1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
#include <WarpX.H>
#include <WarpX_f.H>
namespace
{
const std::string level_prefix {"Level_"};
}
using namespace amrex;
void
WarpX::
WritePlotFileES (const amrex::Vector<std::unique_ptr<amrex::MultiFab> >& rho,
const amrex::Vector<std::unique_ptr<amrex::MultiFab> >& phi,
const amrex::Vector<std::array<std::unique_ptr<amrex::MultiFab>, 3> >& E)
{
BL_PROFILE("WarpX::WritePlotFileES()");
VisMF::Header::Version current_version = VisMF::GetHeaderVersion();
VisMF::SetHeaderVersion(plotfile_headerversion);
const std::string& plotfilename = amrex::Concatenate(plot_file,istep[0]);
amrex::Print() << " Writing plotfile " << plotfilename << "\n";
const int nlevels = finestLevel()+1;
{
Vector<std::string> varnames;
Vector<std::unique_ptr<MultiFab> > mf(finest_level+1);
for (int lev = 0; lev <= finest_level; ++lev) {
int ncomp = 5;
const int ngrow = 0;
mf[lev].reset(new MultiFab(grids[lev], dmap[lev], ncomp, ngrow));
int dcomp = 0;
amrex::average_node_to_cellcenter(*mf[lev], dcomp, *rho[lev], 0, 1);
if (lev == 0) {
varnames.push_back("rho");
}
dcomp += 1;
amrex::average_node_to_cellcenter(*mf[lev], dcomp , *E[lev][0], 0, 1);
amrex::average_node_to_cellcenter(*mf[lev], dcomp+1, *E[lev][0], 0, 1);
amrex::average_node_to_cellcenter(*mf[lev], dcomp+2, *E[lev][0], 0, 1);
if (lev == 0) {
varnames.push_back("Ex");
varnames.push_back("Ey");
varnames.push_back("Ez");
}
dcomp += 3;
amrex::average_node_to_cellcenter(*mf[lev], dcomp, *phi[lev], 0, 1);
if (lev == 0) {
varnames.push_back("phi");
}
dcomp += 1;
}
Vector<std::string> rfs(1,"raw_fields"); // pre-build raw_fields/
amrex::WriteMultiLevelPlotfile(plotfilename, finest_level+1,
amrex::GetVecOfConstPtrs(mf),
varnames, Geom(), t_new[0], istep, refRatio(),
"HyperCLaw-V1.1",
"Level_",
"Cell",
rfs);
}
{
const std::string raw_plotfilename = plotfilename + "/raw_fields";
const int nlevels = finestLevel()+1;
for (int lev = 0; lev < nlevels; ++lev) {
const DistributionMapping& dm = DistributionMap(lev);
MultiFab Ex( E[lev][0]->boxArray(), dm, 1, 0);
MultiFab Ey( E[lev][1]->boxArray(), dm, 1, 0);
MultiFab Ez( E[lev][2]->boxArray(), dm, 1, 0);
MultiFab charge_density(rho[lev]->boxArray(), dm, 1, 0);
MultiFab potential(phi[lev]->boxArray(), dm, 1, 0);
MultiFab::Copy(Ex, *E[lev][0], 0, 0, 1, 0);
MultiFab::Copy(Ey, *E[lev][1], 0, 0, 1, 0);
MultiFab::Copy(Ez, *E[lev][2], 0, 0, 1, 0);
MultiFab::Copy(charge_density, *rho[lev], 0, 0, 1, 0);
MultiFab::Copy(potential, *phi[lev], 0, 0, 1, 0);
VisMF::Write(Ex, amrex::MultiFabFileFullPrefix(lev, raw_plotfilename, level_prefix, "Ex"));
VisMF::Write(Ey, amrex::MultiFabFileFullPrefix(lev, raw_plotfilename, level_prefix, "Ey"));
VisMF::Write(Ez, amrex::MultiFabFileFullPrefix(lev, raw_plotfilename, level_prefix, "Ez"));
VisMF::Write(charge_density, amrex::MultiFabFileFullPrefix(lev, raw_plotfilename, level_prefix, "rho"));
VisMF::Write(potential, amrex::MultiFabFileFullPrefix(lev, raw_plotfilename, level_prefix, "phi"));
}
}
mypc->Checkpoint(plotfilename);
WriteJobInfo(plotfilename);
WriteWarpXHeader(plotfilename);
VisMF::SetHeaderVersion(current_version);
}
|