1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
import warp
from warp import top
from warp import w3d
from ._libwarpx import libwarpx
class TimeStepper(object):
def step(self, nsteps=1):
for i in range(nsteps):
self.onestep()
def onestep(self):
self.cur_time = libwarpx.warpx_gett_new(0)
self.istep = libwarpx.warpx_getistep(0)
#if mpi.rank == 0:
print "\nSTEP %d starts ..."%(self.istep + 1)
#if (ParallelDescriptor::NProcs() > 1)
# if (okToRegrid(step)) RegridBaseLevel();
libwarpx.warpx_ComputeDt()
dt = libwarpx.warpx_getdt(0)
# --- Advance level 0 by dt
lev = 0
# --- At the beginning, we have B^{n-1/2} and E^{n}.
# --- Particles have p^{n-1/2} and x^{n}.
libwarpx.warpx_EvolveB(lev, 0.5*dt) # We now B^{n}
libwarpx.warpx_FillBoundaryE(lev, False)
libwarpx.warpx_FillBoundaryB(lev, False)
# --- Evolve particles to p^{n+1/2} and x^{n+1}
# --- Depose current, j^{n+1/2}
libwarpx.warpx_PushParticlesandDepose(lev, self.cur_time)
libwarpx.mypc_Redistribute() # Redistribute particles
libwarpx.warpx_EvolveB(lev, 0.5*dt) # We now B^{n+1/2}
libwarpx.warpx_FillBoundaryB(lev, True)
libwarpx.warpx_EvolveE(lev, dt) # We now have E^{n+1}
self.istep += 1
self.cur_time += dt
libwarpx.warpx_MoveWindow();
#if mpi.rank == 0:
print "STEP %d ends. TIME = %e DT = %e"%(self.istep, self.cur_time, dt)
# --- Sync up time
for i in range(libwarpx.warpx_finestLevel()+1):
libwarpx.warpx_sett_new(i, self.cur_time)
libwarpx.warpx_setistep(i, self.istep)
max_time_reached = ((self.cur_time >= libwarpx.warpx_stopTime() - 1.e-6*dt) or (self.istep >= libwarpx.warpx_maxStep()))
if libwarpx.warpx_plotInt() > 0 and (self.istep+1)%libwarpx.warpx_plotInt() == 0 or max_time_reached:
libwarpx.warpx_WritePlotFile()
if libwarpx.warpx_checkInt() > 0 and (self.istep+1)%libwarpx.warpx_plotInt() == 0 or max_time_reached:
libwarpx.warpx_WriteCheckPointFile()
# --- This is not used
class TimeStepperFromPICSAR(object):
def __init__(self, package=None, solver=None, l_debug=False):
self.package = package
self.solver = solver
self.l_debug = l_debug
def setpackagestepnumber(self, it):
if self.package is not None:
self.package.setstepnumber(it)
def step(self, n=1, freq_print=10, lallspecl=0):
"""
This function performs a range of Particle-In-Cell iterations
Inputs:
- n: number of iterations
- freq_print: print frequency
"""
if (self.l_debug): print("Call step")
for i in range(n):
if(me == 0):
if top.it%freq_print == 0:
print 'it = %g time = %g'%(top.it, top.time)
l_first = (lallspecl or (i == 0))
l_last = (lallspecl or (i == n-1))
self.onestep(l_first, l_last)
if (self.l_debug): print("End step")
def onestep(self, l_first, l_last):
"""
Perform a single particle-in-cell step
"""
if (self.l_debug): print("Call onestep")
# --- Iteration number
self.setpackagestepnumber(top.it)
# --- call beforestep functions
if (self.l_debug): print("Call beforestep functions")
warp.callbeforestepfuncs.callfuncsinlist()
# --- gather fields from grid to particles
if (self.l_debug): print("Call Field gathering and particle push")
# --- push
if l_first:
if self.package is None:
# --- Standard Warp advance
for specie in warp.listofallspecies:
for pg in specie.flatten(specie.pgroups):
for js in range(pg.ns):
self.push_velocity_second_part(js, pg)
self.push_positions(js, pg)
warp.particleboundaries3d(pg, -1, False)
else:
# --- Particle pusher
if (self.l_debug): print("Call package particle push")
pxr.pxrpush_particles_part2()
# --- Particle boundary consitions
if (self.l_debug): print("Call package particle boundary conditions")
pxr.particle_bcs()
if (self.l_debug): print("Call aliasparticlearrays()")
self.aliasparticlearrays()
else:
if self.package is None:
# --- Standard Warp advance
for specie in warp.listofallspecies:
for pg in specie.flatten(specie.pgroups):
for js in range(pg.ns):
self.push_velocity_full(js, pg)
self.push_positions(js, pg)
warp.particleboundaries3d(pg, -1, False)
else:
# --- Particle pusher
if (self.l_debug): print("Call package particle pusher")
pxr.field_gathering_plus_particle_pusher()
# --- Particle boundary conditions
if (self.l_debug): print("Call package particle boundary conditions")
pxr.particle_bcs()
self.aliasparticlearrays()
# --- Particle sorting
if (self.l_debug): print("Call Particle Sorting")
if self.package is not None:
# --- This should be a function installed before load rho
pxr.particle_sorting_sub()
# --- call beforeloadrho functions
if (self.l_debug): print("Call beforeloadrho functions")
warp.beforeloadrho.callfuncsinlist()
pgroups = []
for specie in warp.listofallspecies:
pgroups += specie.flatten(specie.pgroups)
self.pgroups = pgroups
# --- Call user-defined injection routines
if (self.l_debug): print("Call user-defined injection routines")
warp.userinjection.callfuncsinlist()
xgriddiff = w3d.xmmin - pxr.xmin
ygriddiff = w3d.ymmin - pxr.ymin
zgriddiff = w3d.zmmin - pxr.zmin
if (xgriddiff != 0 or ygriddiff != 0 or zgriddiff != 0):
pxr.pxr_move_sim_boundaries(xgriddiff, ygriddiff, zgriddiff)
if (self.l_debug): print("Call loadrho")
self.solver.loadrho(pgroups = pgroups)
if (self.l_debug): print("Call loadj")
self.solver.loadj(pgroups = pgroups)
if (self.l_debug): print("Call dosolve")
self.solver.dosolve()
if self.package is None:
for specie in warp.listofallspecies:
for pg in specie.flatten(specie.pgroups):
for js in range(pg.ns):
self.fetcheb(js, pg)
if l_last:
self.push_velocity_first_part(js, pg)
else:
if l_last:
if (self.l_debug): print("Call package push particles 1")
pxr.pxrpush_particles_part1()
# --- update time, time counter
top.time += top.dt
if top.it%top.nhist == 0:
# zmmnt()
minidiag(top.it, top.time, top.lspecial)
top.it += 1
# --- Load balance function should be installed after step
# --- call afterstep functions
if (self.l_debug): print("Call callafterstepfuncs.callfuncsinlist()")
warp.callafterstepfuncs.callfuncsinlist()
# --- The following methods use the standard Warp routines
def fetcheb(self, js, pg=None):
if self.l_verbose:print me, 'enter fetcheb'
if pg is None:
pg = top.pgroup
np = pg.nps[js]
if np == 0: return
il = pg.ins[js] - 1
iu = il + pg.nps[js]
w3d.pgroupfsapi = pg
w3d.ipminfsapi = pg.ins[js]
w3d.npfsapi = pg.nps[js]
pg.ex[il:iu] = 0.
pg.ey[il:iu] = 0.
pg.ez[il:iu] = 0.
pg.bx[il:iu] = 0.
pg.by[il:iu] = 0.
pg.bz[il:iu] = 0.
self.fetche()
self.fetchb()
w3d.pgroupfsapi = None
def push_velocity_full(self, js, pg=None):
if self.l_verbose:print me, 'enter push_velocity_full'
if pg is None:
pg = top.pgroup
np = pg.nps[js]
if np == 0: return
il = pg.ins[js] - 1
iu = il + pg.nps[js]
if pg.lebcancel_pusher:
warp.ebcancelpush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu], pg.gaminv[il:iu],
pg.ex[il:iu], pg.ey[il:iu], pg.ez[il:iu],
pg.bx[il:iu], pg.by[il:iu], pg.bz[il:iu],
pg.sq[js], pg.sm[js], top.dt, 0)
else:
# --- push velocity from electric field (half step)
warp.epush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu],
pg.ex[il:iu], pg.ey[il:iu], pg.ez[il:iu],
pg.sq[js], pg.sm[js], 0.5*top.dt)
# --- update gamma
self.set_gamma(js, pg)
# --- push velocity from magnetic field
warp.bpush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu], pg.gaminv[il:iu],
pg.bx[il:iu], pg.by[il:iu], pg.bz[il:iu],
pg.sq[js], pg.sm[js], top.dt, top.ibpush)
# --- push velocity from electric field (half step)
warp.epush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu],
pg.ex[il:iu], pg.ey[il:iu], pg.ez[il:iu],
pg.sq[js], pg.sm[js], 0.5*top.dt)
# --- update gamma
self.set_gamma(js, pg)
if self.l_verbose:print me, 'exit push_velocity_first_part'
def push_velocity_first_part(self, js, pg=None):
if self.l_verbose:print me, 'enter push_velocity_first_part'
if pg is None:
pg = top.pgroup
np = pg.nps[js]
if np == 0: return
il = pg.ins[js] - 1
iu = il + pg.nps[js]
if pg.lebcancel_pusher:
warp.ebcancelpush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu], pg.gaminv[il:iu],
pg.ex[il:iu], pg.ey[il:iu], pg.ez[il:iu],
pg.bx[il:iu], pg.by[il:iu], pg.bz[il:iu],
pg.sq[js], pg.sm[js], top.dt, 1)
else:
# --- push velocity from electric field (half step)
warp.epush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu],
pg.ex[il:iu], pg.ey[il:iu], pg.ez[il:iu],
pg.sq[js], pg.sm[js], 0.5*top.dt)
# --- update gamma
self.set_gamma(js,pg)
# --- push velocity from magnetic field
warp.bpush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu], pg.gaminv[il:iu],
pg.bx[il:iu], pg.by[il:iu], pg.bz[il:iu],
pg.sq[js], pg.sm[js], 0.5*top.dt, top.ibpush)
if self.l_verbose:print me, 'exit push_velocity_first_part'
def push_velocity_second_part(self, js, pg=None):
if self.l_verbose:print me, 'enter push_velocity_second_part'
if pg is None:
pg = top.pgroup
np = pg.nps[js]
if np == 0: return
il = pg.ins[js] - 1
iu = il + pg.nps[js]
if pg.lebcancel_pusher:
warp.ebcancelpush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu], pg.gaminv[il:iu],
pg.ex[il:iu], pg.ey[il:iu], pg.ez[il:iu],
pg.bx[il:iu], pg.by[il:iu], pg.bz[il:iu],
pg.sq[js], pg.sm[js], top.dt, 2)
else:
# --- push velocity from magnetic field
warp.bpush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu], pg.gaminv[il:iu],
pg.bx[il:iu], pg.by[il:iu], pg.bz[il:iu],
pg.sq[js], pg.sm[js], 0.5*top.dt, top.ibpush)
# --- push velocity from electric field (half step)
warp.epush3d(np, pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu],
pg.ex[il:iu], pg.ey[il:iu], pg.ez[il:iu],
pg.sq[js], pg.sm[js], 0.5*top.dt)
# --- update gamma
self.set_gamma(js, pg)
if self.l_verbose:print me, 'exit push_velocity_second_part'
def set_gamma(self, js, pg=None):
if self.l_verbose:print me, 'enter set_gamma'
if pg is None:
pg = top.pgroup
np = pg.nps[js]
if np == 0: return
il = pg.ins[js] - 1
iu = il + pg.nps[js]
# --- update gamma
warp.gammaadv(np, pg.gaminv[il:iu], pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu], top.gamadv, top.lrelativ)
if self.l_verbose:print me, 'exit set_gamma'
def push_positions(self, js, pg=None):
if self.l_verbose:print me, 'enter push_positions'
if pg is None:
pg = top.pgroup
np = pg.nps[js]
if np == 0: return
il = pg.ins[js] - 1
iu = il + pg.nps[js]
warp.xpush3d(np, pg.xp[il:iu], pg.yp[il:iu], pg.zp[il:iu],
pg.uxp[il:iu], pg.uyp[il:iu], pg.uzp[il:iu],
pg.gaminv[il:iu], top.dt)
if self.l_verbose:print me, 'exit push_positions'
|