getxmax(self):
return pywarpx.warpx.getProbHi(0)
def getymin(self):
return pywarpx.warpx.getProbLo(1)
def getymax(self):
return pywarpx.warpx.getProbHi(1)
def getzmin(self):
return pywarpx.warpx.getProbLo(2)
def getzmax(self):
return pywarpx.warpx.getProbHi(2)
class EM_solver(PICMI_Base.PICMI_EM_solver):
def init(self, **kw):
if self.method is None:
self.method = 'Yee'
assert self.method in ['Yee'], Exception("Only 'Yee' FDTD is supported")
if 'current_deposition_algo' in kw:
pywarpx.algo.current_deposition = kw['current_deposition_algo']
if 'charge_deposition_algo' in kw:
pywarpx.algo.charge_deposition = kw['charge_deposition_algo']
if 'field_gathering_algo' in kw:
pywarpx.algo.field_gathering = kw['field_gathering_algo']
if 'particle_pusher_algo' in kw:
pywarpx.algo.particle_pusher = kw['particle_pusher_algo']
pywarpx.interpolation.nox = self.norderx
pywarpx.interpolation.noy = self.nordery
pywarpx.interpolation.noz = self.norderz
class Simulation(PICMI_Base.PICMI_Simulation):
def init(self, **kw):
pywarpx.warpx.verbose = self.verbose
pywarpx.warpx.cfl = self.timestep_over_cfl
if self.timestep == 0.:
pywarpx.warpx.cfl = self.timestep_over_cfl
else:
pywarpx.warpx.const_dt = self.timestep
if 'plot_int' in kw:
pywarpx.amr.plot_int = kw['plot_int']
self.initialized = False
def initialize(self, inputs_name=None):
if not self.initialized:
self.initialized = True
pywarpx.warpx.init()
def write_inputs(self, inputs_name='inputs'):
kw = {}
if self.max_step is not None:
kw['max_step'] = self.max_step
if self.max_time is not None:
kw['stop_time'] = self.max_time
pywarpx.warpx.write_inputs(inputs_name, **kw)
def step(self, nsteps=None):
self.initialize()
if nsteps is None:
if self.max_step is not None:
nsteps = self.max_step
else:
nsteps = -1
pywarpx.warpx.evolve(nsteps)
def finalize(self):
if self.initialized:
self.initialized = False
pywarpx.warpx.finalize()
class Gaussian_laser(PICMI_Base.PICMI_Gaussian_laser):
def init(self, **kw):
pywarpx.warpx.use_laser = 1
pywarpx.laser.profile = "Gaussian"
pywarpx.laser.wavelength = self.wavelength # The wavelength of the laser (in meters)
pywarpx.laser.e_max = self.E0 # Maximum amplitude of the laser field (in V/m)
pywarpx.laser.polarization = [np.cos(self.pol_angle), np.sin(self.pol_angle), 0.] # The main polarization vector
pywarpx.laser.profile_waist = self.waist # The waist of the laser (in meters)
pywarpx.laser.profile_duration = self.duration # The duration of the laser (in seconds)
pywarpx.laser.profile_t_peak = (self.focal_position - self.z0)/c # The time at which the laser reaches its peak (in seconds)
class Laser_antenna(PICMI_Base.PICMI_Laser_antenna):
def init(self, **kw):
pywarpx.laser.position = [self.antenna_x0, self.antenna_y0, self.antenna_z0] # This point is on the laser plane
pywarpx.laser.direction = [self.antenna_xvec, self.antenna_yvec, self.antenna_zvec] # The plane normal direction
pywarpx.laser.profile_focal_distance = self.laser.focal_position - self.antenna_z0 # Focal distance from the antenna (in meters)
|