1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
# Copyright 2017-2023 The WarpX Community
#
# This file is part of WarpX.
#
# Authors: David Grote, Roelof Groenewald
#
# License: BSD-3-Clause-LBNL
import numpy as np
from ._libwarpx import libwarpx
class ParticleContainerWrapper(object):
"""Wrapper around particle containers.
This provides a convenient way to query and set data in the particle containers.
Parameters
----------
species_name: string
The name of the species to be accessed.
"""
def __init__(self, species_name):
self.name = species_name
# grab the desired particle container
mypc = libwarpx.warpx.multi_particle_container()
self.particle_container = mypc.get_particle_container_from_name(self.name)
def add_particles(self, x=None, y=None, z=None, ux=None, uy=None,
uz=None, w=None, unique_particles=True, **kwargs):
'''
A function for adding particles to the WarpX simulation.
Parameters
----------
species_name : str
The type of species for which particles will be added
x, y, z : arrays or scalars
The particle positions (default = 0.)
ux, uy, uz : arrays or scalars
The particle momenta (default = 0.)
w : array or scalars
Particle weights (default = 0.)
unique_particles : bool
Whether the particles are unique or duplicated on several processes
(default = True)
kwargs : dict
Containing an entry for all the extra particle attribute arrays. If
an attribute is not given it will be set to 0.
'''
# --- Get length of arrays, set to one for scalars
lenx = np.size(x)
leny = np.size(y)
lenz = np.size(z)
lenux = np.size(ux)
lenuy = np.size(uy)
lenuz = np.size(uz)
lenw = np.size(w)
# --- Find the max length of the parameters supplied
maxlen = 0
if x is not None:
maxlen = max(maxlen, lenx)
if y is not None:
maxlen = max(maxlen, leny)
if z is not None:
maxlen = max(maxlen, lenz)
if ux is not None:
maxlen = max(maxlen, lenux)
if uy is not None:
maxlen = max(maxlen, lenuy)
if uz is not None:
maxlen = max(maxlen, lenuz)
if w is not None:
maxlen = max(maxlen, lenw)
# --- Make sure that the lengths of the input parameters are consistent
assert x is None or lenx==maxlen or lenx==1, "Length of x doesn't match len of others"
assert y is None or leny==maxlen or leny==1, "Length of y doesn't match len of others"
assert z is None or lenz==maxlen or lenz==1, "Length of z doesn't match len of others"
assert ux is None or lenux==maxlen or lenux==1, "Length of ux doesn't match len of others"
assert uy is None or lenuy==maxlen or lenuy==1, "Length of uy doesn't match len of others"
assert uz is None or lenuz==maxlen or lenuz==1, "Length of uz doesn't match len of others"
assert w is None or lenw==maxlen or lenw==1, "Length of w doesn't match len of others"
for key, val in kwargs.items():
assert np.size(val)==1 or len(val)==maxlen, f"Length of {key} doesn't match len of others"
# --- Broadcast scalars into appropriate length arrays
# --- If the parameter was not supplied, use the default value
if lenx == 1:
x = np.full(maxlen, (x or 0.))
if leny == 1:
y = np.full(maxlen, (y or 0.))
if lenz == 1:
z = np.full(maxlen, (z or 0.))
if lenux == 1:
ux = np.full(maxlen, (ux or 0.))
if lenuy == 1:
uy = np.full(maxlen, (uy or 0.))
if lenuz == 1:
uz = np.full(maxlen, (uz or 0.))
if lenw == 1:
w = np.full(maxlen, (w or 0.))
for key, val in kwargs.items():
if np.size(val) == 1:
kwargs[key] = np.full(maxlen, val)
# --- The number of built in attributes
# --- The three velocities
built_in_attrs = 3
if libwarpx.geometry_dim == 'rz':
# --- With RZ, there is also theta
built_in_attrs += 1
# --- The number of extra attributes (including the weight)
nattr = self.particle_container.num_real_comps() - built_in_attrs
attr = np.zeros((maxlen, nattr))
attr[:,0] = w
# --- Note that the velocities are handled separately and not included in attr
# --- (even though they are stored as attributes in the C++)
for key, vals in kwargs.items():
attr[:,self.particle_container.get_comp_index(key) - built_in_attrs] = vals
nattr_int = 0
attr_int = np.empty([0], dtype=np.int32)
# TODO: expose ParticleReal through pyAMReX
# and cast arrays to the correct types, before calling add_n_particles
# x = x.astype(self._numpy_particlereal_dtype, copy=False)
# y = y.astype(self._numpy_particlereal_dtype, copy=False)
# z = z.astype(self._numpy_particlereal_dtype, copy=False)
# ux = ux.astype(self._numpy_particlereal_dtype, copy=False)
# uy = uy.astype(self._numpy_particlereal_dtype, copy=False)
# uz = uz.astype(self._numpy_particlereal_dtype, copy=False)
self.particle_container.add_n_particles(
0, x.size, x, y, z, ux, uy, uz,
nattr, attr, nattr_int, attr_int, unique_particles
)
def get_particle_count(self, local=False):
'''
Get the number of particles of this species in the simulation.
Parameters
----------
local : bool
If True the particle count on this processor will be returned.
Default False.
Returns
-------
int
An integer count of the number of particles
'''
return self.particle_container.total_number_of_particles(True, local)
nps = property(get_particle_count)
def add_real_comp(self, pid_name, comm=True):
'''
Add a real component to the particle data array.
Parameters
----------
pid_name : str
Name that can be used to identify the new component
comm : bool
Should the component be communicated
'''
self.particle_container.add_real_comp(pid_name, comm)
def get_particle_structs(self, level):
'''
This returns a list of numpy arrays containing the particle struct data
on each tile for this process. The particle data is represented as a structured
numpy array and contains the particle 'x', 'y', 'z', and 'idcpu'.
The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
----------
level : int
The refinement level to reference
Returns
-------
List of numpy arrays
The requested particle struct data
'''
particle_data = []
for pti in libwarpx.libwarpx_so.WarpXParIter(self.particle_container, level):
aos_arr = np.array(pti.aos(), copy=False)
particle_data.append(aos_arr)
return particle_data
def get_particle_arrays(self, comp_name, level):
'''
This returns a list of numpy arrays containing the particle array data
on each tile for this process.
The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
----------
comp_name : str
The component of the array data that will be returned
level : int
The refinement level to reference
Returns
-------
List of numpy arrays
The requested particle array data
'''
comp_idx = self.particle_container.get_comp_index(comp_name)
data_array = []
for pti in libwarpx.libwarpx_so.WarpXParIter(self.particle_container, level):
soa = pti.soa()
data_array.append(np.array(soa.GetRealData(comp_idx), copy=False))
return data_array
def get_particle_id(self, level=0):
'''
Return a list of numpy arrays containing the particle 'id'
numbers on each tile.
'''
structs = self.get_particle_structs(level)
return [libwarpx.amr.unpack_ids(struct['cpuid']) for struct in structs]
def get_particle_cpu(self, level=0):
'''
Return a list of numpy arrays containing the particle 'cpu'
numbers on each tile.
'''
structs = self.get_particle_structs(level)
return [libwarpx.amr.unpack_cpus(struct['cpuid']) for struct in structs]
def get_particle_x(self, level=0):
'''
Return a list of numpy arrays containing the particle 'x'
positions on each tile.
'''
structs = self.get_particle_structs(level)
if libwarpx.geometry_dim == '3d' or libwarpx.geometry_dim == '2d':
return [struct['x'] for struct in structs]
elif libwarpx.geometry_dim == 'rz':
return [struct['x']*np.cos(theta) for struct, theta in zip(structs, self.get_particle_theta())]
elif libwarpx.geometry_dim == '1d':
raise Exception('get_particle_x: There is no x coordinate with 1D Cartesian')
xp = property(get_particle_x)
def get_particle_y(self, level=0):
'''
Return a list of numpy arrays containing the particle 'y'
positions on each tile.
'''
structs = self.get_particle_structs(level)
if libwarpx.geometry_dim == '3d':
return [struct['y'] for struct in structs]
elif libwarpx.geometry_dim == 'rz':
return [struct['x']*np.sin(theta) for struct, theta in zip(structs, self.get_particle_theta())]
elif libwarpx.geometry_dim == '1d' or libwarpx.geometry_dim == '2d':
raise Exception('get_particle_y: There is no y coordinate with 1D or 2D Cartesian')
yp = property(get_particle_y)
def get_particle_r(self, level=0):
'''
Return a list of numpy arrays containing the particle 'r'
positions on each tile.
'''
structs = self.get_particle_structs(level)
if libwarpx.geometry_dim == 'rz':
return [struct['x'] for struct in structs]
elif libwarpx.geometry_dim == '3d':
return [np.sqrt(struct['x']**2 + struct['y']**2) for struct in structs]
elif libwarpx.geometry_dim == '2d' or libwarpx.geometry_dim == '1d':
raise Exception('get_particle_r: There is no r coordinate with 1D or 2D Cartesian')
rp = property(get_particle_r)
def get_particle_theta(self, level=0):
'''
Return a list of numpy arrays containing the particle
theta on each tile.
'''
if libwarpx.geometry_dim == 'rz':
return self.get_particle_arrays('theta', level)
elif libwarpx.geometry_dim == '3d':
structs = self.get_particle_structs(level)
return [np.arctan2(struct['y'], struct['x']) for struct in structs]
elif libwarpx.geometry_dim == '2d' or libwarpx.geometry_dim == '1d':
raise Exception('get_particle_theta: There is no theta coordinate with 1D or 2D Cartesian')
thetap = property(get_particle_theta)
def get_particle_z(self, level=0):
'''
Return a list of numpy arrays containing the particle 'z'
positions on each tile.
'''
structs = self.get_particle_structs(level)
if libwarpx.geometry_dim == '3d':
return [struct['z'] for struct in structs]
elif libwarpx.geometry_dim == 'rz' or libwarpx.geometry_dim == '2d':
return [struct['y'] for struct in structs]
elif libwarpx.geometry_dim == '1d':
return [struct['x'] for struct in structs]
zp = property(get_particle_z)
def get_particle_weight(self, level=0):
'''
Return a list of numpy arrays containing the particle
weight on each tile.
'''
return self.get_particle_arrays('w', level)
wp = property(get_particle_weight)
def get_particle_ux(self, level=0):
'''
Return a list of numpy arrays containing the particle
x momentum on each tile.
'''
return self.get_particle_arrays('ux', level)
uxp = property(get_particle_ux)
def get_particle_uy(self, level=0):
'''
Return a list of numpy arrays containing the particle
y momentum on each tile.
'''
return self.get_particle_arrays('uy', level)
uyp = property(get_particle_uy)
def get_particle_uz(self, level=0):
'''
Return a list of numpy arrays containing the particle
z momentum on each tile.
'''
return self.get_particle_arrays('uz', level)
uzp = property(get_particle_uz)
def get_species_charge_sum(self, local=False):
'''
Returns the total charge in the simulation due to the given species.
Parameters
----------
local : bool
If True return total charge per processor
'''
raise NotImplementedError()
return self.libwarpx_so.warpx_sumParticleCharge(
ctypes.c_char_p(species_name.encode('utf-8')), local
)
def getex(self):
raise NotImplementedError('Particle E fields not supported')
ex = property(getex)
def getey(self):
raise NotImplementedError('Particle E fields not supported')
ey = property(getey)
def getez(self):
raise NotImplementedError('Particle E fields not supported')
ez = property(getez)
def getbx(self):
raise NotImplementedError('Particle B fields not supported')
bx = property(getbx)
def getby(self):
raise NotImplementedError('Particle B fields not supported')
by = property(getby)
def getbz(self):
raise NotImplementedError('Particle B fields not supported')
bz = property(getbz)
class ParticleBoundaryBufferWrapper(object):
"""Wrapper around particle boundary buffer containers.
This provides a convenient way to query data in the particle boundary
buffer containers.
"""
def __init__(self):
self.particle_buffer = libwarpx.warpx.get_particle_boundary_buffer()
def get_particle_boundary_buffer_size(self, species_name, boundary, local=False):
'''
This returns the number of particles that have been scraped so far in the simulation
from the specified boundary and of the specified species.
Parameters
----------
species_name : str
Return the number of scraped particles of this species
boundary : str
The boundary from which to get the scraped particle data in the
form x/y/z_hi/lo
local : bool
Whether to only return the number of particles in the current
processor's buffer
'''
return self.particle_buffer.get_num_particles_in_container(
species_name, self._get_boundary_number(boundary),
local=local
)
def get_particle_boundary_buffer_structs(self, species_name, boundary, level):
'''
This returns a list of numpy arrays containing the particle struct data
for a species that has been scraped by a specific simulation boundary. The
particle data is represented as a structured numpy array and contains the
particle 'x', 'y', 'z', and 'idcpu'.
The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
----------
species_name : str
The species name that the data will be returned for
boundary : str
The boundary from which to get the scraped particle data in the
form x/y/z_hi/lo or eb.
level : int
Which AMR level to retrieve scraped particle data from.
'''
particles_per_tile = _LP_c_int()
num_tiles = ctypes.c_int(0)
data = self.libwarpx_so.warpx_getParticleBoundaryBufferStructs(
ctypes.c_char_p(species_name.encode('utf-8')),
self._get_boundary_number(boundary), level,
ctypes.byref(num_tiles), ctypes.byref(particles_per_tile)
)
particle_data = []
for i in range(num_tiles.value):
if particles_per_tile[i] == 0:
continue
arr = self._array1d_from_pointer(data[i], self._p_dtype, particles_per_tile[i])
particle_data.append(arr)
_libc.free(particles_per_tile)
_libc.free(data)
return particle_data
def get_particle_boundary_buffer(self, species_name, boundary, comp_name, level):
'''
This returns a list of numpy arrays containing the particle array data
for a species that has been scraped by a specific simulation boundary.
The data for the numpy arrays are not copied, but share the underlying
memory buffer with WarpX. The numpy arrays are fully writeable.
Parameters
----------
species_name : str
The species name that the data will be returned for.
boundary : str
The boundary from which to get the scraped particle data in the
form x/y/z_hi/lo or eb.
comp_name : str
The component of the array data that will be returned. If
"step_scraped" the special attribute holding the timestep at
which a particle was scraped will be returned.
level : int
Which AMR level to retrieve scraped particle data from.
'''
part_container = self.particle_buffer.get_particle_container(
species_name, self._get_boundary_number(boundary)
)
data_array = []
if comp_name == 'step_scraped':
# the step scraped is always the final integer component
comp_idx = part_container.num_int_comps() - 1
for ii, pti in enumerate(libwarpx.libwarpx_so.BoundaryBufferParIter(part_container, level)):
soa = pti.soa()
data_array.append(np.array(soa.GetIntData(comp_idx), copy=False))
else:
mypc = libwarpx.warpx.multi_particle_container()
sim_part_container_wrapper = mypc.get_particle_container_from_name(species_name)
comp_idx = sim_part_container_wrapper.get_comp_index(comp_name)
for ii, pti in enumerate(libwarpx.libwarpx_so.BoundaryBufferParIter(part_container, level)):
soa = pti.soa()
data_array.append(np.array(soa.GetRealData(comp_idx), copy=False))
return data_array
def clear_buffer(self):
'''
Clear the buffer that holds the particles lost at the boundaries.
'''
self.particle_buffer.clear_particles()
def _get_boundary_number(self, boundary):
'''
Utility function to find the boundary number given a boundary name.
Parameters
----------
boundary : str
The boundary from which to get the scraped particle data. In the
form x/y/z_hi/lo or eb.
Returns
-------
int
Integer index in the boundary scraper buffer for the given boundary.
'''
if libwarpx.geometry_dim == '3d':
dimensions = {'x' : 0, 'y' : 1, 'z' : 2}
elif libwarpx.geometry_dim == '2d' or libwarpx.geometry_dim == 'rz':
dimensions = {'x' : 0, 'z' : 1}
elif libwarpx.geometry_dim == '1d':
dimensions = {'z' : 0}
else:
raise RuntimeError(f"Unknown simulation geometry: {libwarpx.geometry_dim}")
if boundary != 'eb':
boundary_parts = boundary.split("_")
dim_num = dimensions[boundary_parts[0]]
if boundary_parts[1] == 'lo':
side = 0
elif boundary_parts[1] == 'hi':
side = 1
else:
raise RuntimeError(f'Unknown boundary specified: {boundary}')
boundary_num = 2 * dim_num + side
else:
if libwarpx.geometry_dim == '3d':
boundary_num = 6
elif libwarpx.geometry_dim == '2d' or libwarpx.geometry_dim == 'rz':
boundary_num = 4
elif libwarpx.geometry_dim == '1d':
boundary_num = 2
else:
raise RuntimeError(f"Unknown simulation geometry: {libwarpx.geometry_dim}")
return boundary_num
|