1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
|
# Copyright 2018-2020 Andrew Myers, David Grote, Ligia Diana Amorim
# Maxence Thevenet, Remi Lehe, Revathi Jambunathan
#
#
# This file is part of WarpX.
#
# License: BSD-3-Clause-LBNL
"""Classes following the PICMI standard
"""
import re
import picmistandard
import numpy as np
import pywarpx
import periodictable
codename = 'warpx'
picmistandard.register_codename(codename)
# dictionary to map field boundary conditions from picmistandard to WarpX
BC_map = {
'open':'pml', 'dirichlet':'pec', 'periodic':'periodic', 'damped':'damped', 'none':'none'
}
class constants:
# --- Put the constants in their own namespace
# --- Values from WarpXConst.H
c = 299792458.
ep0 = 8.8541878128e-12
mu0 = 1.25663706212e-06
q_e = 1.602176634e-19
m_e = 9.1093837015e-31
m_p = 1.67262192369e-27
hbar = 1.054571817e-34
kb = 1.380649e-23
picmistandard.register_constants(constants)
class Species(picmistandard.PICMI_Species):
def init(self, kw):
if self.particle_type == 'electron':
if self.charge is None: self.charge = '-q_e'
if self.mass is None: self.mass = 'm_e'
elif self.particle_type == 'positron':
if self.charge is None: self.charge = 'q_e'
if self.mass is None: self.mass = 'm_e'
elif self.particle_type == 'proton':
if self.charge is None: self.charge = 'q_e'
if self.mass is None: self.mass = 'm_p'
elif self.particle_type == 'anti-proton':
if self.charge is None: self.charge = '-q_e'
if self.mass is None: self.mass = 'm_p'
else:
if self.charge is None and self.charge_state is not None:
if self.charge_state == +1.:
self.charge = 'q_e'
elif self.charge_state == -1.:
self.charge = '-q_e'
else:
self.charge = self.charge_state*constants.q_e
# Match a string of the format '#nXx', with the '#n' optional isotope number.
m = re.match('(?P<iso>#[\d+])*(?P<sym>[A-Za-z]+)', self.particle_type)
if m is not None:
element = periodictable.elements.symbol(m['sym'])
if m['iso'] is not None:
element = element[m['iso'][1:]]
if self.charge_state is not None:
assert self.charge_state <= element.number, Exception('%s charge state not valid'%self.particle_type)
try:
element = element.ion[self.charge_state]
except ValueError:
# Note that not all valid charge states are defined in elements,
# so this value error can be ignored.
pass
self.element = element
if self.mass is None:
self.mass = element.mass*periodictable.constants.atomic_mass_constant
self.boost_adjust_transverse_positions = kw.pop('warpx_boost_adjust_transverse_positions', None)
# For the relativistic electrostatic solver
self.self_fields_required_precision = kw.pop('warpx_self_fields_required_precision', None)
self.self_fields_max_iters = kw.pop('warpx_self_fields_max_iters', None)
self.self_fields_verbosity = kw.pop('warpx_self_fields_verbosity', None)
self.save_previous_position = kw.pop('warpx_save_previous_position', None)
def initialize_inputs(self, layout,
initialize_self_fields = False,
injection_plane_position = None,
injection_plane_normal_vector = None):
self.species_number = len(pywarpx.particles.species_names)
if self.name is None:
self.name = 'species{}'.format(self.species_number)
pywarpx.particles.species_names.append(self.name)
if initialize_self_fields is None:
initialize_self_fields = False
self.species = pywarpx.Bucket.Bucket(self.name,
mass = self.mass,
charge = self.charge,
injection_style = None,
initialize_self_fields = int(initialize_self_fields),
boost_adjust_transverse_positions = self.boost_adjust_transverse_positions,
self_fields_required_precision = self.self_fields_required_precision,
self_fields_max_iters = self.self_fields_max_iters,
self_fields_verbosity = self.self_fields_verbosity,
save_previous_position = self.save_previous_position)
pywarpx.Particles.particles_list.append(self.species)
if self.initial_distribution is not None:
self.initial_distribution.initialize_inputs(self.species_number, layout, self.species, self.density_scale)
if injection_plane_position is not None:
if injection_plane_normal_vector is not None:
assert injection_plane_normal_vector[0] == 0. and injection_plane_normal_vector[1] == 0.,\
Exception('Rigid injection can only be done along z')
pywarpx.particles.rigid_injected_species.append(self.name)
self.species.rigid_advance = 1
self.species.zinject_plane = injection_plane_position
for interaction in self.interactions:
assert interaction[0] == 'ionization'
assert interaction[1] == 'ADK', 'WarpX only has ADK ionization model implemented'
self.species.do_field_ionization=1
self.species.physical_element=self.particle_type
self.species.ionization_product_species = interaction[2].name
self.species.ionization_initial_level = self.charge_state
self.species.charge = 'q_e'
picmistandard.PICMI_MultiSpecies.Species_class = Species
class MultiSpecies(picmistandard.PICMI_MultiSpecies):
def initialize_inputs(self, layout,
initialize_self_fields = False,
injection_plane_position = None,
injection_plane_normal_vector = None):
for species in self.species_instances_list:
species.initialize_inputs(layout,
initialize_self_fields,
injection_plane_position,
injection_plane_normal_vector)
class GaussianBunchDistribution(picmistandard.PICMI_GaussianBunchDistribution):
def initialize_inputs(self, species_number, layout, species, density_scale):
species.injection_style = "gaussian_beam"
species.x_m = self.centroid_position[0]
species.y_m = self.centroid_position[1]
species.z_m = self.centroid_position[2]
species.x_rms = self.rms_bunch_size[0]
species.y_rms = self.rms_bunch_size[1]
species.z_rms = self.rms_bunch_size[2]
# --- Only PseudoRandomLayout is supported
species.npart = layout.n_macroparticles
# --- Calculate the total charge. Note that charge might be a string instead of a number.
charge = species.charge
if charge == 'q_e' or charge == '+q_e':
charge = constants.q_e
elif charge == '-q_e':
charge = -constants.q_e
species.q_tot = self.n_physical_particles*charge
if density_scale is not None:
species.q_tot *= density_scale
# --- The PICMI standard doesn't yet have a way of specifying these values.
# --- They should default to the size of the domain. They are not typically
# --- necessary though since any particles outside the domain are rejected.
#species.xmin
#species.xmax
#species.ymin
#species.ymax
#species.zmin
#species.zmax
# --- Note that WarpX takes gamma*beta as input
if np.any(np.not_equal(self.velocity_divergence, 0.)):
species.momentum_distribution_type = "radial_expansion"
species.u_over_r = self.velocity_divergence[0]/constants.c
#species.u_over_y = self.velocity_divergence[1]/constants.c
#species.u_over_z = self.velocity_divergence[2]/constants.c
elif np.any(np.not_equal(self.rms_velocity, 0.)):
species.momentum_distribution_type = "gaussian"
species.ux_m = self.centroid_velocity[0]/constants.c
species.uy_m = self.centroid_velocity[1]/constants.c
species.uz_m = self.centroid_velocity[2]/constants.c
species.ux_th = self.rms_velocity[0]/constants.c
species.uy_th = self.rms_velocity[1]/constants.c
species.uz_th = self.rms_velocity[2]/constants.c
else:
species.momentum_distribution_type = "constant"
species.ux = self.centroid_velocity[0]/constants.c
species.uy = self.centroid_velocity[1]/constants.c
species.uz = self.centroid_velocity[2]/constants.c
class UniformDistribution(picmistandard.PICMI_UniformDistribution):
def initialize_inputs(self, species_number, layout, species, density_scale):
if isinstance(layout, GriddedLayout):
# --- Note that the grid attribute of GriddedLayout is ignored
species.injection_style = "nuniformpercell"
species.num_particles_per_cell_each_dim = layout.n_macroparticle_per_cell
elif isinstance(layout, PseudoRandomLayout):
assert (layout.n_macroparticles_per_cell is not None), Exception('WarpX only supports n_macroparticles_per_cell for the PseudoRandomLayout with UniformDistribution')
species.injection_style = "nrandompercell"
species.num_particles_per_cell = layout.n_macroparticles_per_cell
else:
raise Exception('WarpX does not support the specified layout for UniformDistribution')
species.xmin = self.lower_bound[0]
species.xmax = self.upper_bound[0]
species.ymin = self.lower_bound[1]
species.ymax = self.upper_bound[1]
species.zmin = self.lower_bound[2]
species.zmax = self.upper_bound[2]
# --- Only constant density is supported at this time
species.profile = "constant"
species.density = self.density
if density_scale is not None:
species.density *= density_scale
# --- Note that WarpX takes gamma*beta as input
if np.any(np.not_equal(self.rms_velocity, 0.)):
species.momentum_distribution_type = "gaussian"
species.ux_m = self.directed_velocity[0]/constants.c
species.uy_m = self.directed_velocity[1]/constants.c
species.uz_m = self.directed_velocity[2]/constants.c
species.ux_th = self.rms_velocity[0]/constants.c
species.uy_th = self.rms_velocity[1]/constants.c
species.uz_th = self.rms_velocity[2]/constants.c
else:
species.momentum_distribution_type = "constant"
species.ux = self.directed_velocity[0]/constants.c
species.uy = self.directed_velocity[1]/constants.c
species.uz = self.directed_velocity[2]/constants.c
if self.fill_in:
species.do_continuous_injection = 1
class AnalyticDistribution(picmistandard.PICMI_AnalyticDistribution):
def init(self, kw):
self.mangle_dict = None
def initialize_inputs(self, species_number, layout, species, density_scale):
if isinstance(layout, GriddedLayout):
# --- Note that the grid attribute of GriddedLayout is ignored
species.injection_style = "nuniformpercell"
species.num_particles_per_cell_each_dim = layout.n_macroparticle_per_cell
elif isinstance(layout, PseudoRandomLayout):
assert (layout.n_macroparticles_per_cell is not None), Exception('WarpX only supports n_macroparticles_per_cell for the PseudoRandomLayout with UniformDistribution')
species.injection_style = "nrandompercell"
species.num_particles_per_cell = layout.n_macroparticles_per_cell
else:
raise Exception('WarpX does not support the specified layout for UniformDistribution')
species.xmin = self.lower_bound[0]
species.xmax = self.upper_bound[0]
species.ymin = self.lower_bound[1]
species.ymax = self.upper_bound[1]
species.zmin = self.lower_bound[2]
species.zmax = self.upper_bound[2]
if self.mangle_dict is None:
# Only do this once so that the same variables are used in this distribution
# is used multiple times
self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw)
expression = pywarpx.my_constants.mangle_expression(self.density_expression, self.mangle_dict)
species.profile = "parse_density_function"
if density_scale is None:
species.__setattr__('density_function(x,y,z)', expression)
else:
species.__setattr__('density_function(x,y,z)', "{}*({})".format(density_scale, expression))
# --- Note that WarpX takes gamma*beta as input
if np.any(np.not_equal(self.momentum_expressions, None)):
species.momentum_distribution_type = 'parse_momentum_function'
self.setup_parse_momentum_functions(species)
elif np.any(np.not_equal(self.rms_velocity, 0.)):
species.momentum_distribution_type = "gaussian"
species.ux_m = self.directed_velocity[0]/constants.c
species.uy_m = self.directed_velocity[1]/constants.c
species.uz_m = self.directed_velocity[2]/constants.c
species.ux_th = self.rms_velocity[0]/constants.c
species.uy_th = self.rms_velocity[1]/constants.c
species.uz_th = self.rms_velocity[2]/constants.c
else:
species.momentum_distribution_type = "constant"
species.ux = self.directed_velocity[0]/constants.c
species.uy = self.directed_velocity[1]/constants.c
species.uz = self.directed_velocity[2]/constants.c
if self.fill_in:
species.do_continuous_injection = 1
def setup_parse_momentum_functions(self, species):
for sdir, idir in zip(['x', 'y', 'z'], [0, 1, 2]):
if self.momentum_expressions[idir] is not None:
expression = pywarpx.my_constants.mangle_expression(self.momentum_expressions[idir], self.mangle_dict)
else:
expression = f'{self.directed_velocity[idir]}'
species.__setattr__(f'momentum_function_u{sdir}(x,y,z)', f'({expression})/{constants.c}')
class ParticleListDistribution(picmistandard.PICMI_ParticleListDistribution):
def init(self, kw):
pass
def initialize_inputs(self, species_number, layout, species, density_scale):
species.injection_style = "multipleparticles"
species.multiple_particles_pos_x = self.x
species.multiple_particles_pos_y = self.y
species.multiple_particles_pos_z = self.z
species.multiple_particles_vel_x = self.ux/constants.c
species.multiple_particles_vel_y = self.uy/constants.c
species.multiple_particles_vel_z = self.uz/constants.c
species.multiple_particles_weight = self.weight
if density_scale is not None:
species.multiple_particles_weight = self.weight*density_scale
class ParticleDistributionPlanarInjector(picmistandard.PICMI_ParticleDistributionPlanarInjector):
pass
class GriddedLayout(picmistandard.PICMI_GriddedLayout):
pass
class PseudoRandomLayout(picmistandard.PICMI_PseudoRandomLayout):
def init(self, kw):
if self.seed is not None:
print('Warning: WarpX does not support specifying the random number seed in PseudoRandomLayout')
class BinomialSmoother(picmistandard.PICMI_BinomialSmoother):
def initialize_inputs(self, solver):
pywarpx.warpx.use_filter = 1
pywarpx.warpx.use_filter_compensation = bool(np.all(self.compensation))
if self.n_pass is None:
# If not specified, do at least one pass in each direction.
self.n_pass = 1
try:
# Check if n_pass is a vector
len(self.n_pass)
except TypeError:
# If not, make it a vector
self.n_pass = solver.grid.number_of_dimensions*[self.n_pass]
pywarpx.warpx.filter_npass_each_dir = self.n_pass
class CylindricalGrid(picmistandard.PICMI_CylindricalGrid):
"""This assumes that WarpX was compiled with USE_RZ = TRUE
"""
def init(self, kw):
self.max_grid_size = kw.pop('warpx_max_grid_size', 32)
self.blocking_factor = kw.pop('warpx_blocking_factor', None)
self.potential_xmin = None
self.potential_xmax = None
self.potential_ymin = None
self.potential_ymax = None
self.potential_zmin = kw.pop('warpx_potential_lo_z', None)
self.potential_zmax = kw.pop('warpx_potential_hi_z', None)
def initialize_inputs(self):
pywarpx.amr.n_cell = self.number_of_cells
# Maximum allowable size of each subdomain in the problem domain;
# this is used to decompose the domain for parallel calculations.
pywarpx.amr.max_grid_size = self.max_grid_size
pywarpx.amr.blocking_factor = self.blocking_factor
assert self.lower_bound[0] >= 0., Exception('Lower radial boundary must be >= 0.')
assert self.bc_rmin != 'periodic' and self.bc_rmax != 'periodic', Exception('Radial boundaries can not be periodic')
# Geometry
pywarpx.geometry.coord_sys = 1 # RZ
pywarpx.geometry.prob_lo = self.lower_bound # physical domain
pywarpx.geometry.prob_hi = self.upper_bound
pywarpx.warpx.n_rz_azimuthal_modes = self.n_azimuthal_modes
# Boundary conditions
pywarpx.boundary.field_lo = [BC_map[bc] for bc in [self.bc_rmin, self.bc_zmin]]
pywarpx.boundary.field_hi = [BC_map[bc] for bc in [self.bc_rmax, self.bc_zmax]]
pywarpx.boundary.particle_lo = [self.bc_rmin_particles, self.bc_zmin_particles]
pywarpx.boundary.particle_hi = [self.bc_rmax_particles, self.bc_zmax_particles]
if self.moving_window_zvelocity is not None:
if np.isscalar(self.moving_window_zvelocity):
if self.moving_window_zvelocity !=0:
pywarpx.warpx.do_moving_window = 1
pywarpx.warpx.moving_window_dir = 'z'
pywarpx.warpx.moving_window_v = self.moving_window_zvelocity/constants.c # in units of the speed of light
else:
raise Exception('RZ PICMI moving_window_velocity (only available in z direction) should be a scalar')
if self.refined_regions:
assert len(self.refined_regions) == 1, Exception('WarpX only supports one refined region.')
assert self.refined_regions[0][0] == 1, Exception('The one refined region can only be level 1')
pywarpx.amr.max_level = 1
pywarpx.warpx.fine_tag_lo = self.refined_regions[0][1]
pywarpx.warpx.fine_tag_hi = self.refined_regions[0][2]
# The refinement_factor is ignored (assumed to be [2,2])
else:
pywarpx.amr.max_level = 0
class Cartesian2DGrid(picmistandard.PICMI_Cartesian2DGrid):
def init(self, kw):
self.max_grid_size = kw.pop('warpx_max_grid_size', 32)
self.blocking_factor = kw.pop('warpx_blocking_factor', None)
self.potential_xmin = kw.pop('warpx_potential_lo_x', None)
self.potential_xmax = kw.pop('warpx_potential_hi_x', None)
self.potential_ymin = None
self.potential_ymax = None
self.potential_zmin = kw.pop('warpx_potential_lo_z', None)
self.potential_zmax = kw.pop('warpx_potential_hi_z', None)
def initialize_inputs(self):
pywarpx.amr.n_cell = self.number_of_cells
# Maximum allowable size of each subdomain in the problem domain;
# this is used to decompose the domain for parallel calculations.
pywarpx.amr.max_grid_size = self.max_grid_size
pywarpx.amr.blocking_factor = self.blocking_factor
# Geometry
pywarpx.geometry.coord_sys = 0 # Cartesian
pywarpx.geometry.prob_lo = self.lower_bound # physical domain
pywarpx.geometry.prob_hi = self.upper_bound
# Boundary conditions
pywarpx.boundary.field_lo = [BC_map[bc] for bc in [self.bc_xmin, self.bc_ymin]]
pywarpx.boundary.field_hi = [BC_map[bc] for bc in [self.bc_xmax, self.bc_ymax]]
pywarpx.boundary.particle_lo = [self.bc_xmin_particles, self.bc_ymin_particles]
pywarpx.boundary.particle_hi = [self.bc_xmax_particles, self.bc_ymax_particles]
if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)):
pywarpx.warpx.do_moving_window = 1
if self.moving_window_velocity[0] != 0.:
pywarpx.warpx.moving_window_dir = 'x'
pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/constants.c # in units of the speed of light
if self.moving_window_velocity[1] != 0.:
pywarpx.warpx.moving_window_dir = 'z'
pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/constants.c # in units of the speed of light
if self.refined_regions:
assert len(self.refined_regions) == 1, Exception('WarpX only supports one refined region.')
assert self.refined_regions[0][0] == 1, Exception('The one refined region can only be level 1')
pywarpx.amr.max_level = 1
pywarpx.warpx.fine_tag_lo = self.refined_regions[0][1]
pywarpx.warpx.fine_tag_hi = self.refined_regions[0][2]
# The refinement_factor is ignored (assumed to be [2,2])
else:
pywarpx.amr.max_level = 0
class Cartesian3DGrid(picmistandard.PICMI_Cartesian3DGrid):
def init(self, kw):
self.max_grid_size = kw.pop('warpx_max_grid_size', 32)
self.blocking_factor = kw.pop('warpx_blocking_factor', None)
self.potential_xmin = kw.pop('warpx_potential_lo_x', None)
self.potential_xmax = kw.pop('warpx_potential_hi_x', None)
self.potential_ymin = kw.pop('warpx_potential_lo_y', None)
self.potential_ymax = kw.pop('warpx_potential_hi_y', None)
self.potential_zmin = kw.pop('warpx_potential_lo_z', None)
self.potential_zmax = kw.pop('warpx_potential_hi_z', None)
def initialize_inputs(self):
pywarpx.amr.n_cell = self.number_of_cells
# Maximum allowable size of each subdomain in the problem domain;
# this is used to decompose the domain for parallel calculations.
pywarpx.amr.max_grid_size = self.max_grid_size
pywarpx.amr.blocking_factor = self.blocking_factor
# Geometry
pywarpx.geometry.coord_sys = 0 # Cartesian
pywarpx.geometry.prob_lo = self.lower_bound # physical domain
pywarpx.geometry.prob_hi = self.upper_bound
# Boundary conditions
pywarpx.boundary.field_lo = [BC_map[bc] for bc in [self.bc_xmin, self.bc_ymin, self.bc_zmin]]
pywarpx.boundary.field_hi = [BC_map[bc] for bc in [self.bc_xmax, self.bc_ymax, self.bc_zmax]]
pywarpx.boundary.particle_lo = [
self.bc_xmin_particles, self.bc_ymin_particles, self.bc_zmin_particles
]
pywarpx.boundary.particle_hi = [
self.bc_xmax_particles, self.bc_ymax_particles, self.bc_zmax_particles
]
if self.moving_window_velocity is not None and np.any(np.not_equal(self.moving_window_velocity, 0.)):
pywarpx.warpx.do_moving_window = 1
if self.moving_window_velocity[0] != 0.:
pywarpx.warpx.moving_window_dir = 'x'
pywarpx.warpx.moving_window_v = self.moving_window_velocity[0]/constants.c # in units of the speed of light
if self.moving_window_velocity[1] != 0.:
pywarpx.warpx.moving_window_dir = 'y'
pywarpx.warpx.moving_window_v = self.moving_window_velocity[1]/constants.c # in units of the speed of light
if self.moving_window_velocity[2] != 0.:
pywarpx.warpx.moving_window_dir = 'z'
pywarpx.warpx.moving_window_v = self.moving_window_velocity[2]/constants.c # in units of the speed of light
if self.refined_regions:
assert len(self.refined_regions) == 1, Exception('WarpX only supports one refined region.')
assert self.refined_regions[0][0] == 1, Exception('The one refined region can only be level 1')
pywarpx.amr.max_level = 1
pywarpx.warpx.fine_tag_lo = self.refined_regions[0][1]
pywarpx.warpx.fine_tag_hi = self.refined_regions[0][2]
# The refinement_factor is ignored (assumed to be [2,2,2])
else:
pywarpx.amr.max_level = 0
class ElectromagneticSolver(picmistandard.PICMI_ElectromagneticSolver):
def init(self, kw):
assert self.method is None or self.method in ['Yee', 'CKC', 'PSATD'], Exception("Only 'Yee', 'CKC', and 'PSATD' are supported")
self.pml_ncell = kw.pop('warpx_pml_ncell', None)
if self.method == 'PSATD':
self.psatd_periodic_single_box_fft = kw.pop('warpx_periodic_single_box_fft', None)
self.psatd_fftw_plan_measure = kw.pop('warpx_fftw_plan_measure', None)
self.psatd_current_correction = kw.pop('warpx_current_correction', None)
self.psatd_update_with_rho = kw.pop('warpx_psatd_update_with_rho', None)
self.psatd_do_time_averaging = kw.pop('warpx_psatd_do_time_averaging', None)
def initialize_inputs(self):
self.grid.initialize_inputs()
pywarpx.warpx.pml_ncell = self.pml_ncell
pywarpx.warpx.do_nodal = self.l_nodal
if self.method == 'PSATD':
pywarpx.psatd.periodic_single_box_fft = self.psatd_periodic_single_box_fft
pywarpx.psatd.fftw_plan_measure = self.psatd_fftw_plan_measure
pywarpx.psatd.current_correction = self.psatd_current_correction
pywarpx.psatd.update_with_rho = self.psatd_update_with_rho
pywarpx.psatd.do_time_averaging = self.psatd_do_time_averaging
if self.grid.guard_cells is not None:
pywarpx.psatd.nx_guard = self.grid.guard_cells[0]
if self.grid.number_of_dimensions == 3:
pywarpx.psatd.ny_guard = self.grid.guard_cells[1]
pywarpx.psatd.nz_guard = self.grid.guard_cells[-1]
if self.stencil_order is not None:
pywarpx.psatd.nox = self.stencil_order[0]
if self.grid.number_of_dimensions == 3:
pywarpx.psatd.noy = self.stencil_order[1]
pywarpx.psatd.noz = self.stencil_order[-1]
if self.galilean_velocity is not None:
if self.grid.number_of_dimensions == 2:
self.galilean_velocity = [self.galilean_velocity[0], 0., self.galilean_velocity[1]]
pywarpx.psatd.v_galilean = np.array(self.galilean_velocity)/constants.c
# --- Same method names are used, though mapped to lower case.
pywarpx.algo.maxwell_solver = self.method
if self.cfl is not None:
pywarpx.warpx.cfl = self.cfl
if self.source_smoother is not None:
self.source_smoother.initialize_inputs(self)
class ElectrostaticSolver(picmistandard.PICMI_ElectrostaticSolver):
def init(self, kw):
self.relativistic = kw.pop('warpx_relativistic', False)
self.self_fields_verbosity = kw.pop('warpx_self_fields_verbosity', None)
def initialize_inputs(self):
self.grid.initialize_inputs()
if self.relativistic:
pywarpx.warpx.do_electrostatic = 'relativistic'
else:
pywarpx.warpx.do_electrostatic = 'labframe'
pywarpx.warpx.self_fields_required_precision = self.required_precision
pywarpx.warpx.self_fields_max_iters = self.maximum_iterations
pywarpx.warpx.self_fields_verbosity = self.self_fields_verbosity
pywarpx.boundary.potential_lo_x = self.grid.potential_xmin
pywarpx.boundary.potential_lo_y = self.grid.potential_ymin
pywarpx.boundary.potential_lo_z = self.grid.potential_zmin
pywarpx.boundary.potential_hi_x = self.grid.potential_xmax
pywarpx.boundary.potential_hi_y = self.grid.potential_ymax
pywarpx.boundary.potential_hi_z = self.grid.potential_zmax
class GaussianLaser(picmistandard.PICMI_GaussianLaser):
def initialize_inputs(self):
self.laser_number = len(pywarpx.lasers.names) + 1
if self.name is None:
self.name = 'laser{}'.format(self.laser_number)
self.laser = pywarpx.Lasers.newlaser(self.name)
self.laser.profile = "Gaussian"
self.laser.wavelength = self.wavelength # The wavelength of the laser (in meters)
self.laser.e_max = self.E0 # Maximum amplitude of the laser field (in V/m)
self.laser.polarization = self.polarization_direction # The main polarization vector
self.laser.profile_waist = self.waist # The waist of the laser (in meters)
self.laser.profile_duration = self.duration # The duration of the laser (in seconds)
self.laser.zeta = self.zeta
self.laser.beta = self.beta
self.laser.phi2 = self.phi2
self.laser.phi0 = self.phi0
self.laser.do_continuous_injection = self.fill_in
class AnalyticLaser(picmistandard.PICMI_AnalyticLaser):
def init(self, kw):
self.mangle_dict = None
def initialize_inputs(self):
self.laser_number = len(pywarpx.lasers.names) + 1
if self.name is None:
self.name = 'laser{}'.format(self.laser_number)
self.laser = pywarpx.Lasers.newlaser(self.name)
self.laser.profile = "parse_field_function"
self.laser.wavelength = self.wavelength # The wavelength of the laser (in meters)
self.laser.e_max = self.Emax # Maximum amplitude of the laser field (in V/m)
self.laser.polarization = self.polarization_direction # The main polarization vector
self.laser.do_continuous_injection = self.fill_in
if self.mangle_dict is None:
# Only do this once so that the same variables are used in this distribution
# is used multiple times
self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw)
expression = pywarpx.my_constants.mangle_expression(self.field_expression, self.mangle_dict)
self.laser.__setattr__('field_function(X,Y,t)', expression)
class LaserAntenna(picmistandard.PICMI_LaserAntenna):
def initialize_inputs(self, laser):
laser.laser.position = self.position # This point is on the laser plane
laser.laser.direction = self.normal_vector # The plane normal direction
if isinstance(laser, GaussianLaser):
laser.laser.profile_focal_distance = laser.focal_position[2] - self.position[2] # Focal distance from the antenna (in meters)
laser.laser.profile_t_peak = (self.position[2] - laser.centroid_position[2])/constants.c # The time at which the laser reaches its peak (in seconds)
class ConstantAppliedField(picmistandard.PICMI_ConstantAppliedField):
def initialize_inputs(self):
# Note that lower and upper_bound are not used by WarpX
if (self.Ex is not None or
self.Ey is not None or
self.Ez is not None):
pywarpx.particles.E_ext_particle_init_style = 'constant'
pywarpx.particles.E_external_particle = [self.Ex or 0., self.Ey or 0., self.Ez or 0.]
if (self.Bx is not None or
self.By is not None or
self.Bz is not None):
pywarpx.particles.B_ext_particle_init_style = 'constant'
pywarpx.particles.B_external_particle = [self.Bx or 0., self.By or 0., self.Bz or 0.]
class AnalyticAppliedField(picmistandard.PICMI_AnalyticAppliedField):
def init(self, kw):
self.mangle_dict = None
def initialize_inputs(self):
# Note that lower and upper_bound are not used by WarpX
if self.mangle_dict is None:
# Only do this once so that the same variables are used in this distribution
# is used multiple times
self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw)
if (self.Ex_expression is not None or
self.Ey_expression is not None or
self.Ez_expression is not None):
pywarpx.particles.E_ext_particle_init_style = 'parse_e_ext_particle_function'
for sdir, expression in zip(['x', 'y', 'z'], [self.Ex_expression, self.Ey_expression, self.Ez_expression]):
expression = pywarpx.my_constants.mangle_expression(expression, self.mangle_dict)
pywarpx.particles.__setattr__(f'E{sdir}_external_particle_function(x,y,z,t)', expression)
if (self.Bx_expression is not None or
self.By_expression is not None or
self.Bz_expression is not None):
pywarpx.particles.B_ext_particle_init_style = 'parse_b_ext_particle_function'
for sdir, expression in zip(['x', 'y', 'z'], [self.Bx_expression, self.By_expression, self.Bz_expression]):
expression = pywarpx.my_constants.mangle_expression(expression, self.mangle_dict)
pywarpx.particles.__setattr__(f'B{sdir}_external_particle_function(x,y,z,t)', expression)
class Mirror(picmistandard.PICMI_Mirror):
def initialize_inputs(self):
try:
pywarpx.warpx.num_mirrors
except AttributeError:
pywarpx.warpx.num_mirrors = 0
pywarpx.warpx.mirror_z = []
pywarpx.warpx.mirror_z_width = []
pywarpx.warpx.mirror_z_npoints = []
pywarpx.warpx.num_mirrors += 1
pywarpx.warpx.mirror_z.append(self.z_front_location)
pywarpx.warpx.mirror_z_width.append(self.depth)
pywarpx.warpx.mirror_z_npoints.append(self.number_of_cells)
class MCCCollisions(picmistandard.base._ClassWithInit):
"""Custom class to handle setup of MCC collisions in WarpX. If collision
initialization is added to picmistandard this can be changed to inherit
that functionality."""
def __init__(self, name, species, background_density,
background_temperature, scattering_processes,
background_mass=None, **kw):
self.name = name
self.species = species
self.background_density = background_density
self.background_temperature = background_temperature
self.background_mass = background_mass
self.scattering_processes = scattering_processes
self.handle_init(kw)
def initialize_inputs(self):
collision = pywarpx.Collisions.newcollision(self.name)
collision.type = 'background_mcc'
collision.species = self.species.name
collision.background_density = self.background_density
collision.background_temperature = self.background_temperature
collision.background_mass = self.background_mass
collision.scattering_processes = self.scattering_processes.keys()
for process, kw in self.scattering_processes.items():
for key, val in kw.items():
if key == 'species':
val = val.name
collision.add_new_attr(process+'_'+key, val)
class EmbeddedBoundary(picmistandard.base._ClassWithInit):
"""Custom class to handle set up of embedded boundaries in WarpX. If
embedded boundary initialization is added to picmistandard this can be
changed to inherit that functionality."""
def __init__(self, implicit_function, potential=None, **kw):
self.implicit_function = implicit_function
self.potential = potential
self.handle_init(kw)
def initialize_inputs(self):
pywarpx.warpx.eb_implicit_function = self.implicit_function
pywarpx.warpx.__setattr__('eb_potential(t)', self.potential)
class Simulation(picmistandard.PICMI_Simulation):
def init(self, kw):
self.current_deposition_algo = kw.pop('warpx_current_deposition_algo', None)
self.charge_deposition_algo = kw.pop('warpx_charge_deposition_algo', None)
self.field_gathering_algo = kw.pop('warpx_field_gathering_algo', None)
self.particle_pusher_algo = kw.pop('warpx_particle_pusher_algo', None)
self.use_filter = kw.pop('warpx_use_filter', None)
self.serialize_ics = kw.pop('warpx_serialize_ics', None)
self.do_dynamic_scheduling = kw.pop('warpx_do_dynamic_scheduling', None)
self.load_balance_intervals = kw.pop('warpx_load_balance_intervals', None)
self.load_balance_efficiency_ratio_threshold = kw.pop('warpx_load_balance_efficiency_ratio_threshold', None)
self.load_balance_with_sfc = kw.pop('warpx_load_balance_with_sfc', None)
self.load_balance_knapsack_factor = kw.pop('warpx_load_balance_knapsack_factor', None)
self.load_balance_costs_update = kw.pop('warpx_load_balance_costs_update', None)
self.costs_heuristic_particles_wt = kw.pop('warpx_costs_heuristic_particles_wt', None)
self.costs_heuristic_cells_wt = kw.pop('warpx_costs_heuristic_cells_wt', None)
self.use_fdtd_nci_corr = kw.pop('warpx_use_fdtd_nci_corr', None)
self.amr_check_input = kw.pop('warpx_amr_check_input', None)
self.collisions = kw.pop('warpx_collisions', None)
self.embedded_boundary = kw.pop('warpx_embedded_boundary', None)
self.inputs_initialized = False
self.warpx_initialized = False
def initialize_inputs(self):
if self.inputs_initialized:
return
self.inputs_initialized = True
pywarpx.warpx.verbose = self.verbose
if self.time_step_size is not None:
pywarpx.warpx.const_dt = self.time_step_size
if self.gamma_boost is not None:
pywarpx.warpx.gamma_boost = self.gamma_boost
pywarpx.warpx.boost_direction = 'z'
pywarpx.algo.current_deposition = self.current_deposition_algo
pywarpx.algo.charge_deposition = self.charge_deposition_algo
pywarpx.algo.field_gathering = self.field_gathering_algo
pywarpx.algo.particle_pusher = self.particle_pusher_algo
pywarpx.algo.load_balance_intervals = self.load_balance_intervals
pywarpx.algo.load_balance_efficiency_ratio_threshold = self.load_balance_efficiency_ratio_threshold
pywarpx.algo.load_balance_with_sfc = self.load_balance_with_sfc
pywarpx.algo.load_balance_knapsack_factor = self.load_balance_knapsack_factor
pywarpx.algo.load_balance_costs_update = self.load_balance_costs_update
pywarpx.algo.costs_heuristic_particles_wt = self.costs_heuristic_particles_wt
pywarpx.algo.costs_heuristic_cells_wt = self.costs_heuristic_cells_wt
pywarpx.warpx.use_filter = self.use_filter
pywarpx.warpx.serialize_ics = self.serialize_ics
pywarpx.warpx.do_dynamic_scheduling = self.do_dynamic_scheduling
pywarpx.particles.use_fdtd_nci_corr = self.use_fdtd_nci_corr
pywarpx.amr.check_input = self.amr_check_input
particle_shape = self.particle_shape
for s in self.species:
if s.particle_shape is not None:
assert particle_shape is None or particle_shape == s.particle_shape, Exception('WarpX only supports one particle shape for all species')
# --- If this was set for any species, use that value.
particle_shape = s.particle_shape
if particle_shape is not None:
if isinstance(particle_shape, str):
interpolation_order = {'NGP':0, 'linear':1, 'quadratic':2, 'cubic':3}[particle_shape]
else:
interpolation_order = particle_shape
pywarpx.algo.particle_shape = interpolation_order
self.solver.initialize_inputs()
for i in range(len(self.species)):
self.species[i].initialize_inputs(self.layouts[i],
self.initialize_self_fields[i],
self.injection_plane_positions[i],
self.injection_plane_normal_vectors[i])
if self.collisions is not None:
pywarpx.collisions.collision_names = []
for collision in self.collisions:
pywarpx.collisions.collision_names.append(collision.name)
collision.initialize_inputs()
if self.embedded_boundary is not None:
self.embedded_boundary.initialize_inputs()
for i in range(len(self.lasers)):
self.lasers[i].initialize_inputs()
self.laser_injection_methods[i].initialize_inputs(self.lasers[i])
for applied_field in self.applied_fields:
applied_field.initialize_inputs()
for diagnostic in self.diagnostics:
diagnostic.initialize_inputs()
def initialize_warpx(self, mpi_comm=None):
if self.warpx_initialized:
return
self.warpx_initialized = True
pywarpx.warpx.init(mpi_comm)
def write_input_file(self, file_name='inputs'):
self.initialize_inputs()
kw = {}
if self.max_steps is not None:
kw['max_step'] = self.max_steps
if self.max_time is not None:
kw['stop_time'] = self.max_time
pywarpx.warpx.write_inputs(file_name, **kw)
def step(self, nsteps=None, mpi_comm=None):
self.initialize_inputs()
self.initialize_warpx(mpi_comm)
if nsteps is None:
if self.max_steps is not None:
nsteps = self.max_steps
else:
nsteps = -1
pywarpx.warpx.evolve(nsteps)
def finalize(self):
if self.warpx_initialized:
self.warpx_initialized = False
pywarpx.warpx.finalize()
# ----------------------------
# Simulation frame diagnostics
# ----------------------------
class FieldDiagnostic(picmistandard.PICMI_FieldDiagnostic):
def init(self, kw):
self.plot_raw_fields = kw.pop('warpx_plot_raw_fields', None)
self.plot_raw_fields_guards = kw.pop('warpx_plot_raw_fields_guards', None)
self.plot_finepatch = kw.pop('warpx_plot_finepatch', None)
self.plot_crsepatch = kw.pop('warpx_plot_crsepatch', None)
self.format = kw.pop('warpx_format', 'plotfile')
self.openpmd_backend = kw.pop('warpx_openpmd_backend', None)
self.file_prefix = kw.pop('warpx_file_prefix', None)
self.dump_rz_modes = kw.pop('warpx_dump_rz_modes', None)
def initialize_inputs(self):
name = getattr(self, 'name', None)
if name is None:
diagnostics_number = len(pywarpx.diagnostics._diagnostics_dict) + 1
self.name = 'diag{}'.format(diagnostics_number)
try:
self.diagnostic = pywarpx.diagnostics._diagnostics_dict[self.name]
except KeyError:
self.diagnostic = pywarpx.Diagnostics.Diagnostic(self.name, _species_dict={})
pywarpx.diagnostics._diagnostics_dict[self.name] = self.diagnostic
self.diagnostic.diag_type = 'Full'
self.diagnostic.format = self.format
self.diagnostic.openpmd_backend = self.openpmd_backend
self.diagnostic.dump_rz_modes = self.dump_rz_modes
self.diagnostic.intervals = self.period
self.diagnostic.diag_lo = self.lower_bound
self.diagnostic.diag_hi = self.upper_bound
if self.number_of_cells is not None:
self.diagnostic.coarsening_ratio = (np.array(self.grid.number_of_cells)/np.array(self.number_of_cells)).astype(int)
# --- Use a set to ensure that fields don't get repeated.
fields_to_plot = set()
for dataname in self.data_list:
if dataname == 'E':
fields_to_plot.add('Ex')
fields_to_plot.add('Ey')
fields_to_plot.add('Ez')
elif dataname == 'B':
fields_to_plot.add('Bx')
fields_to_plot.add('By')
fields_to_plot.add('Bz')
elif dataname == 'J':
fields_to_plot.add('jx')
fields_to_plot.add('jy')
fields_to_plot.add('jz')
elif dataname in ['Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz', 'rho', 'phi', 'F', 'proc_number', 'part_per_cell']:
fields_to_plot.add(dataname)
elif dataname in ['Jx', 'Jy', 'Jz']:
fields_to_plot.add(dataname.lower())
elif dataname.startswith('rho_'):
# Adds rho_species diagnostic
fields_to_plot.add(dataname)
elif dataname == 'dive':
fields_to_plot.add('divE')
elif dataname == 'divb':
fields_to_plot.add('divB')
elif dataname == 'raw_fields':
self.plot_raw_fields = 1
elif dataname == 'raw_fields_guards':
self.plot_raw_fields_guards = 1
elif dataname == 'finepatch':
self.plot_finepatch = 1
elif dataname == 'crsepatch':
self.plot_crsepatch = 1
# --- Convert the set to a sorted list so that the order
# --- is the same on all processors.
fields_to_plot = list(fields_to_plot)
fields_to_plot.sort()
self.diagnostic.fields_to_plot = fields_to_plot
self.diagnostic.plot_raw_fields = self.plot_raw_fields
self.diagnostic.plot_raw_fields_guards = self.plot_raw_fields_guards
self.diagnostic.plot_finepatch = self.plot_finepatch
self.diagnostic.plot_crsepatch = self.plot_crsepatch
if self.write_dir is not None or self.file_prefix is not None:
write_dir = (self.write_dir or 'diags')
file_prefix = (self.file_prefix or self.name)
self.diagnostic.file_prefix = write_dir + '/' + file_prefix
ElectrostaticFieldDiagnostic = FieldDiagnostic
class ParticleDiagnostic(picmistandard.PICMI_ParticleDiagnostic):
def init(self, kw):
self.format = kw.pop('warpx_format', 'plotfile')
self.openpmd_backend = kw.pop('warpx_openpmd_backend', None)
self.file_prefix = kw.pop('warpx_file_prefix', None)
self.random_fraction = kw.pop('warpx_random_fraction', None)
self.uniform_stride = kw.pop('warpx_uniform_stride', None)
self.plot_filter_function = kw.pop('warpx_plot_filter_function', None)
self.user_defined_kw = {}
if self.plot_filter_function is not None:
# This allows variables to be used in the plot_filter_function, but
# in order not to break other codes, the variables must begin with "warpx_"
for k in list(kw.keys()):
if k.startswith('warpx_') and re.search(r'\b%s\b'%k, self.plot_filter_function):
self.user_defined_kw[k] = kw[k]
del kw[k]
self.mangle_dict = None
def initialize_inputs(self):
name = getattr(self, 'name', None)
if name is None:
diagnostics_number = len(pywarpx.diagnostics._diagnostics_dict) + 1
self.name = 'diag{}'.format(diagnostics_number)
try:
self.diagnostic = pywarpx.diagnostics._diagnostics_dict[self.name]
except KeyError:
self.diagnostic = pywarpx.Diagnostics.Diagnostic(self.name, _species_dict={})
pywarpx.diagnostics._diagnostics_dict[self.name] = self.diagnostic
self.diagnostic.diag_type = 'Full'
self.diagnostic.format = self.format
self.diagnostic.openpmd_backend = self.openpmd_backend
self.diagnostic.intervals = self.period
if self.write_dir is not None or self.file_prefix is not None:
write_dir = (self.write_dir or 'diags')
file_prefix = (self.file_prefix or self.name)
self.diagnostic.file_prefix = write_dir + '/' + file_prefix
# --- Use a set to ensure that fields don't get repeated.
variables = set()
for dataname in self.data_list:
if dataname == 'position':
# --- The positions are alway written out anyway
pass
elif dataname == 'momentum':
variables.add('ux')
variables.add('uy')
variables.add('uz')
elif dataname == 'weighting':
variables.add('w')
elif dataname == 'fields':
variables.add('Ex')
variables.add('Ey')
variables.add('Ez')
variables.add('Bx')
variables.add('By')
variables.add('Bz')
elif dataname in ['ux', 'uy', 'uz', 'Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz']:
variables.add(dataname)
# --- Convert the set to a sorted list so that the order
# --- is the same on all processors.
variables = list(variables)
variables.sort()
if np.iterable(self.species):
species_list = self.species
else:
species_list = [self.species]
if self.mangle_dict is None:
# Only do this once so that the same variables are used in this distribution
# is used multiple times
self.mangle_dict = pywarpx.my_constants.add_keywords(self.user_defined_kw)
for specie in species_list:
diag = pywarpx.Bucket.Bucket(self.name + '.' + specie.name,
variables = variables,
random_fraction = self.random_fraction,
uniform_stride = self.uniform_stride)
expression = pywarpx.my_constants.mangle_expression(self.plot_filter_function, self.mangle_dict)
diag.__setattr__('plot_filter_function(t,x,y,z,ux,uy,uz)', expression)
self.diagnostic._species_dict[specie.name] = diag
# ----------------------------
# Lab frame diagnostics
# ----------------------------
class LabFrameFieldDiagnostic(picmistandard.PICMI_LabFrameFieldDiagnostic):
"""
Warp specific arguments:
- warpx_new_BTD: Use the new BTD diagnostics
- warpx_format: Passed to <diagnostic name>.format
- warpx_openpmd_backend: Passed to <diagnostic name>.openpmd_backend
- warpx_file_prefix: Passed to <diagnostic name>.file_prefix
- warpx_buffer_size: Passed to <diagnostic name>.buffer_size
- warpx_lower_bound: Passed to <diagnostic name>.lower_bound
- warpx_upper_bound: Passed to <diagnostic name>.upper_bound
"""
__doc__ = picmistandard.PICMI_LabFrameFieldDiagnostic.__doc__ + __doc__
def init(self, kw):
self.use_new_BTD = kw.pop('warpx_new_BTD', False)
if self.use_new_BTD:
# The user is using the new BTD
self.format = kw.pop('warpx_format', None)
self.openpmd_backend = kw.pop('warpx_openpmd_backend', None)
self.file_prefix = kw.pop('warpx_file_prefix', None)
self.buffer_size = kw.pop('warpx_buffer_size', None)
self.lower_bound = kw.pop('warpx_lower_bound', None)
self.upper_bound = kw.pop('warpx_upper_bound', None)
def initialize_inputs(self):
if self.use_new_BTD:
self.initialize_inputs_new()
else:
self.initialize_inputs_old()
def initialize_inputs_old(self):
pywarpx.warpx.check_consistency('num_snapshots_lab', self.num_snapshots, 'The number of snapshots must be the same in all lab frame diagnostics')
pywarpx.warpx.check_consistency('dt_snapshots_lab', self.dt_snapshots, 'The time between snapshots must be the same in all lab frame diagnostics')
pywarpx.warpx.check_consistency('lab_data_directory', self.write_dir, 'The write directory must be the same in all lab frame diagnostics')
pywarpx.warpx.do_back_transformed_diagnostics = 1
pywarpx.warpx.num_snapshots_lab = self.num_snapshots
pywarpx.warpx.dt_snapshots_lab = self.dt_snapshots
pywarpx.warpx.do_back_transformed_fields = 1
pywarpx.warpx.lab_data_directory = self.write_dir
def initialize_inputs_new(self):
name = getattr(self, 'name', None)
if name is None:
diagnostics_number = len(pywarpx.diagnostics._diagnostics_dict) + 1
self.name = 'diag{}'.format(diagnostics_number)
try:
self.diagnostic = pywarpx.diagnostics._diagnostics_dict[self.name]
except KeyError:
self.diagnostic = pywarpx.Diagnostics.Diagnostic(self.name, _species_dict={})
pywarpx.diagnostics._diagnostics_dict[self.name] = self.diagnostic
self.diagnostic.diag_type = 'BackTransformed'
self.diagnostic.format = self.format
self.diagnostic.openpmd_backend = self.openpmd_backend
self.diagnostic.diag_lo = self.lower_bound
self.diagnostic.diag_hi = self.upper_bound
self.diagnostic.do_back_transformed_fields = 1
self.diagnostic.num_snapshots_lab = self.num_snapshots
self.diagnostic.dt_snapshots_lab = self.dt_snapshots
self.diagnostic.buffer_size = self.buffer_size
# --- Use a set to ensure that fields don't get repeated.
fields_to_plot = set()
for dataname in self.data_list:
if dataname == 'E':
fields_to_plot.add('Ex')
fields_to_plot.add('Ey')
fields_to_plot.add('Ez')
elif dataname == 'B':
fields_to_plot.add('Bx')
fields_to_plot.add('By')
fields_to_plot.add('Bz')
elif dataname == 'J':
fields_to_plot.add('jx')
fields_to_plot.add('jy')
fields_to_plot.add('jz')
elif dataname in ['Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz', 'rho']:
fields_to_plot.add(dataname)
elif dataname in ['Jx', 'Jy', 'Jz']:
fields_to_plot.add(dataname.lower())
elif dataname.startswith('rho_'):
# Adds rho_species diagnostic
fields_to_plot.add(dataname)
# --- Convert the set to a sorted list so that the order
# --- is the same on all processors.
fields_to_plot = list(fields_to_plot)
fields_to_plot.sort()
self.diagnostic.fields_to_plot = fields_to_plot
if self.write_dir is not None or self.file_prefix is not None:
write_dir = (self.write_dir or 'diags')
file_prefix = (self.file_prefix or self.name)
self.diagnostic.file_prefix = write_dir + '/' + file_prefix
class LabFrameParticleDiagnostic(picmistandard.PICMI_LabFrameParticleDiagnostic):
def initialize_inputs(self):
pywarpx.warpx.check_consistency('num_snapshots_lab', self.num_snapshots, 'The number of snapshots must be the same in all lab frame diagnostics')
pywarpx.warpx.check_consistency('dt_snapshots_lab', self.dt_snapshots, 'The time between snapshots must be the same in all lab frame diagnostics')
pywarpx.warpx.check_consistency('lab_data_directory', self.write_dir, 'The write directory must be the same in all lab frame diagnostics')
pywarpx.warpx.do_back_transformed_diagnostics = 1
if isinstance(self.species, Species):
self.species.do_back_transformed_diagnostics = 1
else:
try:
for specie in self.species:
specie.do_back_transformed_diagnostics = 1
except TypeError:
pass
pywarpx.warpx.num_snapshots_lab = self.num_snapshots
pywarpx.warpx.dt_snapshots_lab = self.dt_snapshots
pywarpx.warpx.lab_data_directory = self.write_dir
|