aboutsummaryrefslogtreecommitdiff
path: root/Python/pywarpx/picmi.py
blob: c68499729b4258ba0ae82f099aac393829096f5b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""Classes following the PICMI standard
"""
import PICMI_Base
import numpy as np
import pywarpx

codename = 'WarpX'

# --- Values from WarpXConst.H
c = 299792458.
ep0 = 8.854187817e-12
mu0 = 1.2566370614359173e-06
q_e = 1.602176462e-19
m_e = 9.10938291e-31
m_p = 1.6726231e-27


class Species(PICMI_Base.PICMI_Species):
    def init(self, kw):

        if self.particle_type == 'electron':
            if self.charge is None: self.charge = '-q_e'
            if self.mass is None: self.mass = 'm_e'
        elif self.particle_type == 'positron':
            if self.charge is None: self.charge = 'q_e'
            if self.mass is None: self.mass = 'm_e'
        elif self.particle_type == 'proton':
            if self.charge is None: self.charge = 'q_e'
            if self.mass is None: self.mass = 'm_p'
        elif self.particle_type == 'anti-proton':
            if self.charge is None: self.charge = '-q_e'
            if self.mass is None: self.mass = 'm_p'

    def initialize_inputs(self, layout):
        self.species_number = pywarpx.particles.nspecies
        pywarpx.particles.nspecies += 1

        if self.name is None:
            self.name = 'species{}'.format(self.species_number)

        if pywarpx.particles.species_names is None:
            pywarpx.particles.species_names = self.name
        else:
            pywarpx.particles.species_names += ' ' + self.name

        self.species = pywarpx.Bucket.Bucket(self.name, mass=self.mass, charge=self.charge, injection_style = 'python')
        pywarpx.Particles.particles_list.append(self.species)

        if self.initial_distribution is not None:
            self.initial_distribution.initialize_inputs(self.species_number, layout, self.species)


PICMI_Base.PICMI_MultiSpecies.Species_class = Species
class MultiSpecies(PICMI_Base.PICMI_MultiSpecies):
    pass


class GaussianBunchDistribution(PICMI_Base.PICMI_GaussianBunchDistribution):
    def init(self, kw):
        if self.seed is not None:
            print('Warning: WarpX does not support specifying the random number seed')

    def initialize_inputs(self, species_number, layout, species):
        species.injection_style = "gaussian_beam"
        species.x_m = self.centroid_position[0]
        species.y_m = self.centroid_position[1]
        species.z_m = self.centroid_position[2]
        species.x_rms = self.rms_bunch_size[0]
        species.y_rms = self.rms_bunch_size[1]
        species.z_rms = self.rms_bunch_size[2]

        # --- Only PseudoRandomLayout is supported
        species.npart = layout.n_macroparticles

        # --- Calculate the total charge. Note that charge might be a string instead of a number.
        charge = species.charge
        if charge == 'q_e' or charge == '+q_e':
            charge = q_e
        elif charge == '-q_e':
            charge = -q_e
        species.q_tot = self.number_real_particles*charge

        # --- These need to be defined even though they are not used
        species.profile = "constant"
        species.density = 1

        # --- The PICMI standard doesn't yet have a way of specifying these values.
        # --- They should default to the size of the domain. They are not typically
        # --- necessary though since any particles outside the domain are rejected.
        #species.xmin
        #species.xmax
        #species.ymin
        #species.ymax
        #species.zmin
        #species.zmax

        if np.any(np.not_equal(self.velocity_divergence, 0.)):
            species.momentum_distribution_type = "radial_expansion"
            species.u_over_r = self.velocity_divergence[0]
            #species.u_over_y = self.velocity_divergence[1]
            #species.u_over_z = self.velocity_divergence[2]
        elif np.any(np.not_equal(self.rms_velocity, 0.)):
            species.momentum_distribution_type = "gaussian"
            species.ux_m = self.centroid_velocity[0]
            species.uy_m = self.centroid_velocity[1]
            species.uz_m = self.centroid_velocity[2]
            species.ux_th = self.rms_velocity[0]
            species.uy_th = self.rms_velocity[1]
            species.uz_th = self.rms_velocity[2]
        else:
            species.momentum_distribution_type = "constant"
            species.ux = self.centroid_velocity[0]
            species.uy = self.centroid_velocity[1]
            species.uz = self.centroid_velocity[2]


class UniformDistribution(PICMI_Base.PICMI_UniformDistribution):

    def initialize_inputs(self, species_number, layout, species):

        if isinstance(layout, GriddedLayout):
            species.injection_style = "nuniformpercell"
            species.num_particles_per_cell_each_dim = layout.n_macroparticle_per_cell
        elif isinstance(layout, PseudoRandomLayout):
            assert (layout.n_macroparticles_per_cell is not None), Exception('WarpX only supports n_macroparticles_per_cell for the GriddedLayout with UniformDistribution')
            species.injection_style = "nrandompercell"
            species.num_particles_per_cell = layout.n_macroparticles_per_cell
        else:
            raise Exception('WarpX does not support the specified layout for UniformDistribution')

        species.xmin = self.lower_bound[0]
        species.xmax = self.upper_bound[0]
        species.ymin = self.lower_bound[1]
        species.ymax = self.upper_bound[1]
        species.zmin = self.lower_bound[2]
        species.zmax = self.upper_bound[2]

        # --- Only constant density is supported at this time
        species.profile = "constant"
        species.density = self.density

        if np.any(np.not_equal(self.rms_velocity, 0.)):
            species.momentum_distribution_type = "gaussian"
            species.ux_m = self.directed_velocity[0]
            species.uy_m = self.directed_velocity[1]
            species.uz_m = self.directed_velocity[2]
            species.ux_th = self.rms_velocity[0]
            species.uy_th = self.rms_velocity[1]
            species.uz_th = self.rms_velocity[2]
        else:
            species.momentum_distribution_type = "constant"
            species.ux = self.directed_velocity[0]
            species.uy = self.directed_velocity[1]
            species.uz = self.directed_velocity[2]

        if self.fill_in:
            pywarpx.warpx.do_plasma_injection = 1
            if not hasattr(pywarpx.warpx, 'injected_plasma_species'):
                pywarpx.warpx.injected_plasma_species = []

            pywarpx.warpx.injected_plasma_species.append(species_number)
            pywarpx.warpx.num_injected_species = len(pywarpx.warpx.injected_plasma_species)


class AnalyticDistribution(PICMI_Base.PICMI_AnalyticDistribution):

    def initialize_inputs(self, species_number, layout, species):
        raise Exception('WarpX does not support AnalyticDistribution')


class ParticleList(PICMI_Base.PICMI_ParticleList):
    def init(self, kw):

        if len(x) > 1:
            raise Exception('Only a single particle can be loaded')

    def initialize_inputs(self, species_number, layout, species):

        species.injection_style = "singleparticle"
        species.single_particle_pos = [self.x[0], self.y[0], self.z[0]]
        species.single_particle_vel = [self.ux[0]/c, self.uy[0]/c, self.uz[0]/c]
        species.single_particle_weight = self.weight

        # --- These need to be defined even though they are not used
        species.profile = "constant"
        species.density = 1
        species.momentum_distribution_type = 'constant'


class ParticleDistributionPlanarInjector(PICMI_Base.PICMI_ParticleDistributionPlanarInjector):
    pass


class GriddedLayout(PICMI_Base.PICMI_GriddedLayout):
    pass


class PseudoRandomLayout(PICMI_Base.PICMI_PseudoRandomLayout):
    pass


class BinomialSmoother(PICMI_Base.PICMI_BinomialSmoother):
    pass


class CylindricalGrid(PICMI_Base.PICMI_CylindricalGrid):
    def init(self, kw):
        raise Exception('WarpX does not support CylindricalGrid')


class Cartesian2DGrid(PICMI_Base.PICMI_Cartesian2DGrid):
    def init(self, kw):
        self.max_grid_size = kw.pop('max_grid_size', 32)
        self.max_level = kw.pop('max_level', 0)
        self.coord_sys = kw.pop('coord_sys', 0)

    def initialize_inputs(self):
        pywarpx.amr.n_cell = self.number_of_cells

        # Maximum allowable size of each subdomain in the problem domain;
        #    this is used to decompose the domain for parallel calculations.
        pywarpx.amr.max_grid_size = self.max_grid_size

        # Maximum level in hierarchy (for now must be 0, i.e., one level in total)
        pywarpx.amr.max_level = self.max_level

        # Geometry
        pywarpx.geometry.coord_sys = self.coord_sys
        pywarpx.geometry.is_periodic = '%d %d %d'%(self.bc_xmin=='periodic', self.bc_ymin=='periodic')  # Is periodic?
        pywarpx.geometry.prob_lo = self.lower_bound  # physical domain
        pywarpx.geometry.prob_hi = self.upper_bound

        if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)):
            pywarpx.warpx.do_moving_window = 1
            if self.moving_window_velocity[0] != 0.:
                pywarpx.warpx.moving_window_dir = 'x'
                pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/c  # in units of the speed of light
            if self.moving_window_velocity[1] != 0.:
                pywarpx.warpx.moving_window_dir = 'y'
                pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/c  # in units of the speed of light


class Cartesian3DGrid(PICMI_Base.PICMI_Cartesian3DGrid):
    def init(self, kw):
        self.max_grid_size = kw.pop('max_grid_size', 32)
        self.max_level = kw.pop('max_level', 0)
        self.coord_sys = kw.pop('coord_sys', 0)

    def initialize_inputs(self):
        pywarpx.amr.n_cell = self.number_of_cells

        # Maximum allowable size of each subdomain in the problem domain;
        #    this is used to decompose the domain for parallel calculations.
        pywarpx.amr.max_grid_size = self.max_grid_size

        # Maximum level in hierarchy (for now must be 0, i.e., one level in total)
        pywarpx.amr.max_level = self.max_level

        # Geometry
        pywarpx.geometry.coord_sys = self.coord_sys
        pywarpx.geometry.is_periodic = '%d %d %d'%(self.bc_xmin=='periodic', self.bc_ymin=='periodic', self.bc_zmin=='periodic')  # Is periodic?
        pywarpx.geometry.prob_lo = self.lower_bound  # physical domain
        pywarpx.geometry.prob_hi = self.upper_bound

        if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)):
            pywarpx.warpx.do_moving_window = 1
            if self.moving_window_velocity[0] != 0.:
                pywarpx.warpx.moving_window_dir = 'x'
                pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/c  # in units of the speed of light
            if self.moving_window_velocity[1] != 0.:
                pywarpx.warpx.moving_window_dir = 'y'
                pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/c  # in units of the speed of light
            if self.moving_window_velocity[2] != 0.:
                pywarpx.warpx.moving_window_dir = 'z'
                pywarpx.warpx.moving_window_v = self.moving_window_velocity[2]/c  # in units of the speed of light


class ElectromagneticSolver(PICMI_Base.PICMI_ElectromagneticSolver):
    def init(self, kw):
        assert self.method is None or self.method in ['Yee'], Exception("Only 'Yee' FDTD is supported")

        self.do_pml = kw.pop('do_pml', None)

    def initialize_inputs(self):

        self.grid.initialize_inputs()

        pywarpx.warpx.do_pml = self.do_pml

        if self.cfl is not None:
            pywarpx.warpx.cfl = self.cfl

        if self.stencil_order is not None:
            pywarpx.interpolation.nox = self.stencil_order[0]
            pywarpx.interpolation.noy = self.stencil_order[1]
            pywarpx.interpolation.noz = self.stencil_order[2]


class Electrostatic_solver(PICMI_Base.PICMI_Electrostatic_solver):
    def initialize_inputs(self):
        pass


class GaussianLaser(PICMI_Base.PICMI_GaussianLaser):

    def initialize_inputs(self):
        pywarpx.warpx.use_laser = 1
        pywarpx.laser.profile = "Gaussian"
        pywarpx.laser.wavelength = self.wavelength  # The wavelength of the laser (in meters)
        pywarpx.laser.e_max = self.E0  # Maximum amplitude of the laser field (in V/m)
        pywarpx.laser.polarization = [np.cos(self.polarization_angle), np.sin(self.polarization_angle), 0.]  # The main polarization vector
        pywarpx.laser.profile_waist = self.waist  # The waist of the laser (in meters)
        pywarpx.laser.profile_duration = self.duration  # The duration of the laser (in seconds)


class LaserAntenna(PICMI_Base.PICMI_LaserAntenna):

    def initialize_inputs(self, laser):
        pywarpx.laser.position = self.position  # This point is on the laser plane
        pywarpx.laser.direction = self.normal_vector  # The plane normal direction
        pywarpx.laser.profile_focal_distance = laser.focal_position[2] - self.position[2]  # Focal distance from the antenna (in meters)
        pywarpx.laser.profile_t_peak = (self.position[2] - laser.centroid_position[2])/c  # The time at which the laser reaches its peak (in seconds)


class Simulation(PICMI_Base.PICMI_Simulation):
    def init(self, kw):

        self.plot_int = kw.pop('plot_int', None)
        self.plot_file = kw.pop('plot_file', None)
        self.current_deposition_algo = kw.pop('current_deposition_algo', None)
        self.charge_deposition_algo = kw.pop('charge_deposition_algo', None)
        self.field_gathering_algo = kw.pop('field_gathering_algo', None)
        self.particle_pusher_algo = kw.pop('particle_pusher_algo', None)
        self.use_filter = kw.pop('use_filter', None)
        self.serialize_ics = kw.pop('serialize_ics', None)
        self.do_dynamic_scheduling = kw.pop('do_dynamic_scheduling', None)
        self.load_balance_int = kw.pop('load_balance_int', None)
        self.load_balance_with_sfc = kw.pop('load_balance_with_sfc', None)

        self.inputs_initialized = False
        self.warpx_initialized = False

    def initialize_inputs(self):
        if self.inputs_initialized:
            return

        self.inputs_initialized = True

        pywarpx.warpx.verbose = self.verbose
        if self.time_step_size is not None:
            pywarpx.warpx.const_dt = self.timestep

        pywarpx.amr.plot_int = self.plot_int
        pywarpx.amr.plot_file = self.plot_file
        pywarpx.algo.current_deposition = self.current_deposition_algo
        pywarpx.algo.charge_deposition = self.charge_deposition_algo
        pywarpx.algo.field_gathering = self.field_gathering_algo
        pywarpx.algo.particle_pusher = self.particle_pusher_algo

        pywarpx.warpx.use_filter = self.use_filter
        pywarpx.warpx.serialize_ics = self.serialize_ics

        pywarpx.warpx.do_dynamic_scheduling = self.do_dynamic_scheduling
        pywarpx.warpx.load_balance_int = self.load_balance_int
        pywarpx.warpx.load_balance_with_sfc = self.load_balance_with_sfc

        if self.particle_shape is not None:
            if isinstance(self.particle_shape, str):
                interpolation_order = {'NGP':0, 'linear':1, 'quadratic':2, 'cubic':3}[self.particle_shape]
            else:
                interpolation_order = self.particle_shape
            pywarpx.interpolation.nox = interpolation_order
            pywarpx.interpolation.noy = interpolation_order
            pywarpx.interpolation.noz = interpolation_order

        self.solver.initialize_inputs()

        for i in range(len(self.species)):
            assert not self.initialize_self_fields[i], Exception('WarpX does not support initializing self fields')
            self.species[i].initialize_inputs(self.layouts[i])

        for i in range(len(self.lasers)):
            self.lasers[i].initialize_inputs()
            self.laser_injection_methods[i].initialize_inputs(self.lasers[i])

    def initialize_warpx(self, inputs_name=None):
        if self.warpx_initialized:
            return

        self.warpx_initialized = True
        pywarpx.warpx.init()

    def write_input_file(self, inputs_name='inputs'):
        self.initialize_inputs()
        kw = {}
        if self.max_steps is not None:
            kw['max_step'] = self.max_steps
        if self.max_time is not None:
            kw['stop_time'] = self.max_time
        pywarpx.warpx.write_inputs(inputs_name, **kw)

    def step(self, nsteps=None):
        self.initialize_inputs()
        self.initialize_warpx()
        if nsteps is None:
            if self.max_steps is not None:
                nsteps = self.max_steps
            else:
                nsteps = -1
        pywarpx.warpx.evolve(nsteps)

    def finalize(self):
        if self.warpx_initialized:
            self.warpx_initialized = False
            pywarpx.warpx.finalize()